What Controls the Lateral Variation of Large Earthquake Occurrence Along the Japan Trench?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake As Inferred from Tsunami Waveform Data Kenji Satake
1 Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as 2 Inferred from Tsunami Waveform Data 3 4 Kenji Satake1, Yushiro Fujii2, Tomoya Harada1 and Yuichi Namegaya3 5 6 Electronic Supplement 7 Estimated slip for each subfault at 0.5 min interval 8 http://iisee.kenken.go.jp/staff/fujii/BSSA_Tohoku/BSSA-D-12-00122R1-esupp.html 9 10 11 Corresponding author: Kenji Satake 12 Earthquake Research Institute, University of Tokyo 13 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 Japan 14 [email protected] 15 Revised on July 21, 2012 16 Final version September 26, 2012 17 18 1 19 Abstract A multiple time-window inversion of 53 high-sampling tsunami 20 waveforms on ocean bottom pressure, GPS, coastal wave, and tide gauges shows a 21 temporal and spatial slip distribution during the 2011 Tohoku earthquake. The 22 fault rupture started near the hypocenter and propagated into both deep and 23 shallow parts of the plate interface. Very large, approximately 25 m, slip off Miyagi 24 on the deep part, at a location similar to the previous 869 Jogan earthquake model, 25 was responsible for the initial rise of tsunami waveforms and the recorded tsunami 26 inundation in Sendai and Ishinomaki plains. Huge slip, up to 69 m, occurred on the 27 shallow part near the trench axis 3 min after the rupture initiation. This delayed 28 shallow rupture extended for 400 km with more than 10 m slip, at a location similar 29 to the 1896 Sanriku tsunami earthquake, and was responsible for the peak 30 amplitudes of the tsunami waveforms and the maximum tsunami heights measured 31 on the northern Sanriku coast, 100 km north of the largest slip. -
Seismic and Aseismic Slip Along Subduction Zones and Their Tectonic Implications
SEISMIC AND ASEISMIC SLIP ALONG SUBDUCTION ZONES AND THEIR TECTONIC IMPLICATIONS Hirao Kanamori Seismological Laboratory, California Institute of Technology, Pasadena, California 91125 Abstract. Results of detailed mechanism Introduction studies of great earthquakes are used togeth er with their repeat times to determine the In the theory of plate tectonics, litho amount of seismic slip along various subduc spheric subduction is one of the major tec tion zones. Comparison of the seismic slip tonic processes related to the formation and with the rate of plate motion suggests that, evolution of island arcs. The deep and in in Chile, and possibly Alaska, the seismic termediate earthquake zones along island arcs slip rate is comparable to the rate of plate delineate the geometry of the subducting motion while, in the Kuriles and Northern lithosphere, and major shallow earthquake Japan, the seismic slip constitutes only a activity along island arcs is a manifestation very small portion, approximately 1/4, of of the mechanical interaction between the the total slip. In the Sanriku region, and subducting and the overriding lithospheres. to the south of it, the relative amount of The geometrical agreement of focal mechanisms seismic slip is even smaller. These results of earthquakes along the Circum-Pacific belt suggest that in Chile and Alaska the coupling led McKenzie and Parker [1967] to the con and interaction between the oceanic and con cept of rigid plates dividing the earth's tinental lithosphere are very strong, re surface. Isacks and Molnar [1969] used the sulting in great earthquakes with a very geometry of the compression and tension axes large rupture zone, and in break-off of the of deep and intermediate earthquakes to in undergoing lithosphere at shallow depths. -
Tracking Past Earthquakes in the Sediment Record Testing and Developing Submarine Paleoseismology in the Deep Sea (JTRACK‐Paleoseismology)
IODP Expedition 386: Japan Trench Paleoseismology TRACKing past earthquakes in the sediment record Testing and developing submarine Paleoseismology in the deep sea (JTRACK‐Paleoseismology) IODP Expedition 386: Japan Trench Paleoseismology Co‐Chief Scientists: Michael Strasser (University of Innsbruck, Austria) Ken Ikehara (Geological Survey of Japan, AIST) Expedition Project Manager: Jez Everest, British Geological Survey Lena Maeda, JAMSTEC (MarE3 Liasion) JpGU 2020 2020-07-12 Michi Strasser IODP Expedition 386: Japan Trench Paleoseismology Short historical and even shorter instrumental records limit our perspective of earthquake maximum magnitude and recurrence Examining prehistoric events preserved