Pacemakers”, IEEE Press, 1995, (73) Assignee: Smartimplant OU, Tallinn (EE) Piscataway, NJ

Total Page:16

File Type:pdf, Size:1020Kb

Pacemakers”, IEEE Press, 1995, (73) Assignee: Smartimplant OU, Tallinn (EE) Piscataway, NJ US007894900B2 (12) United States Patent (10) Patent No.: US 7,894,900 B2 Kink et al. (45) Date of Patent: Feb. 22, 2011 (54) DEVICE AND METHOD FORMONITORING 2006/0100539 A1 5.2006 Minet al. CARDAC PACING RATE 2006/01491.52 A1* 7/2006 AmitZur et al. ............. 600,485 2006/0184060 A1* 8, 2006 Belalcazar et al. .......... 600,547 (75) Inventors: Andres Kink, Kiili (EE); Mart Minn, Tallinn (EE); Toomas Parve, Tallinn (EE); Indrek Rätsep, Keila (EE) OTHER PUBLICATIONS Webster, J.G., “Design of Cardiac Pacemakers”, IEEE Press, 1995, (73) Assignee: Smartimplant OU, Tallinn (EE) Piscataway, NJ. Ericsson, A.B., "Cardioplegia and Cardiac Function Evaluated by (*) Notice: Subject to any disclaimer, the term of this Left Ventricular Pressure-Volume Relations', 2000, pp. 1-76, patent is extended or adjusted under 35 Karolinska Institutet, Stockholm, Sweden. U.S.C. 154(b) by 719 days. Soderqvist, E., "Left Ventricular Conductance Volumetry Technique Applied to a Pressure Guide Wire'. Licentiate Thesis, 2002, pp. 1-47, (21) Appl. No.: 11/847,430 Royal Institute of Technology, Stockholm, Sweden. (22) Filed: Aug. 30, 2007 (Continued) O O Primary Examiner Carl H Layno (65) Prior Publication Data Assistant Examiner Natasha N Patel US 2008/OO58882 A1 Mar. 6, 2008 (74) Attorney, Agent, or Firm Vern Maine & Associates Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 60/823,965, filed on Aug. 30, 2006. A device for monitoring cardiac pacing rate having a measur ing unit for receiving an electrical signal representing the (51) Int. Cl. patient’s cardiac demand, and a computing unit for determin A6 IB5/08 (2006.01) ing the myocardial energy balance by calculating energy con A6 IN I/08 (2006.01) sumed by the myocardium for both an external dynamic work A6IN I/365 (2006.01) for pumping blood into a vascular system, and an internal (52) U.S. Cl. ........................... 607/17, 607/24; 600/481; static work of the myocardium. Volume and time based mea 600/482; 600/483; 600/484; 600/485 Surements are used, and in one embodiment, Volumes are (58) Field of Classification Search ......... 600/481-485: estimated and Volume ratios are calculated from Volume esti 607 24 mates. In another embodiment, Volumes are estimated from See application file for complete search history. bioimpedance measurements. A further aspect is a rate adap tive pacemaker, wherein the maximum pacing rate is deter (56) References Cited mined from the myocardial energy balance Such that the energy Supplied to the myocardium approximately equals the U.S. PATENT DOCUMENTS energy consumed by the myocardium for both an external 5,046,502 A * 9/1991 Kunig ........................ 600,483 dynamic work for pumping blood into a vascular system and 6,885,892 B1 * 4/2005 Minet al. ..................... 607 24 an internal static work of the myocardium. 6,975,903 B1 12/2005 Minet al. 7,614,998 B2 * 1 1/2009 Gross et al. ................... 