Subdigital Adhesive Pad Morphology Varies in Relation to Structural Habitat Use in the Namib Day Gecko
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Ecology's Non-Selectionist Understanding of Function
Studies in History and Philosophy of Biol & Biomed Sci xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Studies in History and Philosophy of Biol & Biomed Sci journal homepage: www.elsevier.com/locate/shpsc Functional ecology's non-selectionist understanding of function ∗ Antoine C. Dussaulta,b, a Collège Lionel-Groulx, 100, Rue Duquet, Sainte-Thérèse, Québec, J7E 3G6, Canada b Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST), Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada ARTICLE INFO ABSTRACT Keywords: This paper reinforces the current consensus against the applicability of the selected effect theory of function in Functional biodiversity ecology. It does so by presenting an argument which, in contrast with the usual argument invoked in support of Function this consensus, is not based on claims about whether ecosystems are customary units of natural selection. Biodiversity Instead, the argument developed here is based on observations about the use of the function concept in func- Ecosystem function tional ecology, and more specifically, research into the relationship between biodiversity and ecosystem func- Biological individuality tioning. It is argued that a selected effect account of ecological functions is made implausible by the fact that it Superorganism would conflict with important aspects of the understanding of function and ecosystem functional organization which underpins functional ecology's research program. Specifically, it would conflict with (1) Functional ecology's adoption of a context-based understanding of function and its aim to study the functional equivalence between phylogenetically-divergent organisms; (2) Functional ecology's attribution to ecosystems of a lower degree of part-whole integration than the one found in paradigm individual organisms; and (3) Functional ecology's adoption of a physiological or metabolic perspective on ecosystems rather than an evolutionary one. -
Competitive Exclusion Principle
Competitive exclusion principle In ecology, the competitive exclusion principle,[1] sometimes referred to as Gause's law,[2] is a proposition named for Georgy Gause that two species competing for the same limited resource cannot coexist at constant population values. When one species has even the slightest advantage over another, the one with the advantage will dominate in the long term. This leads either to the extinction of the weaker competitor or to an evolutionary or behavioral shift toward a different ecological niche. The principle has been paraphrased in the maxim "complete competitors can not coexist".[1] 1: A smaller (yellow) species of bird forages Contents across the whole tree. 2: A larger (red) species competes for resources. History 3: Red dominates in the middle for the more abundant resources. Yellow adapts to a new Experimental basis niche restricted to the top and bottom of the tree, Prediction avoiding competition. Paradoxical traits Redefinition Phylogenetic context Application to humans See also References History The competitive exclusion principle is classically attributed to Georgii Gause,[3] although he actually never formulated it.[1] The principle is already present in Darwin's theory of natural selection.[2][4] Throughout its history, the status of the principle has oscillated between a priori ('two species coexisting must have different niches') and experimental truth ('we find that species coexisting do have different niches').[2] Experimental basis Based on field observations, Joseph Grinnell formulated the principle of competitive exclusion in 1904: "Two species of approximately the same food habits are not likely to remain long evenly balanced in numbers in the same region. -
Ecosystem Profile Madagascar and Indian
ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra, -
KENNETH A. NAGY PUBLICATIONS up to JUNE 2016
