A Review of the Current Knowledge of Rodent Behaviour in Relation to Control Devices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rodent Identification and Signs of Stowaways Key Features of UK Target Rodents
FROM RSPB BIOSECURITY MANUAL CHAPTER 2: RODENT SURVEILLANCE & IDENTIFICATION Rodent identification and signs of stowaways Key features of UK target rodents Black rat Brown rat House mouse FROM RSPB BIOSECURITY MANUAL CHAPTER 2: RODENT SURVEILLANCE & IDENTIFICATION Identifying rodent droppings Rodent droppings can be very variable (depending on diet), including in colour, but as a guide: Brown rat Black rat House mouse -13-19mm long, -7-14mm long -4-8mm long -3-4mm thick -3-4mm thick -2mm thick -Rounded ends, one end may go to -Tapered ends -Small and thin a point (as pictured) -Often slightly curved -A bit like grains of rice -Likely to contain fur -Likely to contain fur -Strong smell of ammonia. -Often located in latrines along tracks, at feeding sites and on prominent rocks Figure 2.9 Droppings of UK invasive rodents. Images: taken from Morton & Cole 2013 Rabbit or goat droppings be mistaken for rat droppings, though they are usually more spherical (particularly rabbit) and uniform. Goat droppings may be more cylindrical but with flatter or round, rather than tapered ends. Breaking up droppings should help (wear gloves): rabbit and goat droppings just contain vegetation, whereas rat droppings are likely to contain fur and a range of food stuffs. Shrew droppings – typically 2-4mm long and 1-2mm thick, these should be smaller than rat or mouse droppings. However, evidence from St Agnes and Gugh (Isles of Scilly) shows shrew droppings can be much larger than this. They are of a sandy consistency and are largely comprised of insect remains, whereas rodent droppings generally contain a wider array of food sources. -
BANDICOTA INDICA, the BANDICOOT RAT 3.1 The
CHAPTER THREE BANDICOTA INDICA, THE BANDICOOT RAT 3.1 The Living Animal 3.1.1 Zoology Rats and mice (family Muridae) are the most common and well-known rodents, not only of the fi elds, cultivated areas, gardens, and storage places but especially so of the houses. Though there are many genera and species, their general appearance is pretty the same. Rats are on average twice as large as mice (see Chapter 31). The bandicoot is the largest rat on the Indian subcontinent, with a body and head length of 30–40 cm and an equally long tail; this is twice as large as the black rat or common house rat (see section 3.1.2 below). This large size immediately distinguishes the bandicoot from other rats. Bandicoots have a robust form, a rounded head, large rounded or oval ears, and a short, broad muzzle. Their long and naked scaly tail is typical of practically all rats and mice. Bandicoots erect their piles of long hairs and grunt when excited. Bandicoots are found practically on the whole of the subcontinent from the Himalayas to Cape Comorin, including Sri Lanka, but they are not found in the deserts and the semi-arid zones of north-west India. Here, they are replaced by a related species, the short-tailed bandicoot (see section 3.1.2 below). The bandicoot is essentially parasitic on man, living in or about human dwellings. They cause a lot of damage to grounds and fl oorings because of their burrowing habits; they also dig tunnels through bricks and masonry. -
Checklist of the Mammals of Indonesia
CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia. -
Gut Analysis of Small Non-Volant Mammals of Mt. Makiling, Luzon Island, Philippines Anna Pauline O
Journal of Environmental Science and Management 17(2): 63-68 (December 2014) ISSN 0119-1144 Gut Analysis of Small Non-Volant Mammals of Mt. Makiling, Luzon Island, Philippines Anna Pauline O. de Guia1 and Ma. Niña Regina M. Quibod2 ABSTRACT Three non-native species (Rattus exulans, R. tanezumi and Mus musculus) of small non-volant mammals were recorded along various elevational gradients of Mount Makiling. Invertebrate remains and plant matter comprised the bulk of their diets based on the food items identifed. The identifed plant matter were leaves and seeds while invertebrates were easily identifable through body parts such as legs, head and antennae. Other contents identifed including vertebrate remains such as hair/fur, feathers and bones, plastics, rubber, stones, and intestinal worms were noted. Based on the calculated relative abundance of each food type, there is no signifcant difference in the diets of the three non-native rodent species. Preliminary results suggest that introduced rodents in Mt. Makiling have broad diets and there are no indications that their main diet includes native wildlife species. Traces of vertebrate remains, however, may indicate potential predation on wildlife species and further studies are needed to clarify this. Key words: rodents, gut analysis, endemic, non-native, elevational gradient INTRODUCTION The complexity of tropical mountain ecosystems endemic species (Rickart et al. 2007; Ong and Rickart 2008). have long provided haven for various Philippine wildlife R. exulans and R. tanezumi have been recorded at altitudes species. The elevational gradients provide various forest of 725 – 1450 masl on Mt. Isarog (Heaney et al. 1998). S. types while vertical stratifcation of trees offer habitat murinus, R. -
