Spline Interpolation and Contour Error Pre-Compensation for 5-Axis Machining

Total Page:16

File Type:pdf, Size:1020Kb

Spline Interpolation and Contour Error Pre-Compensation for 5-Axis Machining SPLINE INTERPOLATION AND CONTOUR ERROR PRE-COMPENSATION FOR 5-AXIS MACHINING by Alexander Yuen B.A.Sc., The University of British Columbia, 2011 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in The Faculty of Graduate Studies (Mechanical Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2013 ⃝c Alexander Yuen 2013 Abstract This thesis presents experimentally verified smooth spline interpolation and contour error pre- compensation algorithms developed for 5-axis machine tools. In the smooth spline interpola- tion algorithm, the cutter location data from the computer-aided manufacturing system is first fitted independently to decouple the relative changes in position and orientation. The tool tip positions are fitted to a quintic B-spline, achieving geometric jerk continuity. Next, the tooltip orientations are fitted to another quintic B-spline in spherical coordinates, achieving geometric jerk continuity and feasible orientations at all points of the spline. The nonlinear relationship between spline parameters and displacement are approximated with 9th order and seventh order feed correction splines for position and orientation, respectively. The 9th order feed correction spline is fit adaptively to minimize fitting error while preserving C3 continuity. The seventh order feed correction spline is optimized to minimize jerk while preserving C3 continuity as well. In the contour error pre-compensation algorithm, the position commands generated in the smooth spline interpolation algorithm, are first fitted to piecewise quintic splines while respect- ing velocity, acceleration and jerk continuity at the spline joints. The transfer function of each servo drive is kept linear by compensating the disturbance effect of friction with a feed-forward block. Using the analytically represented 5-axis, splined tool path, splined tracking errors and kinematic model of the five-axis machine tool, contouring errors are predicted ahead of axis control loops. The contouring errors are decoupled into three linear and two rotary drives, and the position commands are modified before they are sent to servo drives for execution. The methods developed in this thesis have been evaluated on a 5-axis machining center with a tilting-table configuration, and are directly applicable to other 5-axis kinematic configurations ii Abstract such as spindle-tilting or hybrid configurations. The experiments show improvements in fit- ting accuracy, reduction in vibrations, reduction in tracking errors, and significant reductions in contour error for five-axis tool paths. iii Preface Chapter 3. A version of this material has been published in the International Journal of Ma- chine Tools and Manufacture [Yuen A, Zhang K, Altintas Y. Smooth trajectory generation for five-axis machine tools. International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2013.04.002]. I was the lead investigator, responsible for the major development of the algorithms, experiment design, data collection and analysis, as well as manuscript composition. Zhang K was involved in the early development of the algorithms and contributed to the manuscript edits. Altintas Y was the supervisory author on this project and was involved throughout the project in concept formation and manuscript composition Chapter 4. A version of this material has been accepted by the International Journal of Machine Tools and Manufacture [Zhang K, Yuen A, Altintas Y. Pre-Compensation of Contour Errors in Five-Axis CNC Machine Tools. International Journal of Machine Tools and Manufacture]. Zhang K was the lead investigator, responsible for the major development of the algorithms, analysis, and manuscript composition. In this work, I was involved in the early development of the algorithms, experiment design, data collection, and analysis. Furthermore, I contributed a major portion to the manuscript revision. Altintas Y was the supervisory author on this project and was involved throughout the project in concept formation and manuscript composition Chapter 5. The results found in this chapter were previously published in the above two men- tioned works. Modifications include a more detailed analysis of the results. All figures and tables found in this thesis are used with permission from applicable sources. iv Table of Contents Abstract .......................................... ii Preface ........................................... iv Table of Contents ..................................... v List of Tables ........................................ viii List of Figures ....................................... ix Nomenclature ....................................... xii Acknowledgments ..................................... xix 1 Introduction ...................................... 1 2 Literature Review ................................... 7 2.1 Overview . 7 2.2 Three-Axis Spline Interpolation Techniques . 8 2.3 Five-Axis Spline Interpolation Techniques . 12 2.4 Five-Axis Spline Contour Error Pre-compensation . 15 2.5 Conclusions . 19 3 Spline Parametrization and Interpolation for 5-Axis Machines .......... 20 3.1 Overview . 20 v Table of Contents 3.2 B-Spline Background . 22 3.3 Decoupled B-spline Polynomial Representation . 28 3.4 C3 Tool Tip Position Spline Generation . 31 3.4.1 Parametric Position Spline Fitting . 31 3.4.2 Feed Correction Polynomial . 32 3.5 C3 Tool Orientation Spline Generation . 40 3.5.1 Parametric Orientation Spline . 40 3.5.2 Orientation Spline Reparametrization . 43 3.5.2.1 Windowing for a High Number of Data . 47 3.6 Conclusions . 50 4 Contour Error Pre-compensation .......................... 51 4.1 Overview . 51 4.2 Definition of Position and Orientation Contour Errors . 52 4.3 Tracking Error Prediction . 54 4.3.1 Fitting a Quintic Time Spline to Axis Position Commands . 57 4.3.2 Analytical Solution of Tracking Error . 63 4.4 Prediction of Contour Errors . 66 4.5 Compensation of Contour Errors . 69 4.6 Conclusions . 74 5 Simulations and Experiments ............................ 76 5.1 Overview . 76 5.2 Experimental Test Bed . 76 5.3 Simulations and Experiments for 5-Axis Spline Parametrization and Interpola- tion ........................................ 78 vi Table of Contents 5.3.1 Controller Design . 78 5.3.2 Simulation and Experimental Results . 79 5.4 Simulations and Experiments for 5-Axis Contour Error Pre-compensation . 87 5.4.1 Controller Design . 87 5.4.2 Simulation and Experimental Results . 89 5.5 Conclusions . 97 6 Conclusions ...................................... 98 6.1 Conclusions . 98 6.2 Future Research Directions . 99 Bibliography ........................................ 101 vii List of Tables 5.1 Plant parameters for Fadal VMC 2216 . 77 5.2 PID control parameters for 5-Axis spline parameterization and interpolation tests 79 5.3 Comparison of max./min. jerk values for test tool path at constant feed segment 86 5.4 Percentage tracking error . 86 5.5 PID control parameters for 5-Axis contour error pre-compensation tests . 88 viii List of Figures 1.1 Geometric deviations in position and orientation for a typical 5-axis machine tool 2 1.2 Overview of the work in this thesis, starting from the CAD/CAM system to the generated reference commands. The dashed boxes highlight the main contri- butions . 5 1.3 Overview of the main contributions in this thesis. Figure a) shows the basic overview of the spline interpolation algorithm developed. Figure b) shows the basic overview of the contour error pre-compensation algorithm developed. 6 2.1 Basic methodology of the spline fitting process . 8 2.2 Discrepancy between geometric parameter (u) and actual arc length (s) .... 9 2.3 Basic methodology of the 5-axis spline fitting process . 13 2.4 Approaches to reduce geometric deviations in a multi-axis machine . 16 3.1 Use of geometrically smooth splines to interpolate CAM data, and the resulting improvement in feed profiling . 21 3.2 Overview of proposed trajectory generation scheme. 23 3.3 B-spline curve representation. 26 3.4 Visualization of basis functions and the first derivative of basis functions over the parametric interval [0,1] . 27 3.5 Decoupled representation for a 5-axis toolpath . 29 3.6 Sequence of functions for reparametrization . 30 3.7 Different methods of interpolating along a given spline toolpath . 33 ix List of Figures 3.8 Adaption results of the feed correction polynomial fitting algorithm . 39 3.9 Mappings between spherical coordinates and (θ; ϕ) plane. 41 th 3.10 7 order Bezier´ spline and its control coefficients fitted to (sk; w¯k) data. 44 3.11 Comparison of w(s) with initially guessed control points and converged control points . 