2012 RJPBCS Volume 3 Issue 1 Page No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cassia Fistula (Golden Shower): a Multipurpose Ornamental Tree
Floriculture and Ornamental Biotechnology ©2007 Global Science Books Cassia fistula (Golden Shower): A Multipurpose Ornamental Tree Muhammad Asif Hanif1,2 • Haq Nawaz Bhatti1* • Raziya Nadeem1 • Khalid Mahmood Zia1 • Muhammad Asif Ali2 1 Department of Chemistry, University of Agriculture, Faisalabad - 38040, Pakistan 2 Institute of Horticultural Sciences, University of Agriculture, Faisalabad - 38040, Pakistan Corresponding author : * [email protected] ABSTRACT Cassia fistula Linn is a multipurpose, ornamental, fast growing, medium sized, deciduous tree that is now widely cultivated world wide for its beautiful showy yellow fluorescent flowers. This paper reviews the phenolic antioxidants, metal sorption, medicinal and free radical propensities of plant parts and cell culture extracts. This paper also appraises antimicrobial activities and commercial significance of C. fistula parts. The main objectives of present review study are to: (1) critically evaluate the published scientific research on C. fistula, (2) highlight claims from traditional, tribal and advanced medicinal lore to suggest directions for future clinical research and commercial importance that could be carried out by local investigators in developing regions. _____________________________________________________________________________________________________________ Keywords: antioxidant, medicinal plant, water treatment CONTENTS INTRODUCTION....................................................................................................................................................................................... -
Potential Control of Postharvest Gray Mold of Pomegranate Fruits Caused by Botrytis Cinerea
11 Env. Biodiv. Soil Security Vol.1, pp. 145- 156 (2017) Potential Control of Postharvest Gray Mold of Pomegranate Fruits Caused by Botrytis Cinerea Samar A. Allam1, Gabr A. Elkot2, Abdelnaser A. Elzaawely1* and Hassan M. El-Zahaby1 1*Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, and 2Department of Agricultural Botany, Faculty of Agriculture, Kafr Elsheikh University, Kafr El Sheikh, Egypt . RAY mold rot, caused by Botrytis cinerea, is one of the most economically significant Gpostharvest diseases in pomegranate fruits. The aim of the current study is to evaluate Mangifera indica, Thymus vulgaris, Origanum majorana, Salix mucronata, Cinnamomum cassia and Zingiber officinale extracts and biocontrol agents for controlling gray mold disease on pomegranate. In vitro results showed that T. vulgaris (T.v), C. cassia (C.c) and Z. officinale (Z.o) extracts possessed highly significant antifungal activities as they completely inhibited the radial growth of B. cinerea at the concentrations of 30000, 20000 and 30000 ppm, respectively. The combination of the aforementioned plant extracts and fungicide Flusilazole (Flu) overcomes the potency of Flu or the plant extracts alone specially C.c+Flu at the rate of (2:1; v/v) since it inhibited the radial growth of B. cinerea with 89.6% inhibition compared to the control. The study also proved that using the aforementioned plant extracts alone or in combination with Flu as well as the bacterial antagonists (Bacillus subtilis or Pseudomonas fluorescens) significantly reduced the loss in fruit weight. Furthermore, they also prolonged the storage period of pomegranate fruits and maintained high-quality parameters including soluble solids content and titratable acidity after cold storage at 5±1°C and 90% RH. -
Ceylon Cinnamon • Pure Cinnamon • Mexican Cinnamon • Sri Lanka Cinnamon • Canela (Spanish for Cinnamon)