600/17 23 Claims, 6 Drawing Sheets O2 Pacemakers Pacing Rate PR - - Minute Wolume ings MV = RR x TV Respiration Rate Tidal Volume Cardiac output CO = PR × SV Scheletal Muscles Pacing Rate Stroke Wolume and other tissues US 7,894.900 B2 Page 2 OTHER PUBLICATIONS lent Distance Extrapolation'. International Journal of Bioelectromagnetism, 2003, pp. 1-3, vol. 5, No. 1. Denslow, S., “Relationship Between PVA and Myocardial Oxygen Salo, R. et al., “The Use of Intracardiac Impedance-Based Indicators Consumption Can Be Derived From Thermodynamics'. The Ameri to Optimize Pacing Rate'. In Critical Cardiac-Pacing, 1995, pp. can Physiological Society, 1996, pp. H730-H740, vol. 270, Issue 2. 234-249, W.B. Saunders Co., Philadelphia, PA. Salo, R., "Application of Impedance Volume Measurement to Salo, R. “The Theoretical Basis of a Computational Model for the Implantable Devices', International Journal of Determination of Volume by Impedance'. Automedica, 1989, pp. Bioelectromagnetism, 2003, pp. 1-5, vol. 5, No. 1. 299-309, vol. 11. Salo, R., "Accuracy of Conductance Catheter Measurements in a Realistic Numerical Heart Model: Validation of Reciprocal Equiva * cited by examiner U.S. Patent Feb. 22, 2011 Sheet 1 of 6 US 7,894,900 B2 Pacemaker O2 Pacing Rate PR :S 2 Minute Volume lungs MV = RRx TV Activity%3 - \ Acceleration & Respiration Rate Tidal Volume Minute Volume MV CardiaC oup N m CO = PR X S/ - \ $Ws Scheletal MuScles Pacing Rate Stroke Volume Ssssss and Other tissues FIG.1 U.S. Patent Feb. 22, 2011 Sheet 2 of 6 US 7,894,900 B2 t cycle 'S SV, ml A A Over filling of A v under paced A heart A 15 A. S v - Sisk & y &isi's A / wa Under filling of s Ny Over paced f^ heart 1 S i 60 1 i. s. ---- ---- tsyst + tdiast & PR fbeat y 0.5 O 60 120 18O PR, bpm Rest COW 4{}{} Body work, W FIG 2 U.S. Patent Feb. 22, 2011 Sheet 3 of 6 US 7,894,900 B2 Pressure P (a) Pressure. P (b) Arterial pressure Pas N P Pad FIG 3 U.S. Patent Feb. 22, 2011 Sheet 4 of 6 US 7,894,900 B2 Pressure, P P Volume, V FIG. 4 U.S. Patent Feb. 22, 2011 Sheet 5 of 6 US 7,894,900 B2 O 0.5 1 15 2 Relative Stroke Volume SW/Ves FIG. 5 U.S. Patent Feb. 22, 2011 Sheet 6 of 6 US 7,894,900 B2 Arteria Subclavia ZA1 Bio-impedance Measurement Unit, Cardiac Monitor, and Pacing Rate Controller excitation Currents F.G. 6 US 7,894,900 B2 1. 2 DEVICE AND METHOD FORMONITORING and lower pacing rate limits to avoid over and underpacing of CARDAC PACING RATE the heart are determined by the implanting physician and are programmed into the pacemaker at the time of implanting the CROSS REFERENCE TO RELATED device. The actual values may be determined from exercise APPLICATIONS studies, from algorithms which take into account patients characteristics, or from clinical experience and are set for This application claims the benefit of U.S. provisional every patient individually (Webster, above). application 60/823,965, filed on Aug. 30, 2006, the subject Incorrect rate limits or rate response can have serious matter of which is herein incorporated by reference for all impact on a patient’s quality of life. For example, postural purposes. 