Screening of Phyto-Chemical Constituents, Trace Metal Concentrations and Antimicrobial Efficiency of Rauvolfia Tetraphylla Vs

Total Page:16

File Type:pdf, Size:1020Kb

Screening of Phyto-Chemical Constituents, Trace Metal Concentrations and Antimicrobial Efficiency of Rauvolfia Tetraphylla Vs IJPCBS 2014, 4(1), 47-52 Vijistella Bai et al. ISSN: 2249-9504 INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES Available online at www.ijpcbs.com Research Article SCREENING OF PHYTO-CHEMICAL CONSTITUENTS, TRACE METAL CONCENTRATIONS AND ANTIMICROBIAL EFFICIENCY OF RAUVOLFIA TETRAPHYLLA VS. Nandhini and G. Vijistella Bai* Post graduate and Research Department of Botany, Kunthavai Naacchiyar Govt. Arts College for Women (Autonomous), Thanjavur, - 613 007, Tamil Nadu, India. ABSTRACT Phytochemical constituents and trace metals concentrations, and antimicrobial activity of ethanolic extract of Rauvolfia tetraphylla leaves were investigated. The phytochemical screening of the crude extract revealed the presence of steroids, reducing sugars, sugars, alkaloids, flavonoids, saponins, tannins and amino acids. The leave powder was subjected to analyze the trace metals using atomic absorption spectroscopy (AAS). The average concentrations of Cd, Cr, Cu, Fe, Ni, Pb and Zn were BDL, 0.03, 0.2, 0.5, BDL, 0.06 and 0.5 mg kg-1, respectively. And also the crude ethanol extract of Rauvolfia tetraphylla were analyzed for in-vitro antimicrobial activity against certain pathogens and the zone of inhibition were compared with control drug Methicillin and Itraconazole. The Salmonella typhimurium is the most sensitive strains (17mm) to test solution while smallest inhibition were recorded in Micrococcus luteus and Cryptococcus sp. (11 mm). Keywords: Rauwolfia tetraphylla, Antimicrobial activity, Phytochemistry, Trace metals. INTRODUCTION shrubs in the Apocynaceae family. Indian medicinal plants are well-known Approximately 85 species in the genus can universally for its main role in the primary mainly be found in tropical regions. Rauvolfia health care systems. Most of the rural people tetraphylla and Rauvolfia serpentina is the South still rely largely on traditional system to cure African quinine plant species. Rauvolfia their ailments. Medicinal plant in their tetraphylla contains a number of bioactive surrounding environments are collected and phytochemicals and is mainly known for its used largely. As they provide low cost or no cost phytochemical reserpine, which was widely for practicing knowledge on such medicinal used as an antihypertensive drug. But very least systems have been in the process of research has been published on the leaves of transmittance from one generation to the other. plant Rauvolfia tetraphylla. It has increased the efficacy and reliability of the Many plants throughout the world, including medicinal uses as it has been in continuous some with documented medicinal properties testing among the population over the years. In contain chemicals that are toxic to recent years, secondary plant metabolites or microorganisms (Hudson, 1987). The phytochemicals, previously with unknown acceptance of traditional medicine as an pharmacological activities, have been alternative form of health care and the extensively investigated as a source of medicinal development of microbial resistance to the agents (Krishnaraju et al. 2005). There were available antibiotics has led researchers to many reports on the antimicrobial activity of investigate the antimicrobial activity of plant extracts against human pathogenic medicinal plants. The use of plant extracts and bacteria (White et al. 2002; Mishra et al. 2009; phytochemical, with established antimicrobial Haris Kumar et al. 2010). properties, could be of great significance in Rauvolfia is a genus of