KENNETH A. NAGY PUBLICATIONS Up to JUNE 2016 For Open Access pdf, click link. For copyrighted reprint pdfs, please email your request to Ken Nagy at [email protected]. I will be happy to share a copy of the article with individual colleagues, when permissible under copyright law. 2016 Nagy, K.A., G. Kuchling, L.S. Hillard, and B.T. Henen. (2016) Weather and sex ratios of head-started Agassiz’s desert tortoise Gopherus agassizii juveniles hatched in natural habitat enclosures. Endangered Species Research 30:145- 155. (Research article) (Link to pdf) Ellsworth, E., M.R. Boudreau, K. Nagy, J.L. Rachlow, and D.L. Murray. (2016). Differential sex-related winter energetics in free-ranging snowshoe hAres (Lepus americanus). Canadian Journal of Zoology 94:115-121. (Research article) (link to pdf) 2015 Nagy, K.A., S.Hillard, S. Dickson, and D.J. Morafka. (2015). Effects of artificial rain on survivorship, body condition, and growth of head-started desert tortoises (Gopherus agassizii) released to the open desert. Herpetological Conservation and Biology 10:535-549. (Research article) (Link to pdf) Nagy, K.A., L.S. Hillard, M.W. Tuma, and D.J. Morafka. (2015). Head-started desert tortoises (Gopherus agassizii): Movements, survivorship and mortality causes following their release. Herpetological Conservation and Biology 10:203-215. (Research article) (link to pdf) 2014 Gienger, C.M., C.R. Tracy, and K.A. Nagy. (2014). Life in the slow lane: GilA Monsters have low rates of energy use and water flux. Copeia 2014:279-287. (Research article) (email Nagy for pdf) 2012 Nagy, K.A., and G.G. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Conservation Matters: CITES and New Herp Listings
Conservation matters:FEATURE | CITES CITES and new herp listings The red-tailed knobby newt (Tylototriton kweichowensis) now has a higher level of protection under CITES. Photo courtesy Milan Zygmunt/www. shutterstock.com What are the recent CITES listing changes and what do they mean for herp owners? Dr. Thomas E.J. Leuteritz from the U.S. Fish & Wildlife Service explains. id you know that your pet It is not just live herp may be a species of animals that are protected wildlife? Many covered by CITES, exotic reptiles and but parts and Damphibians are protected under derivatives too, such as crocodile skins CITES, also known as the Convention that feature in the on International Trade in Endangered leather trade. Plants Species of Wild Fauna and Flora. and timber are also Initiated in 1973, CITES is an included. international agreement currently Photo courtesy asharkyu/ signed by 182 countries and the www.shutterstock.com European Union (also known as responsibility of the Secretary of the How does CITES work? Parties), which regulates Interior, who has tasked the U.S. Fish Species protected by CITES are international trade in more than and Wildlife Service (USFWS) as the included in one of three lists, 35,000 wild animal and plant species, lead agency responsible for the referred to as Appendices, according including their parts, products, and Convention’s implementation. You to the degree of protection they derivatives. can help USFWS conserve these need: Appendix I includes species The aim of CITES is to ensure that species by complying with CITES threatened with extinction and international trade in specimens of and other wildlife laws to ensure provides the greatest level of wild animals and plants does not that your activities as a pet owner or protection, including restrictions on threaten their survival in the wild. -
Habitat Selection of the Mauritian Lowland Forest Day Gecko at Multiple Spatial Scales: a Baseline for Translocation
Global Ecology and Conservation xx (xxxx) xxx–xxx Contents lists available at ScienceDirect Global Ecology and Conservation journal homepage: www.elsevier.com/locate/gecco Original research article Habitat selection of the Mauritian lowland forest day gecko at multiple spatial scales: A baseline for translocation a,b,∗ a,c,d e,f g Q1 Steeves Buckland , Nik C. Cole , Ben Godsall , Javier Rodríguez-Pérez , Laura E. Gallagher b, Sion M. Henshaw b, Stephen Harris a a Mammal Research Unit, School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK b National Parks & Conservation Service, Réduit, Mauritius c Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity Jersey, JE3 5BP, Channel Islands, UK d Mauritian Wildlife Foundation, Grannum Road, Vacoas, Mauritius e Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK f Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, South Yorkshire, S10 2TN, UK g Departamento de Biología de Organismos y Sistemas, Unidad Mixta de Investigación en Biodiversidad, Universidad de Oviedo, Valentín Andrés Álvarez s/n, Oviedo 33006, Spain article info a b s t r a c t Article history: Of 30 known subpopulations of Phelsuma guimbeaui, 18 are in patches of exotic forest Received 3 April 2014 and are predicted to disappear in the next decade. One possible means of mitigating the Received in revised form 2 June 2014 reduction in genetic diversity associated with the loss of subpopulations is to translocate Accepted 3 June 2014 ``at risk'' subpopulations to more secure habitats. Prior to any such intervention, it is Available online xxxx important to identify a species' basic ecological needs. -