10 hypotension, a Sudden drop in blood pressure caused by shifts in blood volume to the lower extremities due to a decrease in TECHNICAL FIELD hydraulic resistance, R., (FIG. 1), when rising from a seated or Supine posture, can lead to syncope and falling of the The invention relates to the field of cardiovascular methods patient, or worse. Neurogenic syncope is a similar problem and devices for determining the pace rate from patient's myo 15 but even more insidious because the sudden drop in blood cardial energy balance, i.e. from the demand of the patients pressure may occur minutes after the precipitating event. organism and external and internal work of the myocardium. If the normal compensatory vasoconstriction is missing or The invention can be used in various embodiments such as in remains insufficient, the condition may be ameliorated by rate-adaptive pacemakers. The energy balance can be deter increasing the heart rate. Obviously, the timing and the extent mined from Volume or Volume ratio and time measurements, of the heart rate increase are important. while electrical bioimpedance can be used to measure or to Patient’s upper rate limit is determined by the following estimate the volume or volume ratio. factors. The ability of heart to work at higher rates is corre lated with a better coronary reserve (CR), characterized with BACKGROUND OF THE INVENTION a capability to dilate coronary arteries and, therefore, to 25 reduce the hydraulic resistance Rof the myocardium (FIG.1). There are multiple approaches for controllingapacing rate Myocardium damaged during an ischemic event or by other of a rate-adaptive pacemaker to provide a heart rate adequate disease (e.g., diabetes) has limited cardiac reserve and capa to meet the metabolic demand (J. G. Webster, Design of bility to cope with the rising cardiac demand W. Cardiac Pacemaker. Piscataway, N.J.: IEEE Press, 1995.). The ability to operate at low heart rates is determined by the Different sensors have been used to assess metabolic 30 ability of the heart to Supply adequate cardiac output at rest, demands (workload of the body War), including body CO=SV-PR (FIG. 1 and FIG.2). Here the limitations acceleration and movement activity and transthoracic bio occur during ventricular filling. A compliant heart with good impedance to estimate minute volume MV (see also FIG. 1). diastolic function is able to increase end-diastolic Volume Minute ventilation, the product of breathing rate and tidal with minimal increase in filling pressure and can double volume, correlates well with workload W. An ideal rate 35 stroke Volume, and therefore cardiac output, without a rate adaptive pacing system would automatically control upper increase. This over filling phenomenon is accompanied by an and lower rate limits to prevent overpacing (M. Min, A. Kink, increase in myocardial “stretch' and wall stress (see U.S. Pat. T. Parve, “Rate adaptive pacemaker.” U.S. Pat. No. 6,885, No. 6,975,903). 892, Apr. 26, 2005.) and under pacing (M. Min, A. Kink, T. It is critical to maintain a balance between an energy Parve, "Rate adaptive pacemaker using impedance measure 40 demand W and a supply E in the heart (FIG. 1). Since insuf ments and stroke volume calculations. U.S. Pat. No. 6,975, ficient myocardial perfusion will lead to hypoxia, ischemia, 903, Dec. 13, 2005). These patents are incorporated herein by and infarct, under most circumstances the primary concern reference for all purposes.