evergreen trees and preventive and therapeutic approaches. The 47 IJPCBS 2014, 4(1), 47-52 Vijistella Bai et al. ISSN: 2249-9504 most important antimicrobial compounds of heated. Formation of green or purple color plants are alkaloids, flavonoids, tannins and indicates the presence of sugars. phenolic compounds. Although synthetic and semi-synthetic antimicrobial drugs abound in Alkaloids: A 3 ml of test solution was taken various markets today, there is a need for with 2N HCl. Aqueous layer formed was continuous search for new ones to cope with the decanted and then added with one or a few increased evolution of multiple antimicrobial drops of Mayer’s reagent. Formation of white resistant strains of organisms (Hart et al. 1998). precipitate or turbidity indicates the presence of The increasing prevalence of multi-drug alkaloids. resistant strains of bacteria and the recent appearance of strains with reduced Phenols: A 3 ml of test solution in alcohol was susceptibility to antibiotics raised the specter of added with one drop of neutral ferric chloride “untreatable” bacterial infections and adds (5%) solution. Formation of intense blue color urgency to the search for new infection-fighting indicates the presence of phenols. strategies. In contrast to synthetic drugs, antimicrobial of plant origin usually are not Flavonoids: A 3 ml of test solution in alcohol associated with many side effects and have an was added with a bit of magnesium and one (or) enormous anti-infective potential in numerous two drops of concentrated HCl and heated. infectious diseases. In present study aims to Formation of red or orange color indicates the analyze the phytochemical constituents, trace presence of flavonoids. metals and antimicrobial activity of the Rauvolfia tetraphylla. Saponins: A 3 ml of test solution was added with water and shacked. Formation of foamy MATERIALS AND METHODS lather indicates the presence of Saponins. Plant Material Tannins: A 3 ml of test solution was added with The plant materials were collected from water and lead acetate. Formation of white Thanjavur District of Tamil Nadu in India during precipitate indicates the presence of tannins. the period of January to February 2013. The shade dried plant powders (100 g) were Anthroquinones: A 3 ml of test solution was successively extracted with ethanol by soxhlet added with magnesium acetate. Formation of apparatus and is used as test sample. pink color indicates the presence of anthroquinones. Phytochemical screening Qualitative analysis Amino Acids: A 3 ml of test solution was added The solvent extracts were subjected to routine with 1% ninhydrin in alcohol. Formation of blue qualitative chemical analysis to identify the or violet color indicates the presence of amino nature of phytochemical constituents present in acids. sample (Koperuncholan et al. 2011). Catechins: A 3 ml of test solution in alcohol was Steroids: Three ml of test solution and added with Ehrlich reagent and a few drops of minimum quantity of chloroform was added concentrated HCl. Formation of pink color with 3-4 drops of acetic anhydride and one drop indicate the presence of catechins. of concentrated H2SO4. Purple color thus formed changes into blue or green color indicating the Quantitative analysis of phytoconstituents presence of steroids. The chlorophyll pigments in the leaves were estimated following the method of Arnon Triterpenoids: A 3 ml of test solution was (1949). After pre-cleaning, weighted fresh leaf added with a piece of tin and 2 drops of thionyl material was homogenized and extracted thrice chloride. Formation of violet or purple colour in chilled 80% acetone (v/v). The volume of the indicates the presence of triterpenoids. acetone extract was made up to a known one and the optical density was read