Cinnamon The 4th most valuable spice in the world http://www.trueceylonspices.com/ceylon-cinnamon/ www.truecylonspices.com 1. About Cinnamon is a first traded and most popular spice from the ancient time. It extracts from the bark of the cinnamon tree have also been used traditionally as medicine throughout the world. www.truecylonspices.com 2. Products of Cinnamon • Cinnamon Quills (Full tubes) • Cinnamon Quillings (broken tubes) • Cinnamon Featherings • Cinnamon Chips • Ground Cinnamon (Cinnamon powder) • Cinnamon Leaf Oil • Cinnamon Bark Oil www.truecylonspices.com 3. Varieties 1. Cassia Cinnamon 1. Cinnamomum loureiroi 2. Cinnamomum aromaticum 3. Cinnamomum burmannii 2. True Cinnamon 1. Cinnamomum verum www.truecylonspices.com 3.1.1 Cinnamomum loureiroi • Other names: • Saigon Cinnamon • Vietnamese cinnamon • Vietnamese cassia • Origin: • Vietnam • Pros: • Strong spicy cinnamon taste • high levels of oil content Image credit: Wikipedia • Cons: • High Coumarin Levels www.truecylonspices.com 3.1.2 Cinnamomum aromaticum • Other names: • Cinnamomum cassia (old Latin name) • Cassia • Chinese cinnamon • Chinese cassia • Tung Hing • Origin: • China • Pros: • Cheap Image credit: Wikipedia • Cons: • High Coumarin Levels www.truecylonspices.com 3.1.3 Cinnamomum burmannii • Other names: • Korintje cassia • Padang cassia • Batavia cassia • Indonesian cinnamon • Origin: • Indonesia • Pros: • Cheap • Spicy Cinnamon flavor Image credit: Wikipedia • Cons: • High Coumarin Levels www.truecylonspices.com 3.2.1 b. Cinnamomum verum • Other names: • Cinnamomum zeylanicum (old Latin name) • True Cinnamon • Ceylon Cinnamon • Pure cinnamon • Mexican cinnamon • Sri Lanka cinnamon • Canela (Spanish for cinnamon) • Origin: • Sri Lanka (90%), • India, Madagascar, Brazil, Caribbean • Pros: • Ultra Low Coumarin levels • Softer and subtle taste • crumbly • Cons: • Expensive www.truecylonspices.com 4. Usage of Cinnamon • Usage of Cinnamon bark • As a spice. -
WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall ......................................................................................................... -
1 Chapter 1 Introduction 1.1 Statement and Significance
1 CHAPTER 1 INTRODUCTION 1.1 STATEMENT AND SIGNIFICANCE OF THE PROBLEM Nowadays most consumers are concerned about using chemical preservatives in foods to prevent lipid oxidation and the growth of spoiling microbes since some of these additives trend to be carcinogenic or can promote the growth of tumors, so that the decrease in chemical preservatives usage is of interest. Lipid oxidation and bacterial contamination are the main factors to determine food quality loss and shelf- life reduction; therefore, delaying lipid oxidation and preventing bacterial cross- contamination are highly important to food processors (Fernandez-Lopez et al., 2005). To inhibit lipid oxidation and microbial growth, the synthetic antioxidants have been widely used, the most common are butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butylated hydroxyquinone (TBHQ) as potential inhibitors for lipid peroxidation and thereby stabilize fat containing food- stuffs (Löliger, 1991). However, BHA and BHT were found to be anticarcinogenic as well as carcinogenic in experiments or animals and it has been established that they are involved in tumor formation (Botterweck et al., 2000). In recent years, the global demand of natural foods and natural preservatives being consumed for health are preferable. Using plant essential oils and their extracts, the new approach to prevent the proliferation of microorganism or protect food from oxidation, as alternative natural preservative agents is becoming popular due to their medicinal, antimicrobial and antioxidant properties (Pattnaik et al., 1997: Moreno et al., 2002: Sharififar et al., 2007: Al-Fatimi et al., 2007: Yang and Clausen, 2007). The antimicrobial and antioxidant activities of plant essential oils and their extracts are particularly beneficial for utilizations in the food industry such as in raw and processed food preservation, besides those herbal plants and dietary spices are widely cultivated and approved for consumption. -