Recommended publications
  • Impedance Cardiography Versus Echocardiography
    Journal of Perinatology (2013) 33, 675–680 & 2013 Nature America, Inc. All rights reserved 0743-8346/13 www.nature.com/jp ORIGINAL ARTICLE Noninvasive cardiac monitoring in pregnancy: impedance cardiography versus echocardiography J Burlingame1, P Ohana2, M Aaronoff1 and T Seto3 OBJECTIVE: The objective of this study was to report thoracic impedance cardiography (ICG) measurements and compare them with echocardiography (echo) measurements throughout pregnancy and in varied maternal positions. METHOD: A prospective cohort study involving 28 healthy parturients was performed using ICG and echo at three time points and in two maternal positions. Pearson’s correlations, Bland–Altman plots and paired t-tests were used for statistical analysis. RESULT: Significant agreements between many but not all ICG and echo contractility, flow and resistance measurements were demonstrated. Differences in stroke volume (SV) due to maternal position were also detected by ICG in the antepartum (AP) period. Significant trends were observed by ICG for cardiac output and thoracic fluid content (TFC; Po0.025) with advancing pregnancy stages. CONCLUSION: ICG and echo demonstrate significant correlations in some but not all measurements of cardiac function. ICG has the ability to detect small changes in SV associated with maternal position change. ICG measurements reflected maximal cardiac contractility in the a AP period yet reflected a decrease in contractility and an increase in TFC in the postpartum period. Journal of Perinatology (2013) 33, 675–680; doi:10.1038/jp.2013.35;
    [Show full text]
  • The Stroke Volume and the Cardiac Output by the Impedance Cardiography
    U.P.B. Sci. Bull., Series C, Vol. 74, Iss. 3, 2012 ISSN 1454-234x THE STROKE VOLUME AND THE CARDIAC OUTPUT BY THE IMPEDANCE CARDIOGRAPHY M. C. IPATE1, A. A. DOBRE2, A. M. MOREGA3 Acest studiu este despre impedanţa cardiacă, utilizată pentru determinarea volumul sanguin, pompat de vetricul stang la o singura contractie a inimii, şi a debitul cardiac. În majoritatea articolelor privind acest subiect, persoanele participante la experiment prezintă probleme cardiace. Din acest motiv au fost efectuate teste atât pe subiecţi sănătoşi cât şi pe subiecţi diagnosticaţi cu afecţiuni cardiace. Se urmăreşte compararea rezultatelor obţinute pentru volumul sanguin şi pentru debitul cardiac pentru cele două categorii de persoane, prin două metode ce vor fi detaliate în lucrare. Studiul este completat de rezultate de simulare numerică pentru ICG realizate pe un domeniu de calcul obţinut prin tehnici de imagistică medicală. This study is concerned with the noninvasive impedance cardiography (ICG) as a measure of the stroke volume and cardiac output. In many articles on this topic, people who participate in the experiments have various heart diseases and therefore we did tests on both healthy and with different cardiac disease subjects. The aim is to compare the results obtained for stroke volume and cardiac output for the two categories of persons by two methods, which will be detailed in the paper. A numerical simulation approach to ICG based on a computational domain built out of medical images completes the study. Keywords: impedance cardiography, cardiac output, stroke volume, numerical simulation, finite element, medical imaging 1. Introduction Studies about the impedance cardiography were introduced more than 50 years ago as a noninvasive technique for measuring systolic time intervals and cardiac output4 [1].
    [Show full text]
  • ICG Impedance Cardiography Non-Invasive Hemodynamic Measurements Impedance Cardiography
    Clinical Measurements ICG Impedance Cardiography Non-invasive hemodynamic measurements Impedance Cardiography The technology behind ICG • Detects B, C, and X points on the ICG waveform, Impedance cardiography (ICG) is a safe, non-invasive timed with the vECG method to measure a patient’s hemodynamic status. • Adjusts for patient gender, height, weight, and age The ICG waveform is generated by thoracic electrical • Accepts or rejects each beat bioimpedance (TEB) technology, which measures the level of change in impedance in the thoracic fluid. Four small sensors send and receive a low amplitude electrical current through the thorax to detect the level of change in resistance in the thoracic fluid. With each cardiac cycle, fluid levels