Pharmacokinetics of Anticoagulant Rodenticides in Target and Non-Target Organisms Katherine Horak U.S
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Plant Publications Health Inspection Service 2018 Pharmacokinetics of Anticoagulant Rodenticides in Target and Non-target Organisms Katherine Horak U.S. Department of Agriculture, [email protected] Penny M. Fisher Landcare Research Brian M. Hopkins Landcare Research Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons Horak, Katherine; Fisher, Penny M.; and Hopkins, Brian M., "Pharmacokinetics of Anticoagulant Rodenticides in Target and Non- target Organisms" (2018). USDA National Wildlife Research Center - Staff Publications. 2091. https://digitalcommons.unl.edu/icwdm_usdanwrc/2091 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Chapter 4 Pharmacokinetics of Anticoagulant Rodenticides in Target and Non-target Organisms Katherine E. Horak, Penny M. Fisher, and Brian Hopkins 1 Introduction The concentration of a compound at the site of action is a determinant of its toxicity. This principle is affected by a variety of factors including the chemical properties of the compound (pKa, lipophilicity, molecular size), receptor binding affinity, route of exposure, and physiological properties of the organism. Many compounds have to undergo chemical changes, biotransformation, into more toxic or less toxic forms. Because of all of these variables, predicting toxic effects and performing risk assess- ments of compounds based solely on dose are less accurate than those that include data on absorption, distribution, metabolism (biotransformation), and excretion of the compound. -
A Comparative Chromosome Study of Rattus Rattus Mindanensis and Rattus Argentiventerl Doris H
A COMPARATIVE CHROMOSOME STUDY OF RATTUS RATTUS MINDANENSIS AND RATTUS ARGENTIVENTERL DORIS H. WURSTER and GERRY C. ATWELL' Rattus argentiventer and Rattus rattus mindanensis are impor. tant agricultural pest species in the Philippines. Comparative chromo. some studies have been performed on these species to further clarify their taxonomic status and gain insight Into their cytogenic relation ship. The two forms can be consistently ldent'f led by differences in their sex chromosomes. Rodents of the genus Rattus have long been a problem in agricultural areas of the Philippines. Damage to rice, corn, coconuts, sweet potatoes, bananas, sugar cane, peanuts, cantelope and watermelons is extensive. Bio logists at the Rodent Research Center at the University of the Philippines' College of Agriculture estim'jted the preharvest loss of rice due to rats at $8,000,000 (Swink et ai., 1971). This estinate was based on the nationwide appraisal of rat damage to rice condicted by the Bureau of Plant Industry in 1970. Losses of other crops have not been quantitatively documented but can be extremely high at the local level. Through the late 1960's, investigators workilg in lowland areas in the Philippines did not agree on the taxonomy of the "ricefield" rat. Usually the taxa Rattus rattus umbriventer Kellogg, R. r. mindanensis Mearns and R. r. argentiventer Robinson and Kloss were used synonymously (Sumangil, 1963; 1965). Clark (1968) indicated that at least two of these animals were indeed true subspecies. Based on specirmens identified at the British Museum he stated that in Cotabato, the most important pest species was not R. -
Brown Rat Rattus Norvegicus
brown rat Rattus norvegicus Kingdom: Animalia Division/Phylum: Chordata Class: Mammalia Order: Rodentia Family: Muridae ILLINOIS STATUS common, nonnative FEATURES The brown rat is large (head-body length seven to 10 inches, tail length five to eight inches) for a rat. It has a salt-and-pepper look with brown, black and gold hairs. There are darker hairs down the middle of the back. The belly fur is gray- or cream-colored. The feet have white fur. The ringed, scaly, one-colored tail is nearly hairless. BEHAVIORS The brown rat may be found statewide in Illinois. It lives in buildings, barns, houses, dumps and other areas associated with humans. This rodent will eat almost anything. It does eat food intended for human use and can contaminate food supplies. It is usually associated with poor sanitary conditions and livestock areas. This rat will carry food to its nest instead of eating it where the food is found. The brown rat is known to spread diseases. This nocturnal mammal is a good climber. It produces some sounds. Mating may occur at any time throughout the year. The average litter size is seven. Young are born helpless but develop rapidly. They are able to live on their own in about one month. Females begin reproducing at the age of about three months. If conditions are favorable, a female may reproduce once per month. The average life span of the brown rat is about one and one-half years. This species was introduced to the United States from Europe by humans. HABITATS Aquatic Habitats none Woodland Habitats none Prairie and Edge Habitats edge © Illinois Department of Natural Resources. -