in the geological record is essential to understand long‐term history of giant earthquakes JpGU 2020 2020-07-12 Michi Strasser IODP Expedition 386: Japan Trench Paleoseismology “Submarine paleoseismology” is a promising approach to investigate deposits from the deep sea, where earthquakes leave traces preserved in stratigraphic succession. Submarine paleoseismology study sites (numbers) compiled during Magellan Plus Workshop in Zürich 2015 (McHugh et al., 2016; Strasser et al., 2016) JpGU 2020 2020-07-12 Michi Strasser IODP Expedition 386: Japan Trench Paleoseismology Challenges in Submarine Paleoseismology Can we distinguish different earthquake events and types from the sedimentary records? Is there an earthquake magnitude threshold for a given signal/pattern in the geological record? Does record sensitivity change by margin segmentation, sedimentation and/or through time? Can we link the sedimentary signal to the earthquake rupture characteristics? McHugh et al., 2016; Strasser et al., 2016) JpGU 2020 2020-07-12 Michi Strasser IODP Expedition 386: Japan Trench Paleoseismology IODP is uniquely positioned to provide data by coring sequences comprising continuous depositional conditions and records of earthquakes occurrence over longer time periods. -
Large and Repeating Slow Slip Events in the Izu-Bonin Arc from Space
LARGE AND REPEATING SLOW SLIP EVENTS IN THE IZU-BONIN ARC FROM SPACE GEODETIC DATA (伊豆小笠原弧における巨大スロー地震および繰り返し スロー地震の宇宙測地学的研究) by Deasy Arisa Department of Natural History Sciences Graduate School of Science, Hokkaido University September, 2016 Abstract The Izu-Bonin arc lies along the convergent boundary where the Pacific Plate subducts beneath the Philippine Sea Plate. In the first half of my three-year doctoral course, I focused on the slow deformation on the Izu Islands, and later in the second half, I focused on the slow deformation on the Bonin Islands. The first half of the study, described in Chapter V, is published as a paper, "Transient crustal movement in the northern Izu–Bonin arc starting in 2004: A large slow slip event or a slow back-arc rifting event?". Horizontal velocities of continuous Global Navigation Satellite System (GNSS) stations on the Izu Islands move eastward by up to ~1 cm/year relative to the stable part of the Philippine Sea Plate suggesting active back-arc rifting behind the northern part of the arc. We confirmed the eastward movement of the Izu Islands explained by Nishimura (2011), and later discussed the sudden accelerated movement in the Izu Islands detected to have occurred in the middle of 2004. I mainly discussed this acceleration and make further analysis to find out the possible cause of this acceleration. Here I report that such transient eastward acceleration, starting in the middle of 2004, resulted in ~3 cm extra movements in three years. I compare three different mechanisms possibly responsible for this transient movement, i.e. (1) postseismic movement of the 2004 September earthquake sequence off the Kii Peninsula far to the west, (2) a temporary activation of the back-arc rifting to the west dynamically triggered by seismic waves from a nearby earthquake, and (3) a large slow slip event in the Izu-Bonin Trench to the east. -
Fully-Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone
Noname manuscript No. (will be inserted by the editor) Fully-coupled simulations of megathrust earthquakes and tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone Gabriel C. Lotto · Tamara N. Jeppson · Eric M. Dunham Abstract Subduction zone earthquakes can pro- strate that horizontal seafloor displacement is a duce significant seafloor deformation and devas- major contributor to tsunami generation in all sub- tating tsunamis. Real subduction zones display re- duction zones studied. We document how the non- markable diversity in fault geometry and struc- hydrostatic response of the ocean at short wave- ture, and accordingly exhibit a variety of styles lengths smooths the initial tsunami source relative of earthquake rupture and tsunamigenic behavior. to commonly used approach for setting tsunami We perform fully-coupled earthquake and tsunami initial conditions. Finally, we determine self-consistent simulations for three subduction zones: the Japan tsunami initial conditions by isolating tsunami waves Trench, the Nankai Trough, and the Cascadia Sub- from seismic and acoustic waves at a final sim- duction Zone. We use data from seismic surveys, ulation time and backpropagating them to their drilling expeditions, and laboratory experiments initial state using an adjoint method. We find no to construct detailed 2D models of the subduc- evidence to support claims that horizontal momen- tion zones with realistic geometry, structure, fric- tum transfer from the solid Earth to the ocean is tion, and prestress. Greater prestress and rate-and- important in tsunami generation. state friction parameters that are more velocity- weakening generally lead to enhanced slip, seafloor Keywords tsunami; megathrust earthquake; deformation, and tsunami amplitude. -
