Writing Latin Free
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Origin of the Peculiarities of the Vietnamese Alphabet André-Georges Haudricourt
The origin of the peculiarities of the Vietnamese alphabet André-Georges Haudricourt To cite this version: André-Georges Haudricourt. The origin of the peculiarities of the Vietnamese alphabet. Mon-Khmer Studies, 2010, 39, pp.89-104. halshs-00918824v2 HAL Id: halshs-00918824 https://halshs.archives-ouvertes.fr/halshs-00918824v2 Submitted on 17 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in Mon-Khmer Studies 39. 89–104 (2010). The origin of the peculiarities of the Vietnamese alphabet by André-Georges Haudricourt Translated by Alexis Michaud, LACITO-CNRS, France Originally published as: L’origine des particularités de l’alphabet vietnamien, Dân Việt Nam 3:61-68, 1949. Translator’s foreword André-Georges Haudricourt’s contribution to Southeast Asian studies is internationally acknowledged, witness the Haudricourt Festschrift (Suriya, Thomas and Suwilai 1985). However, many of Haudricourt’s works are not yet available to the English-reading public. A volume of the most important papers by André-Georges Haudricourt, translated by an international team of specialists, is currently in preparation. Its aim is to share with the English- speaking academic community Haudricourt’s seminal publications, many of which address issues in Southeast Asian languages, linguistics and social anthropology. -
0. Introduction L2/12-386
Doc Type: Working Group Document Title: Revised Proposal to Encode Additional Old Italic Characters Source: UC Berkeley Script Encoding Initiative (Universal Scripts Project) Author: Christopher C. Little ([email protected]) Status: Liaison Contribution Action: For consideration by JTC1/SC2/WG2 and UTC Replaces: N4046 (L2/11-146R) Date: 2012-11-06 0. Introduction The existing Old Italic character repertoire includes 31 letters and 4 numerals. The Unicode Standard, following the recommendations in the proposal L2/00-140, states that Old Italic is to be used for the encoding of Etruscan, Faliscan, Oscan, Umbrian, North Picene, and South Picene. It also specifically states that Old Italic characters are inappropriate for encoding the languages of ancient Italy north of Etruria (Venetic, Raetic, Lepontic, and Gallic). It is true that the inscriptions of languages north of Etruria exhibit a number of common features, but those features are often exhibited by the other scripts of Italy. Only one of these northern languages, Raetic, requires the addition of any additional characters in order to be fully supported by the Old Italic block. Accordingly, following the addition of this one character, the Unicode Standard should be amended to recommend the encoding of Venetic, Raetic, Lepontic, and Gallic using Old Italic characters. In addition, one additional character is necessary to encode South Picene inscriptions. This proposal is divided into five parts: The first part (§1) identifies the two unencoded characters (Raetic Ɯ and South Picene Ũ) and demonstrates their use in inscriptions. The second part (§2) examines the use of each Old Italic character, as it appears in Etruscan, Faliscan, Oscan, Umbrian, South Picene, Venetic, Raetic, Lepontic, Gallic, and archaic Latin, to demonstrate the unifiability of the northern Italic languages' scripts with Old Italic. -
Roman Numerals
History of Numbers 1c. I can distinguish between an additive and positional system, and convert between Roman and Hindu-Arabic numbers. Roman Numerals The numeric system represented by Roman numerals originated in ancient Rome (753 BC–476 AD) and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. By the 11th century, the more efJicient Hindu–Arabic numerals had been introduced into Europe by way of Arab traders. Roman numerals, however, remained in commo use well into the 14th and 15th centuries, even in accounting and other business records (where the actual calculations would have been made using an abacus). Roman numerals are still used today, in certain contexts. See: Modern Uses of Roman Numerals Numbers in this system are represented by combinations of letters from the Latin alphabet. Roman numerals, as used today, are based on seven symbols: The numbers 1 to 10 are expressed in Roman numerals as: I, II, III, IV, V, VI, VII, VIII, IX, X. This an additive system. Numbers are formed by combining symbols and adding together their values. For example, III is three (three ones) and XIII is thirteen (a ten plus three ones). Because each symbol (I, V, X ...) has a Jixed value rather than representing multiples of ten, one hundred and so on (according to the numeral's position) there is no need for “place holding” zeros, as in numbers like 207 or 1066. Using Roman numerals, those numbers are written as CCVII (two hundreds, plus a ive and two ones) and MLXVI (a thousand plus a ifty plus a ten, a ive and a one). -
Thinking in ⅃TЯ