47 3.12 Comparison of reference jerks with w(s) using initially guessed control points and w(s) using converged control points . 48 3.13 Windowing scheme for generation of Orientation Reparameterization Spline . 49 4.1 Tool position and orientation contour errors . 52 4.2 Five-axis machine tool configuration. 55 4.3 Offsets of the rotary table that are included in the kinematic calculations for 5-axis rotary table kinematic configuration . 55 4.4 Tracking error prediction model. 57 4.5 Axis position fitting. 61 4.6 Block diagram for the PID controller and x-axis drive. 63 4.7 Tool tip position and orientation contour errors. 66 4.8 Orthogonality of On and Oact to O’n . 69 4.9 Contouring errors pre-compensation strategy. 70 5.1 Experimental setup . 77 5.2 Control Law for 5-Axis Spline Parameterization and Inteprolation Experiments 78 5.3 Simulation of Dual Spline and Decoupled Methods
Recommended publications
  • Math 541 - Numerical Analysis Interpolation and Polynomial Approximation — Piecewise Polynomial Approximation; Cubic Splines
    Polynomial Interpolation Cubic Splines Cubic Splines... Math 541 - Numerical Analysis Interpolation and Polynomial Approximation — Piecewise Polynomial Approximation; Cubic Splines Joseph M. Mahaffy, [email protected] Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://jmahaffy.sdsu.edu Spring 2018 Piecewise Poly. Approx.; Cubic Splines — Joseph M. Mahaffy, [email protected] (1/48) Polynomial Interpolation Cubic Splines Cubic Splines... Outline 1 Polynomial Interpolation Checking the Roadmap Undesirable Side-effects New Ideas... 2 Cubic Splines Introduction Building the Spline Segments Associated Linear Systems 3 Cubic Splines... Error Bound Solving the Linear Systems Piecewise Poly. Approx.; Cubic Splines — Joseph M. Mahaffy, [email protected] (2/48) Polynomial Interpolation Checking the Roadmap Cubic Splines Undesirable Side-effects Cubic Splines... New Ideas... An n-degree polynomial passing through n + 1 points Polynomial Interpolation Construct a polynomial passing through the points (x0,f(x0)), (x1,f(x1)), (x2,f(x2)), ... , (xN ,f(xn)). Define Ln,k(x), the Lagrange coefficients: n x − xi x − x0 x − xk−1 x − xk+1 x − xn Ln,k(x)= = ··· · ··· , Y xk − xi xk − x0 xk − xk−1 xk − xk+1 xk − xn i=0, i=6 k which have the properties Ln,k(xk) = 1; Ln,k(xi)=0, for all i 6= k. Piecewise Poly. Approx.; Cubic Splines — Joseph M. Mahaffy, [email protected] (3/48) Polynomial Interpolation Checking the Roadmap Cubic Splines Undesirable Side-effects Cubic Splines... New Ideas... The nth Lagrange Interpolating Polynomial We use Ln,k(x), k =0,...,n as building blocks for the Lagrange interpolating polynomial: n P (x)= f(x )L (x), X k n,k k=0 which has the property P (xi)= f(xi), for all i =0, .
    [Show full text]
  • Lecture 19 Polynomial and Spline Interpolation
    Lecture 19 Polynomial and Spline Interpolation A Chemical Reaction In a chemical reaction the concentration level y of the product at time t was measured every half hour. The following results were found: t 0 .5 1.0 1.5 2.0 y 0 .19 .26 .29 .31 We can input this data into Matlab as t1 = 0:.5:2 y1 = [ 0 .19 .26 .29 .31 ] and plot the data with plot(t1,y1) Matlab automatically connects the data with line segments, so the graph has corners. What if we want a smoother graph? Try plot(t1,y1,'*') which will produce just asterisks at the data points. Next click on Tools, then click on the Basic Fitting option. This should produce a small window with several fitting options. Begin clicking them one at a time, clicking them off before clicking the next. Which ones produce a good-looking fit? You should note that the spline, the shape-preserving interpolant, and the 4th degree polynomial produce very good curves. The others do not. Polynomial Interpolation n Suppose we have n data points f(xi; yi)gi=1. A interpolant is a function f(x) such that yi = f(xi) for i = 1; : : : ; n. The most general polynomial with degree d is d d−1 pd(x) = adx + ad−1x + ::: + a1x + a0 ; which has d + 1 coefficients. A polynomial interpolant with degree d thus must satisfy d d−1 yi = pd(xi) = adxi + ad−1xi + ::: + a1xi + a0 for i = 1; : : : ; n. This system is a linear system in the unknowns a0; : : : ; an and solving linear systems is what computers do best.