Mw9- Class Earthquakes Versus Smaller Earthquakes and Other Driving Mechanisms
Expedition Co-chief Scientists Prof. Michael Strasser Michael Strasser is a professor in sedimentary geology at the University of Innsbruck in Austria. His research focuses on the quantitative characterization of dynamic sedimentary and tectonic processes and related geohazards, as unraveled from the event-stratigraphic record of lakes and ocean margins. “Michi” has participated in 5 ocean drilling expeditions to subduction zones (including Nankai Trough Seismogenic Zone The Japan Trench Experiment Expedition 338 as Co-chief) and has received the 2017 AGU/JpGU Asahiko Taira International Scientific Ocean Paleoseismology Drilling Research Prize for his outstanding contributions 6 3 to the investigation of submarine mass movements using Deposit (x 10 m ) multidisciplinary approaches through scientific ocean drilling. Expedition His work on submarine paleoseismology has focused on the Japan Trench since the 2011 Tohoku-oki earthquake, Volume 70 after which he lead two research cruises to characterize the offshore impact of the earthquake on the hadal sedimentary environment. Dr. Ken Ikehara Error Ken Ikehara is a prime senior researcher in the Research Institute of Geology 60 and Geoinformation, Geological Survey of Japan, AIST. His research focuses Mid-value on sedimentology and marine geology of active margins, with special interests in sedimentary processes, formation and preservation of event deposits, Quaternary paleoceanography and Asian monsoon fluctuation. His work on submarine 50 paleoseismology has concentrated not only on the Japan Trench but also on the Nankai Trough, Ryukyu Trench and northern Japan Sea. Ken attended more than 80 survey cruises, mainly around the Japanese islands, including US Sumatra-Andaman Trench, German-Japan Japan Trench, 2000 French Antarctic Ocean cruises, and the IODP Exp 346 Asian monsoon. -
Evaluation of Liquefaction Potential in Relation to the Shearing History Using Shear Wave Velocity
九州大学学術情報リポジトリ Kyushu University Institutional Repository EVALUATION OF LIQUEFACTION POTENTIAL IN RELATION TO THE SHEARING HISTORY USING SHEAR WAVE VELOCITY 劉, 国軍 https://doi.org/10.15017/2534440 出版情報:九州大学, 2019, 博士(工学), 課程博士 バージョン: 権利関係: EVALUATION OF LIQUEFACTION POTENTIAL IN RELATION TO THE SHEARING HISTORY USING SHEAR WAVE VELOCITY 劉 国軍 GUOJUN LIU SEPTEMBER 2019 EVALUATION OF LIQUEFACTION POTENTIAL IN RELATION TO THE SHEARING HISTORY USING SHEAR WAVE VELOCITY A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF ENGINEERING BY GUOJUN LIU TO THE DEPARTMENT OF CIVIL AND STRUCTURAL ENGINEERING GRADUATE SCHOOL OF ENGINEERING KYUSHU UNIVERSITY FUKUOKA, JAPAN 2019 GEOTECHNICAL ENGINEERING LABORATORY DEPARTMENT OF CIVIL AND STRUCTURAL ENGINEERING GRADUATE SCHOOL OF ENGINEERING KYUSHU UNIVERSITY FUKUOKA, JAPAN CERTIFICATE The undersigned hereby certify that they have read and recommended to the Graduate School of Engineering for the acceptance of this dissertation entitled, “EVALUATION OF LIQUEFACTION POTENTIAL IN RELATION TO THE SHEARING HISTORY USING SHEAR WAVE VELOCITY” by GUOJUN LIU in partial fulfillment of the requirements for the degree of DOCTOR OF ENGINEERING. Dated: August 2019 Supervisor: Prof. Noriyuki YASUFUKU, Dr. Eng. Examining Committee: Assoc. Prof. Yukihide KAJITA, Dr. Eng. Prof. Hideo NAGASE, Dr. Eng. Abstract The serious disasters caused by the recurrence of soil liquefaction during the 2016 Kumamoto Earthquakes, is the primary motivation in this study. The potential cause of these disasters was considered mainly with two directions by researchers. Most opinions supposed the foreshock as the pre-shearing impact on the ground greatly when mainshock came. In this concern, the changes of particle structure and excess pore water pressure, which were produced by the foreshock, influenced the liquefaction potential significantly. -
Ship & Ocean Newsletter Selected Papers No. 15