change, which affects the impedance to the electrical signal transmitted by the sensors. Advanced ICG algorithm Philips ICG uses a sophisticated algorithm to determine the level of change in impedance, to generate the ICG wave, and to calculate or derive hemodynamic parameters. This advanced algorithm: O Mitral Valve Opens, Ventricular Filling • Removes pacemaker spikes and respiratory artifact B Aortic Valve Opens • Stores an adaptive mean curve as representative of C Peak Systolic Flow X Aortic Valve Closes typical curve shape • Holds three heart beats of current patient data, as SV Stroke Volume VET Ventricular Ejection Time typical for that patient P Atrial systole B-C Slope Acceleration cardiac index ICG sensor placement for impedance cardiography • Two sensors placed above the clavicle on each side
    [Show full text]
  • Monitoring Device with Signals Recording on PCMCIA Memory Cards
    Pol J Med Phys Eng 2005;11(3):127-209. PL ISSN 1425-4689 Gerard Cybulski Dynamic Impedance Cardiography — the system and its applications Department of Applied Physiology Medical Research Centre Polish Academy of Sciences Warsaw 2005 http://rcin.org.pl In preparing this dissertation use has been made of data from the following papers: Cybulski G, Ksiazkiewicz A, Łukasik W, Niewiadomski W, Palko T. Central hemodynamics and ECG ambulatory monitoring device with signals recording on PCMCIA memory cards. Medical & Biol Engin and Computing 1996; 34(Suppl.1, Part 1): 79-80. Cybulski G, Ziolkowska E, Kodrzycka A, Niewiadomski W, Sikora K, Ksiazkiewicz A, Lukasik W, Palko T. Application of Impedance Cardiography Ambulatory Monitoring System for Analysis of Central Hemodynamics in Healthy Man and Arrhythmia Patients. Computers in Cardiology 1997. (Cat. No.97CH36184). IEEE. 1997, pp.509-12. New York, NY, USA. Cybulski G, Ksiazkiewicz A, Lukasik W, Niewiadomski W, Kodrzycka A, Palko T. Analysis of central hemodynamics variability in patients with atrial fibrillation using impedance cardiography ambulatory monitoring device (reomonitor). Medical & Biol. Engin. and Computing 1999; 37(Suppl.1): 169-170. Cybulski G, Ziolkowska E, Ksiazkiewicz A, Lukasik W, Niewiadomski W, Kodrzycka A, Palko T. Application of Impedance Cardiography Ambulatory Monitoring Device for Analysis of Central Hemodynamics Variability in Atrial Fibrillation. Computers in Cardiology 1999. Vol. 26 (Cat. No.99CH37004). IEEE. 1999, pp. 563-6. Piscataway, NJ, USA. Cybulski G, Michalak E, Kozluk E, Piatkowska A, Niewiadomski W. Stroke volume and systolic time intervals: beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions.
    [Show full text]
  • Impedance Cardiography
    Impedance Cardiography Client: Professor Webster Advisor: Mr. Amit Nimunkar Leader: Jacob Meyer Communicator: David Schreier BSAC: Tian Zhao BWIG: Ross Comer I. Problem Statement Current methods for measuring cardiac output are invasive. Impedance Cardiography is a non-invasive medical procedure utilized in order to properly analyze and depict the flow of blood through the body. With this technique, four electrodes are attached to the body—two on the neck and two on the chest—which take beat by beat measurements of blood volume and velocity changes in the aorta. However, our client hypothesizes that the current method withholds degrees of inaccuracy due to the mere fact that the electrodes are placed too far from the heart. The goal of this project is to design an accurate, reusable, spatially specific system that ensures more accurate and reliable cardiographic readings. Furthermore, this system must produce consistent results able to be accurately interpreted by industry professionals. More specifically, this semester our precise goal is to begin experimental impedance testing on human subjects using an electrode array, placing electrodes directly over the aorta, and using a custom circuit to filter out our signal. II. Background It is frequently necessary in the hospital setting to assess the state of a patient’s circulation. Here the determination of simple measurements, such as heart rate and blood pressure, may be adequate for most patients, but if there is a cardiovascular condition such as sepsis or cardiomyopathy then a more detailed approach is needed. In order to non-invasively gather specific measurements on the volume of blood pumped by the heart (cardiac output) through the aorta, the technique of impedance cardiography can be used [3].