Gekkota: Gekkonidae): a Phylogenetically and Ecologically Informed Analysis
University of Calgary PRISM: University of Calgary's Digital Repository Science Science Research & Publications 2005 Locomotor morphometry of the Pachydactylus radiation of lizards (Gekkota: Gekkonidae): a phylogenetically and ecologically informed analysis Johnson, Megan K.; Russell, Anthony P.; Bauer, Aaron M. National Research Council Canada Johnson, M.K., A.P. Russell and A.M. Bauer. (2005). Locomotor morphometry of the Pachydactylus radiation of lizards (Gekkota: Gekkonidae): a phylogenetically and ecologically informed analysis. Canadian Journal of Zoology 83: 1511-1524. http://hdl.handle.net/1880/47000 journal article Downloaded from PRISM: https://prism.ucalgary.ca Supplementary Material Table S1. Specimens examined. Museums abbreviations are: USNM - National Museum of Natural History, Smithsonian Institution, CAS - California Academy of Sciences, and SMW - The State Museum, Windhoek, Namibia. Species Museum Specimen numbers [sample Locality data size] Chondrodactylus angulifer CAS 167722,167725,167731, Namibia 167733, 175326, 175407 129633-129634, 193304, S. Africa, Cape 201935 [10] Province Chondrodactylus bibronii CAS 193305-1993308, 193378- S. Africa, Cape 193379, 193381-193382 [10] Province Chondrodactylus CAS 214614-214615, 214617- NW Namibia fitzsimonsi 214618, 214620 [9] Chondrodactylus turneri CAS 193835-195327, 196491, N. Namibia 206984 200025, 200052, 201852, S. Africa. N. 203492 Cape Province 206930, 214532 [11] C. Namibia Pachydactylus austeni CAS 186317-186318, 206769, S. Africa, Cape 206777, 206884-206885, Province 206989, 223884 [8] Pachydactylus bicolor CAS 175348, 175350, 175361- NE Namibia 175364, 175369-175371 [10] Pachydactylus capensis CAS 125655-125656, 125678- S. Africa, 125681, 125683, 125757- Transvaal 125758 125984 [10] Botswana Pachydactylus fasciatus CAS 214672, 214674, 214676, Namibia 214690, 223930-223931 [6] Pachydactylus geitje CAS 173907, 173910, 175281, S. Africa, Cape 175285, 175313, 175410- Province 175411, 175413, 180352 [9] Pachydactylus maculatus CAS 175250, 175252- S. -
A Global Method for Calculating Plant CSR Ecological Strategies Applied Across Biomes World-Wide
Functional Ecology 2016 doi: 10.1111/1365-2435.12722 A global method for calculating plant CSR ecological strategies applied across biomes world-wide Simon Pierce*,1, Daniel Negreiros2, Bruno E. L. Cerabolini3, Jens Kattge4, Sandra Dıaz5, Michael Kleyer6, Bill Shipley7, Stuart Joseph Wright8, Nadejda A. Soudzilovskaia9, Vladimir G. Onipchenko10, Peter M. van Bodegom9, Cedric Frenette-Dussault7, Evan Weiher11, Bruno X. Pinho12, Johannes H. C. Cornelissen13, John Philip Grime14, Ken Thompson14, Roderick Hunt15, Peter J. Wilson14, Gabriella Buffa16, Oliver C. Nyakunga16,17, Peter B. Reich18,19, Marco Caccianiga20, Federico Mangili20, Roberta M. Ceriani21, Alessandra Luzzaro1, Guido Brusa3, Andrew Siefert22, Newton P. U. Barbosa2, Francis Stuart Chapin III23, William K. Cornwell24, Jingyun Fang25, Geraldo Wilson Fernandez2,26, Eric Garnier27, Soizig Le Stradic28, Josep Penuelas~ 29,30, Felipe P. L. Melo12, Antonio Slaviero16, Marcelo Tabarelli12 and Duccio Tampucci20 1Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133 Milan, Italy; 2Ecologia Evolutiva e Biodiversidade/DBG, ICB/Universidade Federal de Minas Gerais, CP 486, 30161-970 Belo Horizonte, MG, Brazil; 3Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, I-21100 Varese, Italy; 4Max Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena, Germany; 5Instituto Multidisciplinario de Biologıa Vegetal (CONICET-UNC) and FCEFyN, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, -
Conservation Ecology: Using Ants As Bioindicators