    [Show full text]
  • Piecewise Polynomial Interpolation
    Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 20 Notes These notes correspond to Section 3.4 in the text. Piecewise Polynomial Interpolation If the number of data points is large, then polynomial interpolation becomes problematic since high-degree interpolation yields oscillatory polynomials, when the data may fit a smooth function. Example Suppose that we wish to approximate the function f(x) = 1=(1 + x2) on the interval [−5; 5] with a tenth-degree interpolating polynomial that agrees with f(x) at 11 equally-spaced points x0; x1; : : : ; x10 in [−5; 5], where xj = −5 + j, for j = 0; 1;:::; 10. Figure 1 shows that the resulting polynomial is not a good approximation of f(x) on this interval, even though it agrees with f(x) at the interpolation points. The following MATLAB session shows how the plot in the figure can be created. >> % create vector of 11 equally spaced points in [-5,5] >> x=linspace(-5,5,11); >> % compute corresponding y-values >> y=1./(1+x.^2); >> % compute 10th-degree interpolating polynomial >> p=polyfit(x,y,10); >> % for plotting, create vector of 100 equally spaced points >> xx=linspace(-5,5); >> % compute corresponding y-values to plot function >> yy=1./(1+xx.^2); >> % plot function >> plot(xx,yy) >> % tell MATLAB that next plot should be superimposed on >> % current one >> hold on >> % plot polynomial, using polyval to compute values >> % and a red dashed curve >> plot(xx,polyval(p,xx),'r--') >> % indicate interpolation points on plot using circles >> plot(x,y,'o') >> % label axes 1 >> xlabel('x') >> ylabel('y') >> % set caption >> title('Runge''s example') Figure 1: The function f(x) = 1=(1 + x2) (solid curve) cannot be interpolated accurately on [−5; 5] using a tenth-degree polynomial (dashed curve) with equally-spaced interpolation points.
    [Show full text]
  • Interpolation Observations Calculations Continuous Data Analytics Functions Analytic Solutions
    Data types in science Discrete data (data tables) Experiment Interpolation Observations Calculations Continuous data Analytics functions Analytic solutions 1 2 From continuous to discrete … From discrete to continuous? ?? soon after hurricane Isabel (September 2003) 3 4 If you think that the data values f in the data table What do we want from discrete sets i are free from errors, of data? then interpolation lets you find an approximate 5 value for the function f(x) at any point x within the Data points interval x1...xn. 4 Quite often we need to know function values at 3 any arbitrary point x y(x) 2 Can we generate values 1 for any x between x1 and xn from a data table? 0 0123456 x 5 6 1 Key point!!! Applications of approximating functions The idea of interpolation is to select a function g(x) such that Data points 1. g(xi)=fi for each data 4 point i 2. this function is a good 3 approximation for any interpolation differentiation integration other x between y(x) 2 original data points 1 0123456 x 7 8 What is a good approximation? Important to remember What can we consider as Interpolation ≡ Approximation a good approximation to There is no exact and unique solution the original data if we do The actual function is NOT known and CANNOT not know the original be determined from the tabular data. function? Data points may be interpolated by an infinite number of functions 9 10 Step 1: selecting a function g(x) Two step procedure We should have a guideline to select a Select a function g(x) reasonable function g(x).