    [Show full text]
  • Impact of Impedance Cardiography on Diagnosis and Therapy of Emergent Dyspnea: the ED-IMPACT Trial
    CLINICAL INVESTIGATIONS Impact of Impedance Cardiography on Diagnosis and Therapy of Emergent Dyspnea: The ED-IMPACT Trial W. Frank Peacock, MD, Richard L. Summers, MD, Jody Vogel, MD, Charles E. Emerman, MD Abstract Background: Dyspnea is one of the most common emergency department (ED) symptoms, but early diag- nosis and treatment are challenging because of multiple potential causes. Impedance cardiography (ICG) is a noninvasive method to measure hemodynamics that may assist in early ED decision making. Objectives: To determine the rate of change in working diagnosis and initial treatment plan by adding ICG data during the course of ED clinical evaluation of elder patients presenting with dyspnea. Methods: The authors studied a convenience sample of dyspneic patients 65 years and older who were presenting to the EDs of two urban academic centers. The attending emergency physician was initially blinded to the ICG data, which was collected by research staff not involved in patient care. At initial ED presentation, after history and physical but before central lab or radiograph data were returned, the at- tending ED physician completed a case report form documenting diagnosis and treatment plan. The phy- sician then was shown the ICG data and the same information was again recorded. Pre- and post-ICG differences were analyzed. Results: Eighty-nine patients were enrolled, with a mean age of 74.8 Æ 7.0 years; 52 (58%) were African American, 42 (47%) were male. Congestive heart failure and chronic obstructive pulmonary disease were the most common final diagnoses, occurring in 43 (48%), and 20 (22%), respectively. ICG data changed the working diagnosis in 12 (13%; 95% CI = 7% to 22%) and medications administered in 35 (39%; 95% CI = 29% to 50%).
    [Show full text]
  • The Transthoracic Impedance Cardiogram Is a Potential Haemodynamic Sensor for an Automated External Defibrillator
    European Heart Journal (1998) 19, 1879–1888 Article No. hj981199 The transthoracic impedance cardiogram is a potential haemodynamic sensor for an automated external defibrillator P. W. Johnston*, Z. Imam†, G. Dempsey†, J. Anderson† and A. A. J. Adgey *Regional Medical Cardiology Centre, Royal Victoria Hospital, Belfast; †Northern Ireland Bioengineering Centre, Belfast, Northern Ireland Aims The American Heart Association has endorsed the agonal rhythm (20), electromechanical dissociation (22), concept of Public Access Defibrillation. However, there ventricular tachycardia (27) and sinus rhythm (5). These have been reports of inappropriate direct current shocks rhythms were divided into those associated with haemo- from automatic external defibrillators. The specificity of dynamic collapse i.e. no pulse — asystole, ventricular fibril- automatic external defibrillators for shockable rhythms lation, agonal rhythm, electromechanical dissociation and may be improved by the incorporation of a haemodynamic shockable ventricular tachycardia (associated with loss of sensor. consciousness, pulselessness or a systolic blood pressure of <80 mmHg) (Group 1) and those associated with a satis- Methods and Results This study examined the use of four factory cardiac output i.e. non-shockable ventricular tachy- parameters extracted from the impedance cardiogram i.e. cardia (conscious with a pulse) and sinus rhythm (Group 2). Peak dz/dt (the peak of the impedance cardiogram On univariate analysis each of the four impedance cardio- measured from the line dz/dt=0 Ùs"1), Peak-trough (the gram parameters were significantly greater in Group 2 than peak-to-trough measurement of the impedance cardiogram Group 1 (P<0·001). On multivariate analysis the par- Ùs"1), Area 1 (the area under the C wave of the impedance ameters which best differentiated the two groups were Area cardiogram above the line dz/dt=0 mÙ) and Area 2 (the 1 and Peak-trough.