Table of Contents Using Ants as bioindicators: Multiscale Issues in Ant Community Ecology......................................................0 ABSTRACT...................................................................................................................................................0 INTRODUCTION.........................................................................................................................................0 SCALE DEPENDENCY IN ANT COMMUNITIES....................................................................................1 Functional groups .............................................................................................................................2 Regulation of diversity......................................................................................................................3 Measuring species richness and composition...................................................................................4 Estimating species richness...............................................................................................................6 IMPLICATIONS FOR THE USE OF ANTS AS BIOINDICATORS..........................................................8 Using functional groups to assess ecological change.......................................................................8 Assessing species diversity...............................................................................................................9 RESPONSES TO THIS ARTICLE.............................................................................................................10 -
The Stoor Hobbit of Guangdong: Goniurosaurus Gollum Sp. Nov., a Cave-Dwelling Leopard Gecko (Squamata, Eublepharidae) from South China
ZooKeys 991: 137–153 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.991.54935 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research The Stoor Hobbit of Guangdong: Goniurosaurus gollum sp. nov., a cave-dwelling Leopard Gecko (Squamata, Eublepharidae) from South China Shuo Qi1,*, Jian Wang1,*, L. Lee Grismer2, Hong-Hui Chen1, Zhi-Tong Lyu1, Ying-Yong Wang1 1 State Key Laboratory of Biocontrol/ The Museum of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China 2 Herpetology Laboratory, Department of Biology, La Sierra Univer- sity, Riverside, California 92515, USA Corresponding author: Ying-Yong Wang ([email protected]) Academic editor: T. Ziegler | Received 31 May 2020 | Accepted 10 September 2020 | Published 11 November 2020 http://zoobank.org/2D9EEFC0-B43E-4AC3-86E7-89944E54169B Citation: Qi S, Wang J, Grismer LL, Chen H-H, Lyu Z-T, Wang Y-Y (2020) The Stoor Hobbit of Guangdong: Goniurosaurus gollum sp. nov., a cave-dwelling Leopard Gecko (Squamata, Eublepharidae) from South China. ZooKeys 991: 137–153. https://doi.org/10.3897/zookeys.991.54935 Abstract A new species of the genus Goniurosaurus is described based on three specimens collected from a limestone cave in Huaiji County, Guangdong Province, China. Based on molecular phylogenetic analyses, the new species is nested within the Goniurosaurus yingdeensis species group. However, morphological analyses cannot ascribe it to any known species of that group. It is distinguished from the other three species in the group by a combination of the following characters: scales around midbody 121–128; dorsal tubercle rows at midbody 16–17; presence of 10–11 precloacal pores in males, and absent in females; nuchal loop and body bands immaculate, without black spots; iris orange, gradually darker on both sides. -
Annotated Checklist and Provisional Conservation Status of Namibian Reptiles
Annotated Checklist - Reptiles Page 1 ANNOTATED CHECKLIST AND PROVISIONAL CONSERVATION STATUS OF NAMIBIAN REPTILES MICHAEL GRIFFIN BIODIVERSITY INVENTORY MINISTRY OF ENVIRONMENT AND TOURISM PRIVATE BAG 13306 WINDHOEK NAMIBIA Annotated Checklist - Reptiles Page 2 Annotated Checklist - Reptiles Page 3 CONTENTS PAGE ABSTRACT 5 INTRODUCTION 5 METHODS AND DEFINITIONS 6 SPECIES ACCOUNTS Genus Crocodylus Nile Crocodile 11 Pelomedusa Helmeted Terrapin 11 Pelusios Hinged Terrapins 12 Geochelone Leopard Tortoise 13 Chersina Bowsprit Tortoise 14 Homopus Nama Padloper 14 Psammobates Tent Tortoises 15 Kinixys Hinged Tortoises 16 Chelonia GreenTurtle 16 Lepidochelys Olive Ridley Turtle 17 Dermochelys Leatherback Turtle 17 Trionyx African Soft-shelled Turtle 18 Afroedura Flat Geckos 19 Goggia Dwarf Leaf-toed Geckos 20 Afrogecko Marbled Leaf-toed Gecko 21 Phelsuma Namaqua Day Gecko 22 Lygodactylus Dwarf Geckos 23 Rhoptropus Namib Day Geckos 25 Chondrodactylus Giant Ground Gecko 27 Colopus Kalahari Ground Gecko 28 Palmatogecko Web-footed Geckos 28 Pachydactylus Thick-toed Geckos 29 Ptenopus Barking Geckos 39 Narudasia Festive Gecko 41 Hemidactylus Tropical House Geckos 41 Agama Ground Agamas 42 Acanthocercus Tree Agama 45 Bradypodion Dwarf Chameleons 46 Chamaeleo Chameleons 47 Acontias Legless Skinks 48 Typhlosaurus Blind Legless Skinks 48 Sepsina Burrowing Skinks 50 Scelotes Namibian Dwarf Burrowing Skink 51 Typhlacontias Western Burrowing Skinks 51 Lygosoma Sundevall’s Writhing Skink 53 Mabuya Typical Skinks 53 Panaspis Snake-eyed Skinks 60 Annotated