    [Show full text]
  • Parameterization for Curve Interpolation Michael S
    Working title: Topics in Multivariate Approximation and Interpolation 101 K. Jetter et al., Editors °c 2005 Elsevier B.V. All rights reserved Parameterization for curve interpolation Michael S. Floater and Tatiana Surazhsky Centre of Mathematics for Applications, Department of Informatics, University of Oslo, P.O. Box 1035, 0316 Oslo, Norway Abstract A common task in geometric modelling is to interpolate a sequence of points or derivatives, sampled from a curve, with a parametric polynomial or spline curve. To do this we must ¯rst choose parameter values corresponding to the interpolation points. The important issue of how this choice a®ects the accuracy of the approxi- mation is the focus of this paper. The underlying principle is that full approximation order can be achieved if the parameterization is an accurate enough approximation to arc length. The theory is illustrated with numerical examples. Key words: interpolation, curves, arc length, approximation order 1. Introduction One of the most basic tasks in geometric modelling is to ¯t a smooth curve d through a sequence of points p ; : : : pn in , with d 2. The usual approach is 0 ¸ to ¯t a parametric curve. We choose parameter values t0 < < tn and ¯nd a d ¢ ¢ ¢ parametric curve c : [t ; tn] such that 0 ! c(ti) = pi; i = 0; 1; : : : ; n: (1) Popular examples of c are polynomial curves (of degree at most n) for small n, and spline curves for larger n. In this paper we wish to focus on the role of the parameter values t0; : : : ; tn. Empirical evidence has shown that the choice of parameterization has a signi¯cant e®ect on the visual appearance of the interpolant c.
    [Show full text]
  • An Application of Spline and Piecewise Interpolation to Heat Transfer (Cubic Case)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.5, No.6, 2015 An Application of Spline and Piecewise Interpolation to Heat Transfer (Cubic Case) Chikwendu, C. R.1, Oduwole, H. K.*2 and Okoro S. I.3 1,3Department of Mathematics, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria 2Department of Mathematical Sciences, Nasarawa State University, Keffi, Nasarawa State, Nigeria *1E-mail of the corresponding author: [email protected] [email protected]@yahoo.com Abstract An Application of Cubic spline and piecewise interpolation formula was applied to compute heat transfer across the thermocline depth of three lakes in the study area of Auchi in Edo State of Nigeria. Eight temperature values each for depths 1m to 8m were collected from the lakes. Graphs of these temperatures against the depths were plotted. Cubic spline interpolation equation was modelled. MAPLE 15 software was used to simulate the modelled equation using the values of temperatures and depths in order to obtain the unknown coefficients of the variables in the 21 new equations. Three optimal equations were found to represent the thermocline depth for the 푑푇 three lakes. These equations were used to obtain the thermocline gradients ( ) and subsequently to compute 푑푧 the heat flux across the thermocline for the three lakes. Similar methods were used for cubic piecewise interpolation. The analytical and numerical results obtained for the computation of thermocline depth and temperature were presented for the three lakes with relative error analysis.
    [Show full text]
  • Numerical Methods I Polynomial Interpolation
    Numerical Methods I Polynomial Interpolation Aleksandar Donev Courant Institute, NYU1 [email protected] 1Course G63.2010.001 / G22.2420-001, Fall 2010 October 28th, 2010 A. Donev (Courant Institute) Lecture VIII 10/28/2010 1 / 41 Outline 1 Polynomial Interpolation in 1D 2 Piecewise Polynomial Interpolation 3 Higher Dimensions 4 Conclusions A. Donev (Courant Institute) Lecture VIII 10/28/2010 2 / 41 Final Project Guidelines Find a numerical application or theoretical problem that interests you. Examples: Incompressible fluid dynamics. Web search engines (google) and database indexing in general. Surface reconstruction in graphics. Proving that linear programming can be solved in polynomial time. Then learn more about it (read papers, books, etc) and find out what numerical algorithms are important. Examples: Linear solvers for projection methods in fluid dynamics. Eigenvalue solvers for the google matrix. Spline interpolation or approximation of surfaces. The interior-point algorithm for linear programming. Discuss your selection with me via email or in person. A. Donev (Courant Institute) Lecture VIII 10/28/2010 3 / 41 Final Project Deliverables Learn how the numerical algorithm works, and what the difficulties are and how they can be addressed. Examples: Slow convergence of iterative methods for large meshes (preconditioning, multigrid, etc.). Matrix is very large but also very sparse (power-like methods). ??? Simplex algorithm has finite termination but not polynomial. Possibly implement some part of the numerical algorithm yourself and show some (sample) results. In the 15min presentation only explain what the problem is, the mathematical formulation, and what algorithm is used. In the 10-or-so page writeup, explain the details effectively (think of a scientific paper).