at 645nm and Reducing Sugars: A 3 ml of test solution was 663nm wavelengths on a spectrophotometer. added with a 2 ml of Fehling’s reagent and 2 ml The concentration of the chlorophyll pigments of water. Formation of reddish orange color was calculated and is expressed in mg/g fresh indicates the presence of reducing sugar. weight. Amino acids were estimated by Ninhydrin method which is calorimetrically Sugars: A 3 ml of the test solution was added measured at 570nm (Hwang, 1975). Proteins with very small quantity of anthrone reagent were estimated by Bradford method and the and a few drops of concentrated H2SO4 and absorbance was measured at 595 nm against 48 IJPCBS 2014, 4(1), 47-52 Vijistella Bai et al. ISSN: 2249-9504 blank/ sample (Bradford, 1976). Carbohydrates were performed in triplicate and the average were estimated by anthrone method which can values are presented. Methicillin – 10mcg (for be measured by using colorimetrically at 620nm bacteria) and Itraconazole – 10mcg (for fungus) (or) by using a red filter (Morris 1948). All the was used as positive control. All the media, trials were performed thrice and the mean standard discs and sterile disc were purchased values were presented. from Hi-Media (Mumbai, India). Trace metal analysis RESULTS AND DISCUSSION The Rauvolfia tetraphylla plant sample was Phytochemical constituents of secondary collected from the Thanjavur district, Tamil metabolites Nadu. The leaves were carefully removed and The present study revealed that the medicinal washed with sterile distilled water. The cleaned plant such as Rauvolfia tetraphylla contains leaves were dried in shadow area and were bioactive compounds. The phytochemical grinned with mortar and pestle. After drying, 1 g constituents were screened by qualitative and of plant samples was treated with aqua-regia quantitatively methods and the results are mixture in Teflon bomb and was incubated at presented in Table 1 and 2. In Tannin analysis, 140 °C for 2-3 days. After incubation, the the brownish green colour formation indicates reaction mixture was filtered with Whatman the presence of Tannin. Similarly, based on the No.1 filter paper. Then the extraction was test presence or absence of colour change indicate for trace metals (Fe,
Recommended publications
  • Identification of Medicinal Plants Within the Apocynaceae Family Using ITS2 and Psba-Trnh Barcodes
    Available online at www.sciencedirect.com Chinese Journal of Natural Medicines 2020, 18(8): 594-605 doi: 10.1016/S1875-5364(20)30071-6 •Special topic• Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes LV Ya-Na1, 2Δ, YANG Chun-Yong1, 2Δ, SHI Lin-Chun3, 4, ZHANG Zhong-Lian1, 2, XU An-Shun1, 2, ZHANG Li-Xia1, 2, 4, LI Xue-Lan1, 2, 4, LI Hai-Tao1, 2, 4* 1 Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical Col- lege, Jinghong 666100, China; 2 Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China; 3 Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Re- public of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical Col- lege, Beijing, 100193, China; 4 Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant De- velopment, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China Available online 20 Aug., 2020 [ABSTRACT] To ensure the safety of medications, it is vital to accurately authenticate species of the Apocynaceae family, which is rich in poisonous medicinal plants. We identified Apocynaceae species by using nuclear internal transcribed spacer 2 (ITS2) and psbA- trnH based on experimental data. The identification ability of ITS2 and psbA-trnH was assessed using specific genetic divergence, BLAST1, and neighbor-joining trees. For DNA barcoding, ITS2 and psbA-trnH regions of 122 plant samples of 31 species from 19 genera in the Apocynaceae family were amplified.