Nathan P. Gibson • University of Munich (LMU) • usaybia.net Thinking in ⅃TЯ Reorienting the Directional Assumptions of Global Digital Scholarship https://tinyurl.com/gibson190608 Right2Left Workshop #DHSI19RTL Victoria, 8 June 2019 This presentation is licensed under a CC-BY 4.0 International License. Images may be subject to individual licenses (see captions). Outline Forward from Failures The State of Standards A Dizzying Tour of Directionality (Present Meets Future) (Past Meets Present) (The Past) Nathan Gibson, “Thinking in ⅃TЯ,” Right2Left DHSI, 8 June 2019, https://tinyurl.com/gibson190608 A Dizzying Tour of Directionality #sinistrodextrification Nathan Gibson, “Thinking in ⅃TЯ,” Right2Left DHSI, 8 June 2019, https://tinyurl.com/gibson190608 Modern Writing Systems Image: Adapted from https://commons.wikimedia.org/wi ki/File:WritingSystemsOfTheWorld. svg. Creator of the vector version: Pmx. Original work: Maximilian Dörrbecker, CC BY-SA 3.0. Nathan Gibson, “Thinking in ⅃TЯ,” Right2Left DHSI, 8 June 2019, https://tinyurl.com/gibson190608 Selected Languages* with Primarily Right-to-Left Writing Systems by Number of First-Language Speakers #5 Arabic 319 (millions) #10 Lahnda (Western Punjabi, etc.) 119 #20 Urdu 69 #23 Persian 62 * Or macrolanguages. ** May include non-primary speakers Pushto 38** Source: Eberhard, David M., Gary F. Simons, and Charles Sindhi 25 D. Fennig, eds. 2019. “Summary by Language Size” [and Kurdish 22** individual language profile pages]. In Ethnologue: Languages of the World, 22nd ed. Dallas: SIL Uyghur 10** International. Hebrew 5 https://www.ethnologue.com/statistics/size. Rohingya 3** Nathan Gibson, “Thinking in ⅃TЯ,” Right2Left DHSI, 8 June 2019, https://tinyurl.com/gibson190608 > half a billion people almost 10% of the world population Nathan Gibson, “Thinking in ⅃TЯ,” Right2Left DHSI, 8 June 2019, https://tinyurl.com/gibson190608 The State of Standards (Past Meets Present) Plain Text Logical vs. -
1 Curl and Divergence
Sections 15.5-15.8: Divergence, Curl, Surface Integrals, Stokes' and Divergence Theorems Reeve Garrett 1 Curl and Divergence Definition 1.1 Let F = hf; g; hi be a differentiable vector field defined on a region D of R3. Then, the divergence of F on D is @ @ @ div F := r · F = ; ; · hf; g; hi = f + g + h ; @x @y @z x y z @ @ @ where r = h @x ; @y ; @z i is the del operator. If div F = 0, we say that F is source free. Note that these definitions (divergence and source free) completely agrees with their 2D analogues in 15.4. Theorem 1.2 Suppose that F is a radial vector field, i.e. if r = hx; y; zi, then for some real number p, r hx;y;zi 3−p F = jrjp = (x2+y2+z2)p=2 , then div F = jrjp . Theorem 1.3 Let F = hf; g; hi be a differentiable vector field defined on a region D of R3. Then, the curl of F on D is curl F := r × F = hhy − gz; fz − hx; gx − fyi: If curl F = 0, then we say F is irrotational. Note that gx − fy is the 2D curl as defined in section 15.4. Therefore, if we fix a point (a; b; c), [gx − fy](a; b; c), measures the rotation of F at the point (a; b; c) in the plane z = c. Similarly, [hy − gz](a; b; c) measures the rotation of F in the plane x = a at (a; b; c), and [fz − hx](a; b; c) measures the rotation of F in the plane y = b at the point (a; b; c). -
Early-Alphabets-3.Pdf
Early Alphabets Alphabetic characteristics 1 Cretan Pictographs 11 Hieroglyphics 16 The Phoenician Alphabet 24 The Greek Alphabet 31 The Latin Alphabet 39 Summary 53 GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS 1 / 53 Alphabetic characteristics 3,000 BCE Basic building blocks of written language GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 2 / 53 Early visual language systems were disparate and decentralized 3,000 BCE Protowriting, Cuneiform, Heiroglyphs and far Eastern writing all functioned differently Rebuses, ideographs, logograms, and syllabaries · GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 3 / 53 HIEROGLYPHICS REPRESENTING THE REBUS PRINCIPAL · BEE & LEAF · SEA & SUN · BELIEF AND SEASON GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 4 / 53 PETROGLYPHIC PICTOGRAMS AND IDEOGRAPHS · CIRCA 200 BCE · UTAH, UNITED STATES GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 5 / 53 LUWIAN LOGOGRAMS · CIRCA 1400 AND 1200 BCE · TURKEY GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 6 / 53 OLD PERSIAN SYLLABARY · 600 BCE GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 7 / 53 Alphabetic structure marked an enormous societal leap 3,000 BCE Power was reserved for those who could read and write · GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 8 / 53 What is an alphabet? Definition An alphabet is a set of visual symbols or characters used to represent the elementary sounds of a spoken language. –PM · GDT-101 / HISTORY OF GRAPHIC DESIGN / EARLY ALPHABETS / Alphabetic Characteristics 9 / 53 What is an alphabet? Definition They can be connected and combined to make visual configurations signifying sounds, syllables, and words uttered by the human mouth. -
Ffontiau Cymraeg