Structural Modification of Trans-Cinnamic Acid Using Colletotrichum Acutatum
Rev. Fac. Ing. Univ. Antioquia N.° 63 pp. 20-29. Junio, 2012 Structural modification of trans-cinnamic acid using Colletotrichum acutatum Modificación estructural de ácidotrans -cinámico empleando Colletotrichum acutatum Rodrigo Velasco B.1, Jesús H. Gil G.1, 2, Carlos M. García P.1, Diego L. Durango R.1,* 1Grupo de Química de los Productos Naturales y los Alimentos. Facultad de Ciencias. Escuela de Química. Universidad Nacional de Colombia. Calle 59ª 63-020 Autopista Norte. AA 3840. Medellín, Colombia. 2Departamento de Ingeniería Agrícola y Alimentos. Facultad de Ciencias Agropecuarias. Universidad Nacional de Colombia. Calle 64 x Carrera 65 Autopista Norte. AA 3840. Medellín, Colombia. (Recibido el 18 de febrero de 2011. Aceptado el 23 de mayo de 2012) Abstract The biotransformation of trans-cinnamic acid by whole cells of the Colombian native phytopathogenic fungus Colletotrichum acutatum was studied. Initially, fungitoxicity of this compound against C. acutatum was evaluated; trans-cinnamic acid exhibited a moderate to weak toxicity against the microorganism and apparently a detoxification mechanism was present. Then, in order to study such mechanism and explore the capacity of this fungus to biotransform trans-cinnamic acid into value-added products, the microorganism was incubated with the substrate using three different culture media (Czapeck-Dox, Sabouraud and PDB) at room conditions. Using Czapeck-Dox medium, whole cultures of C. acutatum reduced trans-cinnamic acid, first to aldehydes (trans-cinnamaldehyde and 3-phenylpropanal), then to alcohols (cinnamyl alcohol and 3-phenyl-1-propanol). Subsequently, these alcohols were transformed to the corresponding acetyl esters. Nevertheless, some of these products were absent or present at different concentration when culture medium was changed. -
Camphor Laurels' Ecological Management & Restoration
emr_399.fm Page 88 Wednesday, July 9, 2008 8:54 AM FEATURE doi: 10.1111/j.1442-8903.2008.00399.x PotentialBlackwell Publishing Asia value of weedy regrowth for rainforest restoration By John Kanowski, Carla P. Catterall and Wendy Neilan Weeds are (usually justifiably) considered ‘bad’! But what about when weedy regrowth supports native species and facilitates the conversion of retired pasture back to functioning rainforest? Figure 1. The Topknot Pigeon (Lopholaimus antarcticus), a rainforest pigeon which feeds on the fruit of Camphor Laurel (Cinnamomum camphora) in north-east New South Wales, Australia. The Topknot Pigeon forages in large flocks and can travel tens of kilometres daily. For these reasons, it is an important long-distance disperser of rainforest plants to stands of Camphor Laurel (as well as being a disperser of Camphor Laurel to other forest types). (Photo: Terry M. Reis.) Introduction and subtropical Australia, many small restoration plantings have been estab- ustralian rainforests have been the lished, mostly utilizing a diverse range Afocus of much conservation and of locally occurring species, planted at restoration effort in the past few high densities (Kooyman 1996; Free- decades. Governments, community body 2007). Research has shown that John Kanowski is a Research Fellow and groups and individuals have invested these restoration plantings can develop Carla Catterall is an Associate Professor in the tens of millions of dollars to rehabi- a rainforest-like structure and support School of Environment, Griffith University (Nathan, litate degraded remnants and replant a moderate diversity of rainforest fauna Qld 4111, Australia; Tel. +61 (0) 7 3735 3823; rainforest trees in tropical and subtropical (Fig. -