Selected Papers No.15 March 2012 D irector's Message As mankind moves into the 21st century, integrated policies of ocean governance are necessary for the sustainable development and use of our oceans and their resources and for the protection of the marine environment. Towards this end, the Ocean Policy Research Foundation (formerly: Ship & Ocean Foundation) orients its research on ocean issues in line with the mission statement "Living in Harmony with the Oceans". The Ocean Policy Research Foundation aims to conduct cross-sectoral research in ocean related issues in order to initiate debate on marine topics and formulate both domestic and international policy proposals. We publish a Japanese-language newsletter called the "Ship & Ocean Newsletter" twice a month. The "Ship & Ocean Newsletter" seeks to provide people of diverse viewpoints and backgrounds with a forum for discussion and to contribute to the formulation of maritime policies conducive to coexistence between mankind and the ocean. Our Foundation believes that the Newsletter can expand effective communication on these issues by introducing timely research to abroad and informed readership. It also welcomes to responses from readers, some of which appear in the Newsletter. "Ship & Ocean Newsletter Selected Papers No.15" contains English-language versions of papers from the Japanese Newsletter edition, published from No.251(2011.1.20) to No.270(2011.11.5). It is our sincere hope that these Selected Papers will provide useful insights on policy debate in Japan and help to foster global policy dialogue on various ocean issues. Hiroshi TERASHIMA Executive Director ■The Newsletter Editorial Committee ●Chief Editors Tomoya AKIMICHI Professor, Research Institute for Humanity and Nature Toshio YAMAGATA Dean, School of Science, The University of Tokyo ●Members Masahiko ISOBE Professor, Dr. -
Outer-Rise Normal Fault Development and Influence On
Boston et al. Earth, Planets and Space 2014, 66:135 http://www.earth-planets-space.com/content/66/1/135 FULL PAPER Open Access Outer-rise normal fault development and influence on near-trench décollement propagation along the Japan Trench, off Tohoku Brian Boston1*, Gregory F Moore1, Yasuyuki Nakamura2 and Shuichi Kodaira2 Abstract Multichannel seismic reflection lines image the subducting Pacific Plate to approximately 75 km seaward of the Japan Trench and document the incoming plate sediment, faults, and deformation front near the 2011 Tohoku earthquake epicenter. Sediment thickness of the incoming plate varies from <50 to >600 m with evidence of slumping near normal faults. We find recent sediment deposits in normal fault footwalls and topographic lows. We studied the development of two different classes of normal faults: faults that offset the igneous basement and faults restricted to the sediment section. Faults that cut the basement seaward of the Japan Trench also offset the seafloor and are therefore able to be well characterized from multiple bathymetric surveys. Images of 199 basement-cutting faults reveal an average throw of approximately 120 m and average fault spacing of approximately 2 km. Faults within the sediment column are poorly documented and exhibit offsets of approximately 20 m, with densely spaced populations near the trench axis. Regional seismic lines show lateral variations in location of the Japan Trench deformation front throughout the region, documenting the incoming plate’s influence on the deformation front’s location. Where horst blocks are carried into the trench, seaward propagation of the deformation front is diminished compared to areas where a graben has entered the trench. -
Repeated Occurrence of Surface-Sediment Remobilization
Ikehara et al. Earth, Planets and Space (2020) 72:114 https://doi.org/10.1186/s40623-020-01241-y FULL PAPER Open Access Repeated occurrence of surface-sediment remobilization along the landward slope of the Japan Trench by great earthquakes Ken Ikehara1* , Kazuko Usami1,2 and Toshiya Kanamatsu3 Abstract Deep-sea turbidites have been utilized to understand the history of past large earthquakes. Surface-sediment remo- bilization is considered to be a mechanism for the initiation of earthquake-induced turbidity currents, based on the studies on the event deposits formed by recent great earthquakes, such as the 2011 Tohoku-oki earthquake, although submarine slope failure has been considered to be a major contributor. However, it is still unclear that the surface-sed- iment remobilization has actually occurred in past great earthquakes. We examined a sediment core recovered from the mid-slope terrace (MST) along the Japan