    [Show full text]
  • Anticonvulsant Activity of Rauwolfia Tetraphylla Leaf Extract in Swiss Albino Mice
    Online - 2455-3891 Vol 12, Issue 2, 2019 Print - 0974-2441 Research Article ANTICONVULSANT ACTIVITY OF RAUWOLFIA TETRAPHYLLA LEAF EXTRACT IN SWISS ALBINO MICE AADITYA SINGH1*, SHALINI TRIPATHI2, SINGH PN3 1Department of Pharmaceutical Sciences, Aryakul College of Pharmacy and Research, Lucknow, Uttar Pradesh, India. 2Department of Pharmaceutical Sciences, Rameshwaram Institute of Technology and Management, Uttar Pradesh, India. 3Department of Pharmaceutics, Indian Institute of Technology, BHU, Varanasi, Uttar Pradesh, India. Email: [email protected] Received: 07 July 2018, Revised and Accepted: 01 November 2018 ABSTRACT Objective: Rauvolfia tetraphylla is a plant potentially applicable in Ayurvedic and Unani System of Medicine for the treatment of various diseases. However, the anticonvulsant activity of this plant has not been reported and studied. Therefore, the ethanolic extract of leaf from the plant R. tetraphylla is used to evaluate anticonvulsant activity. Methods: Anticonvulsant activity was screened using maximal electroshock seizure (MES) model and pentylenetetrazole (PTZ)-induced seizure model in Swiss albino mice. The ethanolic extract was also evaluated for rutin and gallic acid content by high-performance thin-layer chromatography studies. Results: Rutin and gallic acid contents were found as 15.60% and 7.81%, respectively. Ethanolic leaf extract (100–800 mg/kg) significantly reduced the duration of seizures which was induced by MES. The same doses also protected animals from PTZ-induced tonic seizures. Conclusion: The study demonstrates that R. tetraphylla plant leaves have significant anticonvulsant activity. Keywords: Anticonvulsant, High-performance thin-layer chromatography, Rauvolfia tetraphylla. © 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Romanian Journal of Biology1 Plant Biology
    ROMANIAN JOURNAL OF BIOLOGY1 PLANT BIOLOGY VOLUMES 59–60 2014–2015 CONTENTS C. MAXIMILIAN, I. HOLOBIUC, L. JIANU, A. BREZEANU, In vitro callus production in the medicinal, rare and endangered species Ecballium elaterium (L.) A. Richard ............................................................................. 3 R. THAPAR KAPOOR, Evaluation of insecticidal potential of root extracts of Rauvolfia tetraphylla against Musca domestica ............................................ 15 M. THIRUPATHI REDDY, K. HARIBABU, M. GANESH, K. CHANDRASEKHAR REDDY, H. BEGUM, J. DILIP BABU, R. S. KRISHNA REDDY, B. PURUSHOTHAMA REDDY, G. NARSHIMULU, Genetic variability for growth, earliness and yield attributes in okra (Abelmoschus esculentus (L.) Moench) ............................ 27 I. VICOL, Chorology of Mycarthopyrenia KEISSL genus in Romania ................... 41 S. M. MOHSIN, R. ISLAM MD, A. ABU NOMAN FARUQ, H.A.C. NISHA, R. S. BORNA, M. N. ISLAM, The genetic variability of Alternaria porri in Bangladesh .............................................................................................. 47 H OLOUMI., F. NASERI, R. SOLTANINEJAD, Comparative study of essential oil chemical constituents of Calotropis procera leaves collected from different natural localities ............................................................................. 59 1 ROM. J. BIOL. – PLANT BIOL., VOLUMEs 59–60, P. 1–68, BUCHAREST, 2014–2015 IN VITRO CALLUS PRODUCTION IN THE MEDICINAL, RARE AND ENDANGERED SPECIES ECBALLIUM ELATERIUM (L.) A. RICHARD CARMEN MAXIMILIAN1*,
    [Show full text]
  • Rauvolfia Anomala, Uma Nova Espécie De Apocynaceae Da Chapada Dos
    Rodriguésia 61(1): 095-100. 2010 http://rodriguesia.jbrj.gov.br Rauvolfia anomala, uma nova espécie de Apocynaceae da Chapada dos Guimarães, Mato Grosso, Brasil Rauvolfia anomala, a new species of Apocynaceae from Chapada dos Guimarães, Mato Grosso, Brazil Alessandro Rapini1,4, Ingrid Koch2 & André Olmos Simões3 Resumo Uma nova espécie de Apocynaceae, Rauvolfia anomala Rapini & I. Koch, é descrita e ilustrada. Ela foi encontrada em cerrado-anão, na Chapada dos Guimarães, estado do Mato Grosso, simpatricamente a R. weddelliana. Aparentemente, as duas espécies são proximamente relacionadas, mas podem ser facilmente distinguidas pelas flores, cuja corola é esverdeada, com lobos mais longos que o tubo em R. anomala, enquanto em R. weddelliana ela é avermelhada, com lobos mais curtos que o tubo. A nova espécie apresenta um polimorfismo floral surpreendente e pode se tratar de um novo exemplo de dioicia no gênero. Esta é a primeira espécie de Rauvolfia com distribuição restrita registrada para o Mato Grosso. Palavras-chave: dioicia, neotrópicos, Rauvolfioideae, Região Centro-Oeste. Abstract A new species of Apocynaceae, Rauvolfia anomala Rapini & I. Koch, is described and illustrated. It was found in low savanna of Chapada dos Guimarães, Mato Grosso state, sympatric with R. weddelliana. The two species seem to be closely related, but can be easily distinguished by the flowers, whose corolla is greenish, with lobes longer than the tube in R. anomala, or reddish with lobes shorter than the tube in R. weddelliana. The new species has remarkable floral polymorphism and possibly represents a new example of dioicy in the genus. This is the first species of Rauvolfia with narrow distribution reported to Mato Grosso.