    [Show full text]
  • Data Interpolation by Near-Optimal Splines with Free Knots Using Linear Programming
    mathematics Article Data Interpolation by Near-Optimal Splines with Free Knots Using Linear Programming Lakshman S. Thakur 1 and Mikhail A. Bragin 2,* 1 Department of Operations and Information Management, School of Business, University of Connecticut, Storrs, CT 06269, USA; [email protected] 2 Department of Electrical and Computer Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA * Correspondence: [email protected] Abstract: The problem of obtaining an optimal spline with free knots is tantamount to minimizing derivatives of a nonlinear differentiable function over a Banach space on a compact set. While the problem of data interpolation by quadratic splines has been accomplished, interpolation by splines of higher orders is far more challenging. In this paper, to overcome difficulties associated with the complexity of the interpolation problem, the interval over which data points are defined is discretized and continuous derivatives are replaced by their discrete counterparts. The l¥-norm used for maximum rth order curvature (a derivative of order r) is then linearized, and the problem to obtain a near-optimal spline becomes a linear programming (LP) problem, which is solved in polynomial time by using LP methods, e.g., by using the Simplex method implemented in modern software such as CPLEX. It is shown that, as the mesh of the discretization approaches zero, a resulting near-optimal spline approaches an optimal spline. Splines with the desired accuracy can be obtained by choosing an appropriately fine mesh of the discretization. By using cubic splines as an example, numerical Citation: Thakur, L.S.; Bragin, M.A. results demonstrate that the linear programming (LP) formulation, resulting from the discretization Data Interpolation by Near-Optimal of the interpolation problem, can be solved by linear solvers with high computational efficiency and Splines with Free Knots Using Linear the resulting spline provides a good approximation to the sought-for optimal spline.
    [Show full text]
  • 1 Cubic Hermite Spline Interpolation
    cs412: introduction to numerical analysis 10/26/10 Lecture 13: Cubic Hermite Spline Interpolation II Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore 1 Cubic Hermite Spline Interpolation Recall in the last lecture we presented a special polynomial interpolation problem. Problem 1.1. Given an interval [L, R] and a function f :[L, R] → R, find the cubic polynomial p ∈ Π3 with p(L) = f(L) p(R) = f(R) p0(L) = f 0(L) p0(R) = f 0(R) Recall that we found a solution to problem 1.1 of the form: 2 2 p(t) =a ˜1(t − L) (t − R) +a ˜2(t − L) +a ˜3(t − L) +a ˜4 (1) Last time we saw that we can bound the error on p for t ∈ [L, R] using: ° ° °f (4)° |E(t)| ≤ ∞,[L,R] · (R − L)4 384 To approximate a function f over an interval [a, b], we can split the interval [a, b] into N subintervals using partition points ~x = (x0, x1, . , xN ), and solve problem 1.1 for every subinterval [xi, xi+1]. More formally, we can define the following cubic Hermite spline interpolation problem. Problem 1.2 (Cubic Hermite Spline Interpolation). Given an interval [a, b], a function f :[a, b] → 0 R, with derivative f :[a, b] → R, and a set of partition points ~x = (x0, x1, . , xN ) with a = x0 < x1 < ··· < xN = b, find a set of polynomials p0, p1, . , pN−1 (a cubic Hermite spline) with pi(xi) = f(xi) pi(xi+1) = f(xi+1) 0 0 pi(xi) = f (xi) 0 0 pi(xi+1) = f (xi+1) for i = 0, 1,...,N − 1.