OPENING Remarksâ•Fltwelfth VERTEBRATE PEST CONFERENCE
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Proceedings of the Twelfth Vertebrate Pest Vertebrate Pest Conference Proceedings Conference (1986) collection March 1986 OPENING REMARKS—TWELFTH VERTEBRATE PEST CONFERENCE Terrell P. Salmon University of California, Davis, California Follow this and additional works at: https://digitalcommons.unl.edu/vpc12 Part of the Environmental Health and Protection Commons Salmon, Terrell P., "OPENING REMARKS—TWELFTH VERTEBRATE PEST CONFERENCE" (1986). Proceedings of the Twelfth Vertebrate Pest Conference (1986). 1. https://digitalcommons.unl.edu/vpc12/1 This Article is brought to you for free and open access by the Vertebrate Pest Conference Proceedings collection at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Proceedings of the Twelfth Vertebrate Pest Conference (1986) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. OPENING REMARKS—TWELFTH VERTEBRATE PEST CONFERENCE TERRELL P. SALMON, Wildlife Specialist, Cooperative Extension, University of California, Davis, California 95616. On behalf of the Vertebrate Pest Council, welcome to the 12th Vertebrate Pest Conference. Every other year since 1962, the Vertebrate Pest Council has sponsored the conference with the primary objective of bringing individuals interested in vertebrate pest control together to discuss problems and solutions of mutual concern. The main objectives of the conference are: 1. To exchange information on vertebrate pest management and related matters. 2. To advance environmentally safe vertebrate pest management methodologies. 3. To build cooperation with public and private agencies in solving vertebrate pest problems. 4. To consider and promote discussion and interaction among agencies and others about problems of mutual concern in the field of vertebrate pest management. -
Mammals of the Finger Lakes ID Guide
A Guide for FL WATCH Camera Trappers John Van Niel, Co-PI CCURI and FLCC Professor Nadia Harvieux, Muller Field Station K-12 Outreach Sasha Ewing, FLCC Conservation Department Technician Past and present students at FLCC Virginia Opossum Eastern Coyote Eastern Cottontail Domestic Dog Beaver Red Fox Muskrat Grey Fox Woodchuck Bobcat Eastern Gray Squirrel Feral Cat Red Squirrel American Black Bear Eastern Chipmunk Northern Raccoon Southern Flying Squirrel Striped Skunk Peromyscus sp. North American River Otter North American Porcupine Fisher Brown Rat American Mink Weasel sp. White-tailed Deer eMammal uses the International Union for Conservation of Nature (IUCN) for common and scientific names (with the exception of Domestic Dog) Often the “official” common name of a species is longer than we are used to such as “American Black Bear” or “Northern Raccoon” Please note that it is Grey Fox with an “e” but Eastern Gray Squirrel with an “a”. Face white, body whitish to dark gray. Typically nocturnal. Found in most habitats. About Domestic Cat size. Can climb. Ears and tail tip can show frostbite damage. Very common. Found in variety of habitats. Images are often blurred due to speed. White tail can overexpose in flash. Snowshoe Hare (not shown) is possible in higher elevations. Large, block-faced rodent. Common in aquatic habitats. Note hind feet – large and webbed. Flat tail. When swimming, can be confused with other semi-aquatic mammals. Dark, naked tail. Body brown to blackish (darker when wet). Football-sized rodent. Common in wet habitats. Usually doesn’t stray from water. Pointier face than Beaver. -
Of Mice and Men Tracing the Global Invasion History of the Common House Mouse (Mus Musculus)