This publication is available in other languages and formats on request. Mae'r cyhoeddiad hwn ar gael mewn ieithoedd a fformatau eraill ar gais. [email protected] www.caerphilly.gov.uk/equalities How to type Accented Characters This guidance document has been produced to provide practical help when typing letters or circulars, or when designing posters or flyers so that getting accents on various letters when typing is made easier. The guide should be used alongside the Council’s Guidance on Equalities in Designing and Printing. Please note this is for PCs only and will not work on Macs. Firstly, on your keyboard make sure the Num Lock is switched on, or the codes shown in this document won’t work (this button is found above the numeric keypad on the right of your keyboard). By pressing the ALT key (to the left of the space bar), holding it down and then entering a certain sequence of numbers on the numeric keypad, it's very easy to get almost any accented character you want. For example, to get the letter “ô”, press and hold the ALT key, type in the code 0 2 4 4, then release the ALT key. The number sequences shown from page 3 onwards work in most fonts in order to get an accent over “a, e, i, o, u”, the vowels in the English alphabet. In other languages, for example in French, the letter "c" can be accented and in Spanish, "n" can be accented too. Many other languages have accents on consonants as well as vowels. -
Medical Terminology Abbreviations Medical Terminology Abbreviations
34 MEDICAL TERMINOLOGY ABBREVIATIONS MEDICAL TERMINOLOGY ABBREVIATIONS The following list contains some of the most common abbreviations found in medical records. Please note that in medical terminology, the capitalization of letters bears significance as to the meaning of certain terms, and is often used to distinguish terms with similar acronyms. @—at A & P—anatomy and physiology ab—abortion abd—abdominal ABG—arterial blood gas a.c.—before meals ac & cl—acetest and clinitest ACLS—advanced cardiac life support AD—right ear ADL—activities of daily living ad lib—as desired adm—admission afeb—afebrile, no fever AFB—acid-fast bacillus AKA—above the knee alb—albumin alt dieb—alternate days (every other day) am—morning AMA—against medical advice amal—amalgam amb—ambulate, walk AMI—acute myocardial infarction amt—amount ANS—automatic nervous system ant—anterior AOx3—alert and oriented to person, time, and place Ap—apical AP—apical pulse approx—approximately aq—aqueous ARDS—acute respiratory distress syndrome AS—left ear ASA—aspirin asap (ASAP)—as soon as possible as tol—as tolerated ATD—admission, transfer, discharge AU—both ears Ax—axillary BE—barium enema bid—twice a day bil, bilateral—both sides BK—below knee BKA—below the knee amputation bl—blood bl wk—blood work BLS—basic life support BM—bowel movement BOW—bag of waters B/P—blood pressure bpm—beats per minute BR—bed rest MEDICAL TERMINOLOGY ABBREVIATIONS 35 BRP—bathroom privileges BS—breath sounds BSI—body substance isolation BSO—bilateral salpingo-oophorectomy BUN—blood, urea, nitrogen -
Bana Braille Codes Update 2007
BANA BRAILLE CODES UPDATE 2007 Developed Under the Sponsorship of the BRAILLE AUTHORITY OF NORTH AMERICA Effective Date: January 1, 2008 BANA MEMBERS American Council of the Blind American Foundation for the Blind American Printing House for the Blind Associated Services for the Blind and Visually Impaired Association for Education and Rehabilitation of the Blind and Visually Impaired Braille Institute of America California Transcribers and Educators of the Visually Handicapped Canadian Association of Educational Resource Centres for Alternate Format Materials The Clovernook Center for the Blind and Visually Impaired CNIB (Canadian National Institute for the Blind) National Braille Association National Braille Press National Federation of the Blind National Library Service for the Blind and Physically Handicapped, Library of Congress Royal New Zealand Foundation of the Blind. Associate Member Publications Committee Susan Christensen, Chairperson Judy Dixon, Board Liaison Bob Brasher Warren Figueiredo Sandy Smith Joanna E. Venneri Copyright © by the Braille Authority of North America. This material may be duplicated but not altered. This document is available for download in various formats from www.brailleauthority.org. 2 TABLE OF CONTENTS INTRODUCTION ENGLISH BRAILLE, AMERICAN EDITION, REVISED 2002 ....... L1 Table of Changes.................................................................. L2 Definition of Braille ............................................................... L3 Rule I: Punctuation Signs .....................................................L13 -
Proposal for Generation Panel for Latin Script Label Generation Ruleset for the Root Zone