    [Show full text]
  • Spline Curves Piecewise Polynomials · Splines Bases · Properties Today
    Geometric Modeling Summer Semester 2010 Polynomial Spline Curves Piecewise Polynomials · Splines Bases · Properties Today... Topics: • Mathematical Background • Interpolation & Approximation • Polynomial Spline Curves Piecewise Cubic Interpolation Splines with local control – Hermite Splines – Bezier Splines – Uniform B‐Splines – Non‐Uniform B‐Splines Geometric Modeling SoSem 2010 – Polynomial Spline Curves 2/ 116 Polynomial Spline Curves Piecewise Cubic Interpolation What we have so far... What we have so far: • Given a basis, we can interpolate and approximate points Curves, surfaces, higher dimensional objects Functions (heightfields) and parametric objects Differential properties can be prescribed as well Problem: • We need a suitable basis • Polynomial bases don’t work for large degree (say ≥ 10) Monomials – numerical nightmare Orthogonal polynomials: Runge’s phenomenon still limits applicability Geometric Modeling SoSem 2010 – Polynomial Spline Curves 4/ 116 Piecewise Polynomials Key Idea: • Polynomials of high degree don’t work • Therefore: Use piecewise polynomials of low degree • What is a good degree to use? Geometric Modeling SoSem 2010 – Polynomial Spline Curves 5/ 116 Choosing the Degree... Candidates: • d = 0 (piecewise constant): not smooth • d = 1 (piecewise linear): not smooth enough • d = 2 (piecewise quadratic): constant 2nd derivative, still too inflexible • d = 3 (piecewise cubic): degree of choice for computer graphics applications Geometric Modeling SoSem 2010 – Polynomial Spline Curves 6/ 116 Cubic Splines
    [Show full text]
  • An Introduction to Interpolation and Splines
    An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve in three dimensions. Then with most graphics systems one must approximate the curve as a series of straight line segments and give function calls to the graphics library for each vertex (at the beginning of the curve and at each joint between straight line segments). In most cases it would be excessive to store all these vertices in a graphics program. Instead, one wishes to store the information to draw the curve by giving a set of control points which appear the same to the user as vertices. Then a curve drawing function uses these control points to draw the curve as a set of short, straight line segments. There are several possibilities for using control points. If the curve passes through all the control points then it is said to interpolate the points. The mathematical function used to interpolate must be appropriate for what is being drawn. The most commonly used interpolation methods in computer graphics involve piecewise continuous cubics. For the sake of smoothness in the interpolated curve, one not only wants the curve to be continu- ous but to have continuous derivatives. In order to represent curves in three dimensions a parametric form is used. Then derivatives are taken with respect to the parameter. Continuity of some order of derivative with respect to the parameter is not necessarily the same as continuity of derivatives like dy/dx in the variables themselves.
    [Show full text]
  • Dynamic Non-Uniform Rational B=Splines
    Dynamic Non-Uniform Rational B=Splines Hong Qin Department of Computer Science University of Tornnto Toronto, Ontario, Canada A thesis submitted in conformity with the requirements for the Degree of Doctor of Philosophy, Graduate Department of Computer Science, in the University of Toronto © Copyright Hong Qin 1995 T'\ 0 - LJ-NUT")l L\.,Il T") u : Dynamic Non-Uniform Rational B-Splines Ph.D. 1995 Hong Qin Graduate Department of Computer Science University of Toronto Abstract Non-uniform rational B-splines (NURBS) have become a de facto standard in commer- cial modeling systems because of their power to represent both free-form shapes and some common analytic shapes. To date, however, NURBS have been viewed as purely geomet­ ric primitives, which require the designer to interactively adjust many degrees of freedom (DOFs )-control points and associated weights-to achieve desired shapes. Despite mod- em interactive devices, this conventional shape modification process can be clumsy and laborious when it comes to designing complex, real-world objects. This thesis paves the way for NURBS to achieve their full potential, by putting the laws of physics on their side. The thesis proposes, develops, and applies dynamic NURBS (D-NURBS), a physics-based generalization of the NURBS representation. D-NURBS unify the features of the industry-standard g~ometry with the many demonstrated conveniences of interaction through physical dynamics. D-NURBS are physics-based models that incorporate mass distributions, internal defor- mation energies, forces, and other physical quantities into the NURBS geometric substrate. Their dynamic behavior results from the numerical integration of a set of nonlinear differ­ ential equations that automatically evolve the geometric DOFs in response to the applied forces and constraints to produce physically meaningful, hence highly intuitive shape vari- ation.
    [Show full text]