Characteristics of the Stem-Leaf Transitional Zone in Some Species of Caesalpinioideae (Leguminosae)
Turk J Bot 31 (2007) 297-310 © TÜB‹TAK Research Article Characteristics of the Stem-Leaf Transitional Zone in Some Species of Caesalpinioideae (Leguminosae) Abdel Samai Moustafa SHAHEEN Botany Department, Aswan Faculty of Science, South Valley University - EGYPT Received: 14.02.2006 Accepted: 15.02.2007 Abstract: The vascular supply of the proximal, middle, and distal parts of the petiole were studied in 11 caesalpinioid species with the aim of documenting any changes in vascular anatomy that occurred within and between the petioles. The characters that proved to be taxonomically useful include vascular trace shape, pericyclic fibre forms, number of abaxial and adaxial vascular bundles, number and relative position of secondary vascular bundles, accessory vascular bundle status, the tendency of abaxial vascular bundles to divide, distribution of sclerenchyma, distribution of cluster crystals, and type of petiole trichomes. There is variation between studied species in the number of abaxial, adaxial, and secondary bundles, as seen in transection of the petiole. There are also differences between leaf trace structure of the proximal, middle, and distal regions of the petioles within each examined species. Senna italica Mill. and Bauhinia variegata L. show an abnormality in their leaf trace structure, having accessory bundles (concentric bundles) in the core of the trace. This study supports the moving of Ceratonia L. from the tribe Cassieae to the tribe Detarieae. Most of the characters give valuable taxonomic evidence reliable for delimiting the species investigated (especially between Cassia L. and Senna (Cav.) H.S.Irwin & Barneby) at the generic and specific levels, as well as their phylogenetic relationships. -
Senna Obtusifolia (L.) Irwin & Barneby
Crop Protection Compendium - Senna obtusifolia (L.) Irwin & Barneby Updated by Pierre Binggeli 2005 NAMES AND TAXONOMY Preferred scientific name Senna obtusifolia (L.) Irwin & Barneby Taxonomic position Other scientific names Domain: Eukaryota Cassia obtusifolia L. Kingdom: Viridiplantae Cassia tora var. obtusifolia (L.) Haines Phylum: Spermatophyta Emelista tora (L.) Britton & Rosa Subphylum: Angiospermae Cassia tora L. Class: Dicotyledonae Senna tora (L.) Roxb. Order: Myrtales Family: Fabaceae BAYER code Subfamily: Caesalpinioideae CASOB (Cassia obtusifolia) Common names English: bicho Mauritius: sicklepod chilinchil cassepuante Cuba: herbe pistache Australia: guanina Pacific Islands: Java bean Dominican Republic: peanut weed Bolivia: brusca cimarrona Paraguay: aya-poroto brusca hembra taperva moroti mamuri El Salvador: taperva Brazil: comida de murcielago taperva sayju fedegoso frijolillo Puerto Rico: fedegoso-branco Guatemala: dormidera mata pasto ejote de invierno Venezuela: matapasto liso ejotil chiquichique Colombia: Madagascar: bichomacho voamahatsara Notes on taxonomy and nomenclature Many recent floras use the new nomenclature which puts many former Cassia spp. including C. obtusifolia and C. tora, into the genus Senna, and the new classification of Irwin and Barneby (1982) is used here. However, where acknowledging these two species as separate (following Irwin and Barneby 1982), in terms of their agronomic importance and control, there is probably little difference between S. obtusifolia and S. tora, and both are included together for the purpose of this datasheet. Thus, whereas S. tora (and C. tora) are included here as non-preferred scientific names, they are not strictly synonyms. Binggeli updated 2005 Crop Protection Compendium - Senna obtusifolia (L.) Irwin & Barneby 1 There has been much debate on the classification of S. obtusifolia. -