Trench to fnd evidence of past earthquake-induced surface-sediment remobilization. Coupled radiocarbon dates for turbidite and hemipelagic muds in the core show small age diferences (less than a few 100 years) and suggest that initiation of turbidity currents caused by the earthquake-induced surface- sediment remobilization has occurred repeatedly during the last 2300 years. On the other hand, two turbidites among the examined 11 turbidites show relatively large age diferences (~ 5000 years) that indicate the occurrence of large sea-foor disturbances such as submarine slope failures. The sedimentological (i.e., of diatomaceous nature and high sedimentation rates) and tectonic (i.e., continuous subsidence and isolated small basins) settings of the MST sedimentary basins provide favorable conditions for the repeated initiation of turbidity currents and for deposition and preservation of fne-grained turbidites. -
The Late Prof. Tokuji Utsu: His Career with Geophysics and Seismology
The late Prof. Tokuji Utsu: His career with Geophysics and Seismology R. S. Matsu’ura1 1Association for the Development of Earthquake Prediction, 1-5-18, Sarugaku-cho, Chiyoda-ku, Tokyo 101-0064, Japan Corresponding Author: R. S. Matsu’ura, [email protected] Abstract: Dr. Tokuji Utsu, Professor Emeritus of the University of Tokyo passed away on August 17, 2004. Among his various works on seismology and geophysics, the thorough research on aftershocks and the structure model under island arcs (Utsu model) are the most notable. He devoted more than a half century to the study of seismology and geophysics until he fell down to disease at the age of 76. He left us the enormous information on seismicity by the end of the 20th century in his best book “Seismicity Studies: A Comprehensive Review.” Although he was usually a so silent person, who seldom did conversation with anybody, his book tells us a lot about what we found about seismicity so far and what we should attack from now on. 1. Introduction Prof. Utsu was born in a downtown area of Tokyo on April 13, 1928. After he graduated from Geophysical Institute, the University of Tokyo, he was employed by the Central Meteorological Observatory (which became Japan Meteorological Agency in 1956) in 1951. Although his supervisor was Prof. Takeshi Nagata, and his first paper was on the electromagnetic phenomena, he happened to be posted to the seismological section in the observatory. This was the beginning of his career as a seismologist. If he were posted to the meteorological section or the geomagnetic section at that time, we would not have had Omori-Utsu formula as the decay law of aftershocks, nor the thorough catalog of the world destructive earthquakes. -
Supercycle in Great Earthquake Recurrence Along the Japan Trench Over the Last 4000 Years Kazuko Usami1,5* , Ken Ikehara1, Toshiya Kanamatsu2 and Cecilia M
Usami et al. Geosci. Lett. (2018) 5:11 https://doi.org/10.1186/s40562-018-0110-2 RESEARCH LETTER Open Access Supercycle in great earthquake recurrence along the Japan Trench over the last 4000 years Kazuko Usami1,5* , Ken Ikehara1, Toshiya Kanamatsu2 and Cecilia M. McHugh3,4 Abstract On the landward slope of the Japan Trench, the mid-slope terrace (MST) is located at a depth of 4000–6000 m. Two piston cores from the MST were analyzed to assess the applicability of the MST for turbidite paleoseismology and to fnd out reliable recurrence record of the great earthquakes along the Japan Trench. The cores have preserved records of ~ 12 seismo-turbidites (event deposits) during the last 4000 years. In the upper parts of the two cores, only the following earthquakes (magnitude M ~ 8 and larger) were clearly recorded: the 2011 Tohoku, the 1896 Sanriku, the 1454 Kyotoku, and the 869 Jogan earthquake. In the lower part of the cores, turbidites were deposited alternately in the northern and southern sites during the periods between concurrent depositional events occurring at intervals of 500–900 years. Considering the characteristics of the coring sites for their sensitivity to earthquake shaking, the con- current depositional events likely correspond to a supercycle that follows giant (M ~ 9) earthquakes along the Japan Trench. Preliminary estimations of peak ground acceleration for the historical earthquakes recorded as the turbidites imply that each rupture length of the 1454 and 869 earthquakes was over 200 km. The earthquakes related to the supercycle have occurred over at least the last 4000 years, and the cycle seems to have become slightly shorter in recent years.