    [Show full text]
  • Biogeografia Do Gênero Rauvolfia L. (Apocynaceae, Rauvolfioideae)
    UNIVERSIDADE FEDERAL DE SÃO CARLOS – CAMPUS SOROCABA Biogeografia do gênero Rauvolfia L. (Apocynaceae, Rauvolfioideae) DISSERTAÇÃO DE MESTRADO JOÃO DE DEUS VIDAL JÚNIOR SOROCABA – SP 2014 Biogeografia do gênero Rauvolfia L. (Apocynaceae, Rauvolfioideae) JOÃO DE DEUS VIDAL JÚNIOR BIOGEOGRAFIA DO GÊNERO Rauvolfia L. (APOCYNACEAE, RAUVOLFIOIDEAE) Dissertação apresentada à Universidade Federal de São Carlos – Campus Sorocaba, como parte das exigências do Programa de Pós-Graduação em Diversidade Biológica e Conservação, área de concentração em Sistemática, Taxonomia e Biogeografia, para a obtenção do título de Mestre. Profa. Dra. Ingrid Koch Orientadora Prof. Dr. André Olmos Simões Co-orientador SOROCABA – SP 2014 Vidal Jr., João de Deus. V649b Biogeografia do gênero Rauvolfia L. / João de Deus Vidal Jr. – – 2014. 127 f. : 28 cm. Dissertação (mestrado)-Universidade Federal de São Carlos, Campus Sorocaba, Sorocaba, 2014 Orientador: Ingrid Koch Banca examinadora: George Mendes Taliaferro Mattox, Pedro Fiaschi Bibliografia 1. Rauvolfia L. – biogeografia. 2. Sementes – dispersão. 3. Filogenia. I. Título. II. Sorocaba-Universidade Federal de São Carlos. CDD 580.9 Ficha catalográfica elaborada pela Biblioteca do Campus de Sorocaba. “O conto é o mapa que é o território. Você precisa se lembrar disso.” (Neil Gaiman) AGRADECIMENTOS Este trabalho é dedicado a todas as pessoas que acreditaram em mim enquanto pesquisador e pessoa. Obrigado especialmente à professora Ingrid Koch pelo apoio ao longo destes quase quatro anos de trabalho juntos: espero um dia me tornar um pesquisador tão competente quanto você. Espero que ainda venham muitas conquistas como frutos desta nossa parceria. Agradeço também a todos os colegas e docentes que me auxiliaram tanto ao longo da minha vida na pós-graduação e aos professores que leram e criticaram de forma tão construtiva este trabalho, em especial os professores André Olmos Simões, Maria Virgínia Urso-Guimarães, Sílvio Nihei, Ana Paula Carmignotto e George Mattox, que tiveram notável contribuição no desenvolvimento deste trabalho.