(Cinnamomum Zeylanicum Blume.) & Naluka/Cassia
International Journal of Research in Pharmacy and Biosciences Volume 2, Issue 2, February 2015, PP 1-4 ISSN 2394-5885 (Print) & ISSN 2394-5893 (Online) Identification of Adulterants by Pharmacognostical Evaluation: Tvak (Cinnamomum Zeylanicum Blume.) & Naluka/Cassia [Cinnamomum Cassia (Nees & T.Nees.) J.Presl] Nanda Amalesh1, Paul Nirankush1, Gupta Amartya Kumar1, Ganguly Partha*1, Banerjee Dipankar1, Singh Rahul1, Katiyar Chandrakant1 1R&D Healthcare Division, Emami Ltd., 13 B.T. Road, Belghoria, Kolkata-700 056, India ABSTRACT Traditional medical systems remain important resources of healthcare worldwide that are reported to be safe and produce minimum side effects compared to synthetic medicines. At present deforestation and extinction of many species and incorrect identification of many plants has resulted in adulteration of raw drugs which results in lesser efficacy of the finished formulations? This article throws light on the concepts of adulteration of Naluka/Cassia (Cinnamomum cassia) with Tvak (Cinnamomum zeylanicum). Morphologically near about same, and Tvak is typically more expensive than the Naluka, so it is easy to adulterate Tvak with inferior variety of Naluka to reduce the cost. But there is no instantaneous ready method available to distinguish between Tvak and Naluka. A rough distinction can be made between Tvak and Naluka depending upon the Coumarin content [1] which requires sophisticated analytical technique which involves both time and cost. In the present study, an easy attempt has been made to distinguish between Tvak and Naluka using simple pharmacognostical evaluation.These simple microscopic and macroscopic characters can be used as an effective tool for the identification of true Tvak sample which will help to maintain the quality of herbal drugs by avoiding adulteration of Naluka. -
Phylogeny and Historical Biogeography of Lauraceae
PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group -
View Essential Oils Product List
Essential Oils Common Name Botanical Name AMYRIS OIL PURE & NATURAL Amyris balsamifera L. ANGELICA ROOT OIL PURE & NATURAL Angelica archangelica L. ANISE OIL SPANISH PURE & NATURAL Pimpinella anisum L ANISE STAR OIL PURE & NATURAL Illicium verum Hook, F. ARMOISE OIL PURE & NATURAL Artemisia herba-alba Asso BASIL OIL SWEET LINALOOL TYPE ARTIFICIAL BASIL OIL SWEET LINALOOL TYPE PURE & NATURAL Ocimum basilicum L. BASIL OIL SWEET LINALOOL TYPE WONF BASIL OIL SWEET METHYL CHAVICOL TYPE ARTIFICIAL BASIL OIL SWEET METHYL CHAVICOL TYPE PURE & NATURAL Ocimum basilicum L. BASIL OIL SWEET METHYL CHAVICOL TYPE WONF BAY OIL PURE & NATURAL Pimenta racemosa (Mill.) J.W. Moore BAY OIL TERPENELESS Pimenta racemosa (Mill.) J.W. Moore BAY OIL WONF BERGAMOT OIL ARTIFICIAL BERGAMOT OIL BERGAPTENE FREE PURE & NATURAL Citrus aurantium bergamia BERGAMOT OIL COLD-PRESSED PURE & NATURAL Citrus aurantium bergamia BERGAMOT OIL COLD-PRESSED WONF BERGAMOT OIL FUROCOUMARIN-FREE PURE & NATURAL Citrus bergamia BERGAMOT OIL FUROCOUMARIN-FREE WONF BERGAMOT OIL ORGANIC Citrus bergamia BERGAMOT OIL RECTIFIED PURE & NATURAL Citrus aurantium bergamia BERGAMOT RECTIFIED WONF BOIS DE ROSE OIL ARTIFICIAL BOIS DE ROSE OIL PURE & NATURAL Aniba rosaeodora (Ducke) var amazonica BOIS DE ROSE OIL WONF CABREUVA OIL PURE & NATURAL Myrocarpus frondosus CADE OIL Juniperus oxycedrus L. CAMPHOR OIL WHITE ARTIFICIAL CAMPHOR OIL WHITE PURE & NATURAL (Cinnamomum camphora (L.) Nees et Eberm.) CAMPHOR OIL WHITE WONF CANANGA OIL PURE & NATURAL Cananga odorata (Lam.) Hook. f. & Thomson CARAWAY OIL PURE & NATURAL Carum carvi L. (Umbelliferae) CARDAMOM OIL PURE & NATURAL Elettaria cardamomum (L.) Maton CARDAMOM OIL WONF CARROT HEART OIL PURE & NATURAL Daucus carota L. CARROT SEED OIL PURE & NATURAL Daucus carota L.