Of mice and men Tracing the global invasion history of the common house mouse (Mus musculus) Level: Master Start: Any time Project duration: 4-6 months Location: This desktop study can be done from home Project form: Literature research, database construction and analysis, GIS Supervision: Rob Lenders [email protected] The common house mouse (Mus musculus) is generally considered to be an indigenous species in most of its distribution area. Yet this cosmopolitan rodent is in fact – together with its cousins black rat (Rattus rattus) and brown rat (Rattus norvegicus) – one of the most successful invasive species globally. The species most likely spread from its probable area of origin North India to the Mediterranean and from there to the rest of Europe, Asia and parts of Africa and subsequently to the Americas, Australia and a large number of Islands in Oceania. Compared to black and brown rat, the house mouse seems to have less adverse effects on human societies and biodiversity. Like the brown rat house mice are often kept as pets or as model species in scientific research. Yet the species also has proven negative effects on bird, reptile and invertebrate species around the world, especially on islands, and can cause damage to agricultural crops and stored food. In an earlier study we examined the global spread of three invasive rat species, viz., black rat (Rattus rattus), brown rat (Rattus norvegicus) and Pacific rat (Rattus exulans), during the Holocene as a result of human agency. The distribution history of the house mouse seems to compare very well with those of the black and brown rat. -
The Evaluation of Alternative Toxins to Sodium Monofluoroacetate (1080) for Possum Control
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Proceedings of the Fifteenth Vertebrate Pest Vertebrate Pest Conference Proceedings Conference 1992 collection March 1992 THE EVALUATION OF ALTERNATIVE TOXINS TO SODIUM MONOFLUOROACETATE (1080) FOR POSSUM CONTROL Charles T. Eason Forest Research Institute, P.O. Box 31-011, Christchurch, New Zealand Follow this and additional works at: https://digitalcommons.unl.edu/vpc15 Part of the Environmental Health and Protection Commons Eason, Charles T., "THE EVALUATION OF ALTERNATIVE TOXINS TO SODIUM MONOFLUOROACETATE (1080) FOR POSSUM CONTROL" (1992). Proceedings of the Fifteenth Vertebrate Pest Conference 1992. 24. https://digitalcommons.unl.edu/vpc15/24 This Article is brought to you for free and open access by the Vertebrate Pest Conference Proceedings collection at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Proceedings of the Fifteenth Vertebrate Pest Conference 1992 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. THE EVALUATION OF ALTERNATIVE TOXINS TO SODIUM MONOFLUOROACETATE (1080) FOR POSSUM CONTROL CHARLES T. EASON, Forest Research Institute, P.O. Box 31-011, Christchurch, New Zealand ABSTRACT: Possum control in New Zealand is dependent on the use of sodium monofluroacetate (1080) and cyanide. Although 1080 is highly effective, its use is restricted to government staff. Cyanide is available for a wider group of licensed operators, but cyanide "shyness" reduces its effectiveness. An acute toxicity programme has been set up to identify non- anticoagulant toxins that could be used safely by farmers. Dose-ranging studies showed that possums are susceptible to cholecalciferol, calciferol, gliftor, alpha-chloralose, and nicotine, but not to bromethalin. -
Distribution of Native and Non-Native Rats (Rattus Spp.) Along an Elevational Gradient in a Tropical Rainforest of Southern Luzon, Philippines
ECOTROPICA 14: 129–136, 2008 © Society for Tropical Ecology DISTRIBUTION OF NATIVE AND NON-NATIVE RATS (RATTUS SPP.) ALONG AN ELEVATIONAL GRADIENT IN A TROPICAL RAINFOREST OF SOUTHERN LUZON, PHILIPPINES Cristina C. Salibay & Hazel Anne V. Luyon De La Salle University-Dasmariñas, Dasmariñas, Cavite, Philippines Abstract. Rats (Muridae) of the genus Rattus occur in the Philippines, both as native and as invasive species. While the invasive species are well known to use a large range of anthropogenic habitats, little is known about their potential to occur in forest areas. We studied the occurrence and relative abundance of different species of Rattus in forests along elevational gradients on three mountains within the Palay-palay / Mataas na Gulod National Park in Southern Luzon, Philippines. Four Rattus species were collected and their occurrence and relative abundance were found to differ significantly between species and along elevational gradients. Rattus norvegicus (40.3% of captures), R. tanezumi (21.5%), and R. argentiventer (5.6%) are invasive species and R. everetti (32.7%) a native forest-inhabiting species. While the three invasive species were most abundant at low elevations, R. everetti was most abundant at higher elevations. The number of invasive rats has been attributed to their survival and adaptation at lower elevations, where habitat conversion and degradation are most intense, while native species are more common at higher elevations where habitat is relatively un- disturbed. Key words: elevation, forest species, invasive species, Philippines, rainforest, Rattus species. INTRODUCTION and occur at high abundances in local mammal as- semblages (Heaney et al. 1998, Steppan et al. 2003).