    [Show full text]
  • Impedance Cardiography: a Valuable Method of Evaluating Haemodynamic Parameters
    Cardiology Journal 2007, Vol. 14, No. 2, pp. 115–126 Copyright © 2007 Via Medica REVIEW ARTICLE ISSN 1507–4145 Impedance cardiography: A valuable method of evaluating haemodynamic parameters Tomasz Sodolski and Andrzej Kutarski Department of Cardiology, Medical University of Lublin, Poland Abstract This year marks 40 years since the technique was designed of measuring and monitoring the basic haemodynamic parameters in humans by means of impedance cardiography (ICG), also known as “impedance plethysmography of the chest”, “electrical bioimpedance of the chest” or “reocardiography”. The method makes it possible to denote stroke volume and cardiac output. It also enables the factors to be assessed that influence the following: preload (measurement of thoracic fluid content), afterload (measurement of systemic vascular resistance), the systemic vascular resistance index, contractibility (measurement of the acceleration index), the velocity index, the pre-ejection period, left ventricular ejection time, systolic time ratio and heart rate. Advances in hardware and software, including digital signal tooling and new algorithms, have certainly improved the quality of the results obtained. The accuracy and repeatability of the results have been confirmed in comparative studies with results obtained through invasive methods and echocardiography. Not only are haemodynamic changes monitored by means of ICG in intensive care units, in operating theatres and at haemodialysis stations, but repeated measurements also provide haemodynamic information during the treatment of patients with hypertension and heart failure and pregnant women with cardiological problems and gestosis. A single ICG investigation makes a great contribution to the basic information available about the circulatory system, which is helpful in the initial evaluation of patients in a severe general condition (for example in the admission room), and also makes it possible to make a swift diagnosis of the cause of complaints such as dyspnoea and hypotonia.
    [Show full text]
  • Impedance Cardiography Signal Enhancement Through Block Based Adaptive Cancellers for Distant Medical Care
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-9 Issue-3, January 2020 Impedance Cardiography Signal Enhancement through Block Based Adaptive Cancellers for Distant Medical Care SoniyaNuthalapati, C. Arunabala, Vadlamudi Vinaykumar, Rayanuthala Praveen Kumar, Suraparaju Sai Pavan Kumar, Vare Rudra Reddy ABSTRACT: The impedance Cardiography (ICG) assists the It determines the impedance cardiographic wave and take impedance occurred in the heart. The ICG also known as away the clatters with the help of LMS algorithm. Thoracic Electro Bio-Impedance (TEB).This projects various In[5]Allan Kardec Barros et al. demonstrate about the MSE flexible and mathematical reduced adaptive methods to visualize performance related simple enhancers are evaluated by the extreme clear TEB modules. In the medical premises, TEB LMS algorithm In [6]A.Ozan Bicen et al. discuss on wave notifies the several physiological and non-physiological incidents, that covers small characteristics which are multiple regression is considered for different periods to predominant for finding the volume of the stroke. In addition, minimize the mean absolute in accuracy in the Root Mean mathematical difficulty is a significant constraint to novel Square Error. In[7] Madhavi Mallam et al. explained about healthcare observing tool. Therefore, the paper project novel the removal of artifacts in adaptive filters by utilizing Wave wave working methods for TEB improvement in isolated let Transform instead of a reference signal by considering arrangements. So that we selected higher preference adaptive physiological and non physiological artifacts In [8]Shafi eliminator as a fundamental constituent in the procedure. To Shahsavar Mirza et al.