Generation Panel for Latin Script Label Generation Ruleset for the Root Zone Proposal for Generation Panel for Latin Script Label Generation Ruleset for the Root Zone Table of Contents 1. General Information 2 1.1 Use of Latin Script characters in domain names 3 1.2 Target Script for the Proposed Generation Panel 4 1.2.1 Diacritics 5 1.3 Countries with significant user communities using Latin script 6 2. Proposed Initial Composition of the Panel and Relationship with Past Work or Working Groups 7 3. Work Plan 13 3.1 Suggested Timeline with Significant Milestones 13 3.2 Sources for funding travel and logistics 16 3.3 Need for ICANN provided advisors 17 4. References 17 1 Generation Panel for Latin Script Label Generation Ruleset for the Root Zone 1. General Information The Latin script1 or Roman script is a major writing system of the world today, and the most widely used in terms of number of languages and number of speakers, with circa 70% of the world’s readers and writers making use of this script2 (Wikipedia). Historically, it is derived from the Greek alphabet, as is the Cyrillic script. The Greek alphabet is in turn derived from the Phoenician alphabet which dates to the mid-11th century BC and is itself based on older scripts. This explains why Latin, Cyrillic and Greek share some letters, which may become relevant to the ruleset in the form of cross-script variants. The Latin alphabet itself originated in Italy in the 7th Century BC. The original alphabet contained 21 upper case only letters: A, B, C, D, E, F, Z, H, I, K, L, M, N, O, P, Q, R, S, T, V and X. -
The Origin of the Alphabet: an Examination of the Goldwasser Hypothesis
Colless, Brian E. The origin of the alphabet: an examination of the Goldwasser hypothesis Antiguo Oriente: Cuadernos del Centro de Estudios de Historia del Antiguo Oriente Vol. 12, 2014 Este documento está disponible en la Biblioteca Digital de la Universidad Católica Argentina, repositorio institucional desarrollado por la Biblioteca Central “San Benito Abad”. Su objetivo es difundir y preservar la producción intelectual de la Institución. La Biblioteca posee la autorización del autor para su divulgación en línea. Cómo citar el documento: Colless, Brian E. “The origin of the alphabet : an examination of the Goldwasser hypothesis” [en línea], Antiguo Oriente : Cuadernos del Centro de Estudios de Historia del Antiguo Oriente 12 (2014). Disponible en: http://bibliotecadigital.uca.edu.ar/repositorio/revistas/origin-alphabet-goldwasser-hypothesis.pdf [Fecha de consulta:..........] . 03 Colless - Alphabet_Antiguo Oriente 09/06/2015 10:22 a.m. Página 71 THE ORIGIN OF THE ALPHABET: AN EXAMINATION OF THE GOLDWASSER HYPOTHESIS BRIAN E. COLLESS [email protected] Massey University Palmerston North, New Zealand Summary: The Origin of the Alphabet Since 2006 the discussion of the origin of the Semitic alphabet has been given an impetus through a hypothesis propagated by Orly Goldwasser: the alphabet was allegedly invented in the 19th century BCE by illiterate Semitic workers in the Egyptian turquoise mines of Sinai; they saw the picturesque Egyptian inscriptions on the site and borrowed a number of the hieroglyphs to write their own language, using a supposedly new method which is now known by the technical term acrophony. The main weakness of the theory is that it ignores the West Semitic acrophonic syllabary, which already existed, and contained most of the letters of the alphabet. -
An Introduction to Roman Epigraphy an Inscription in the Lapis Niger
To read or not to read: an introduction to Roman epigraphy An inscription in the Lapis Niger (‘Black Stone’) The Lapis Niger, an area of ill-omen and an early cult site in the Forum Romanum, was paved in black stone by Sulla around 80 BC. It provides the earliest evidence of Rome’s comitium (an assembly meeting-point) and contains one of the oldest surviving inscriptions in ancient Rome. The archaic inscription found within this area, often called a cippus (CIL 1.2.1), is an excellent case study, both for archaic Rome and for the use of inscriptions as evidence. This unassuming slab of grey tufa has the distinction of being one of the most confounding objects from antiquity. Even the name, Lapis Niger, often used by scholars for the inscription, is a term coined by the ancient sources for the area around Sulla’s pavement (not the inscription itself). To assess some of the mysteries behind this inscription one must examine it both as a text and as a monument. This involves looking not only at the writing but how it was displayed and in what context it was placed. In this respect the inscription falls within a number of fields, and requires literary, archaeological, geographic and sometimes geological analysis. This study will consider a number of different approaches to show to illustrate both the insights and the limitations of this source. The role of context: what can urban and archaeological contexts tell us about an inscription? The location of this inscription and the fact that it remains in situ provides a wealth of information (especially in Rome, a city that is notorious for ‘eating itself’: materials are often moved and reused).