    [Show full text]
  • New Hawaiian Plant Records from Herbarium Pacificum for 20081
    Records of the Hawaii Biological Survey for 2008. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 107: 19–26 (2010) New Hawaiian plant records from Herbarium Pacificum for 2008 1 BARBARA H. K ENNEDY , S HELLEY A. J AMES , & CLYDE T. I MADA (Hawaii Biological Survey, Bishop Museum, 1525 Bernice St, Honolulu, Hawai‘i 96817-2704, USA; emails: [email protected], [email protected], [email protected]) These previously unpublished Hawaiian plant records report 2 new naturalized records, 13 new island records, 1 adventive species showing signs of naturalization, and nomen - clatural changes affecting the flora of Hawai‘i. All identifications were made by the authors, except where noted in the acknowledgments, and all supporting voucher speci - mens are on deposit at BISH. Apocynaceae Rauvolfia vomitoria Afzel. New naturalized record The following report is paraphrased from Melora K. Purell, Coordinator of the Kohala Watershed Partnership on the Big Island, who sent an email alert to the conservation com - munity in August 2008 reporting on the incipient outbreak of R. vomitoria, poison devil’s- pepper or swizzle stick, on 800–1200 ha (2000–3000 acres) in North Kohala, Hawai‘i Island. First noticed by field workers in North Kohala about ten years ago, swizzle stick has become a growing concern within the past year, as the tree has spread rapidly and invaded pastures, gulches, and closed-canopy alien and mixed alien-‘ōhi‘a forest in North Kohala, where it grows under the canopies of eucalyptus, strawberry guava, common guava, kukui, albizia, and ‘ōhi‘a. The current distribution is from 180–490 m (600–1600 ft) elevation, from Makapala to ‘Iole.
    [Show full text]
  • Phytochemical Analysis of Rauvolfia Tetraphylla L. from Marathwada Region of Maharashtra
    International Journal of Recent Trends in Science And Technology, P-ISSN 2277-2812 E-ISSN 2249-8109 Special Issue, ICRAFHN 2018 pp 116-118 Original Research Article Phytochemical analysis of Rauvolfia tetraphylla L. from Marathwada region of Maharashtra Kishorkumar P. Maknikar Biotechnology Research Center, COCSIT College, Latur, Maharashtra, INDIA. Email: [email protected] Abstract Rauvolphia tetraphylla L. is important medicinal plant. It is used in various traditional as well as modern medicine. Rauvolphia tetraphylla is rich source of various phytochemical like alkaloids, phenols, saponins flavonoids and tannin. whole plant is medicinally impotant but root is essential source of phytochemical.now day climate change and overexploitation of plant for medicine. This plant is become endangred. It is alternative source of reserpene. Plant root is benefial source for extraction of phytochemical. Key Word: Phytochemical, Rauvolfia tetraphylla. *Address for Correspondence: Dr. Kishorkumar P. Maknikar, Biotechnology Research Center, COCSIT College, Latur, Maharashtra, INDIA. Email: [email protected] Access this article online Quick Response Code: Website: www.statperson.com Accessed Date: 10 March 2018 INTRODUCTION Rauvolfia tetraphylla L. is plant of apocynaceae family Its Figure 1: IG: Rauvolphia tetraphylla L. genus is Rauvolfia this genus have number of species. MATERIAL AND METHOD tetraphyala is important species1. It contains various type The collection of plant: Plants Rauvolphia tetraphylla L. of phytochemical which are medicinal valuable. collected from garden of Vasantrao Naik Marathwada Rauvolphia tetraphyla contain alkaloid and it called as vidyapeettthhh Parbhani and Botanical garden of Science rauvoltetraphylla A-E It has tremendous importance in College Nanded and third plant collected from Sangam various medicine. It show anticancer antihypertension, Nursery latur and sedative activity.
    [Show full text]
  • Download Download
    Journal ofThreatened JoTT TaxaBuilding evidence for conservation globally 10.11609/jott.2020.12.10.16195-16406 www.threatenedtaxa.org 26 July 2020 (Online & Print) Vol. 12 | No. 10 | Pages: 16195–16406 ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) PLATINUM OPEN ACCESS Dedicated to Dr. P. Lakshminarasimhan ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Information Liaison Development Society Zoo Outreach Organization www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, Web Development India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetting Dr. Neelesh Dahanukar Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communications Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016–2018 Fungi Editorial Board Ms.