    [Show full text]
  • Omnibus Codes
    Medical Coverage Policy Effective Date ............................................. 7/15/2021 Next Review Date ......................................11/15/2021 Coverage Policy Number .................................. 0504 Omnibus Codes Table of Contents Related Coverage Resources Overview .............................................................. 1 Category III Current Procedural Terminology (CPT®) Coverage Policy ................................................... 1 codes General Background ............................................ 7 Deep Brain and Motor Cortex and Responsive Services without Food and Drug Cortical Stimulation Administration (FDA) Approval ....................... 7 Electrodiagnostic Testing (EMG/NCV) Cardiovascular ................................................ 7 Serological Testing for Inflammatory Bowel Disease Gastroenterology .......................................... 36 Neurology ...................................................... 61 Obstetrics/Gynecology .................................. 67 Urology .......................................................... 69 Ophthalmology .............................................. 72 Oncology ....................................................... 80 Otolaryngology .............................................. 86 Other ............................................................. 89 INSTRUCTIONS FOR USE The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide
    [Show full text]
  • Transthoracic Impedance Compared to Magnetic Resonance Imaging in the Assessment of Cardiac Output
    Artigo Original Bioimpedância Transtorácica Comparada à Ressonância Magnética na Avaliação do Débito Cardíaco Transthoracic Impedance Compared to Magnetic Resonance Imaging in the Assessment of Cardiac Output Humberto Villacorta Junior1, Aline Sterque Villacorta1, Fernanda Amador2, Marcelo Hadlich2, Denilson Campos de Albuquerque2, Clerio Francisco Azevedo2 Universidade Federal Fluminense1, Rio de Janeiro, Instituto DO’r de Pesquisa e Ensino2, Rio de Janeiro, RJ – Brasil Resumo Fundamento: A ressonância magnética cardíaca é considerada o método padrão-ouro para o cálculo de volumes cardíacos. A bioimpedância transtorácica cardíaca avalia o débito cardíaco. Não há trabalhos que validem essa medida comparada à ressonância. Objetivo: Avaliar o desempenho da bioimpedância transtorácica cardíaca no cálculo do débito cardíaco, índice cardíaco e volume sistólico, utilizando a ressonância como padrão-ouro. Métodos: Avaliados 31 pacientes, com média de idade de 56,7 ± 18 anos, sendo 18 (58%) do sexo masculino. Foram excluídos os pacientes cuja indicação para a ressonância magnética cardíaca incluía avaliação sob estresse farmacológico. A correlação entre os métodos foi avaliada pelo coeficiente de Pearson, e a dispersão das diferenças absolutas em relação à média foi demonstrada pelo método de Bland-Altman. A concordância entre os métodos foi realizada pelo coeficiente de correlação intraclasses. Resultados: A média do débito cardíaco pela bioimpedância transtorácica cardíaca e pela ressonância foi, respectivamente, 5,16 ± 0,9 e 5,13 ± 0,9 L/min. Observou-se boa correlação entre os métodos para o débito cardíaco (r = 0,79; p = 0,0001), índice cardíaco (r = 0,74; p = 0,0001) e volume sistólico (r = 0,88; p = 0,0001). A avaliação pelo gráfico de Bland-Altman mostrou pequena dispersão das diferenças em relação à média, com baixa amplitude dos intervalos de concordância.
    [Show full text]
  • Spectrum of Changes in Regional Deformation Induced By
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 194A ABSTRACTS - Cardiac Function and Heart Failure JACC March 3, 2004 (6.7% ) to infection. In 2 patients (13.3%) the cause of death was unknown. Of the 10 HTx. patients who died in connection with biopsy-proven AR, 6 also had relevant CAV that Methods: 30 HTx (53,9±9,5 yrs) without evidence of acute rejection or transplant vascu- developed after the second post-HTx year. In 10 patients with moderate/severe late ARs, lopathy (angiography) and mild to moderate biopsy evidence of interstitial fibrosis were but without CAV during their first episode of late AR diagnosed at 4.6± 3.0 years after compared to 20 age-matched controls. Colour Doppler Myocardial Imaging (CDMI) data HTx, the angiogram showed relevant CAV lesions 2.4± 1.3 years after the first late AR. were obtained from the mid segment of the interventricular septum and the lateral, infe- The mean number of late ARs/patient/year was higher in those with angiographic CAV rior and anterior wall. From each segment peak systolic velocity (parameter for motion) that developed after the second post-HTx year than in those without CAV after >2 years and peak systolic strain rate and systolic strain (parameter for deformation) were since HTx (p<0.01). extracted by postprocessing the CDMI data. LV ejection fraction (EF) as a parameter of Conclusions: Late ARs are the major cause of late allograft dysfunction in children and global systolic function was assessed by MUGA scans.
    [Show full text]