    [Show full text]
  • Studies on in Vitro Antimicrobial Activity of Ethanol Extract of Rauvolfia Tetraphylla
    Ethnobotanical Leaflets 12: 586-90. 2008. Studies on In Vitro Antimicrobial Activity of Ethanol Extract of Rauvolfia tetraphylla Suresh K*, S. Saravana Babu and Harisaranraj R. Department of Plant Biology and Plant Biotechnology Chikkaiah Naicker College, Erode. (T.N.) INDIA * [email protected] Issued 11 August 2008 ABSTRACT The antimicrobial activity of ethanol extract obtained from Rauvolfia tetraphylla was tested against bacterial species of Escherichia coli ATCC 69314, Streptococcus lactis NCIM 50038, Enterobacter aerogenes NCIM 2340, Alcaligenes faecalis ATCC 15246, Pseudomonas aeruginosa NCIM 2200, Proteus vulgaris ATCC 6380 and fungal species of Fusarium oxysporum NCIM 1008, Alternaria helianthii ATCC 201540, Curvularia lunata ATCC 34477, Aspergillus niger NCIM 1207 and Penicillium spp NCIM 741. Better antimicrobial activity was observed when the extracts showed maximum activity against E. coli, Enterobacter aerogenes, Alcaligenes faecalis. Among different fungi tested A. niger and Penicillium spp were found to be more sensitive to crude extract when compared to others. Key Words: Antibacterial, Antifungal, Ethanol extract, Rauvolfia tetraphylla. Introduction: Medicinal plants as a group comprise approximately 8000 species and account for around 50% of all the higher flowering plant species of India. Millions of rural households use medicinal plants in a self-help mode. Over one and a half million practitioners of the Indian System of Medicine in the oral and Codified streams use medicinal plants in preventive, promotive and curative applications. There are estimated to be over 7800 manufacturing units in India. In recent years, the growing demand for herbal product has led to a quantum jump in volume of plant materials traded within and across the countries.
    [Show full text]
  • Scientific World-Vol6-FINAL for PDF.Pmd
    RAPID MULTIPLICATION OF RAUVOLFIA SERPENTINA BENTH. EX. KURZ THROUGH TISSUE CULTURE Krishna K. Pant* and Sanu D. Joshi** *Institute of Agriculture and Animal Science, Tribhuvan University, Nepal. **Central Department of Botany, Institute of Science and Technology, Tribhuvan University, Nepal. Abstract: Rauvofia serpentina Benth. ex Kurz (Apocynaceae) is a highly important medicinal plant growing in the terai belts of Nepal. This plant is facing a high threat from various kinds of poachers in the wild due to improper ways of collection as well as almost no conservation strategy. In the present study, we have identified the way for rapid in vitro multiplication of this species using tissue culture technique as an effective tool for ex situ conservation. In this study, MS medium along with BAP and NAA alone or in combinations at different concentrations have given successful results in producing callus, multiple adventitious shoots both from callus and nodes and multiple roots from both callus as well as nodes. The in vitro as well as ex vitro rooting of the micro shoots have been achieved. The rooted seedlings have been successfully acclimatized. The best media for shoot multiplication from the node and callus cultures have been identified as MS + NAA 0.5 + BAP 0.5 ppm and MS + BAP 2.0 ppm, respectively. For rooting in and ex vitro, NAA has been found to be the best among auxins. For callus induction all the auxins specially NAA 1.0 ppm and 2,4-D 2.0 ppm have been found to be the best. Keywords: Micropropagation; Rauvolfia serpentina; In vitro rooting; Pulse treatment and acclimatization.
    [Show full text]
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]