Using Prewitt Operator As Gradient-Based Method for Fingerprint Singular Points Detection

Total Page:16

File Type:pdf, Size:1020Kb

Using Prewitt Operator As Gradient-Based Method for Fingerprint Singular Points Detection THE INTERNATIONAL JOURNAL OF ENGINEERING AND INFORMATION TECHNOLOGY (IJEIT), VOL.6, NO.2,2020 611 Using Prewitt Operator as Gradient-Based Method for Fingerprint Singular Points Detection Mohamed A. Sullabi Jamila H. AL-Montaser Libyan academy-Misurata Libyan academy-Misurata Abstract—Singular Point (SP) is an essential feature in Fingerprints are classify into five classes [3], they are fingerprint images. It is considered as a fingerprint known as Henry classification; Arch, Tented Arch ,Left landmark. It is used for both fingerprint classification and Loop, Right Loop and Whorl. The prevalence rate for alignment in automatic fingerprint recognition systems. In these classes among people is 3.7%, 2.9%, 33.8%, 31.7% this paper the Prewitt operator is used as method for and 27.9% respectively, Each class have number of SPs, detecting of singular points in fingerprint image. The Prewitt operator is used as a gradient-based method of Whorl class has two core and two delta, Arch class does fingerprint image edge detection. Singular Points detection not have any SPs, Tented Arch, Left Loop and Right technique searches on the core point and the delta point in Loop have one core and one delta, SPs used to fingerprint classes. The experimental work has been classification fingerprint[4]. Figure 1 shows five evaluated using the four groups of the set (B) of the fingerprint classes. FVC2004 database that include DB1, DB2, DB3 and DB4. The experimental evaluation of the Prewitt operator showed good results, especially in good-quality fingerprint images. The maximum accuracy achieved was in DB4 is up to 95% for core point detection and 53.75% for delta point detection Index Terms: Biometrics, Singular point, Prewitt operator, Orientation field estimation. I. INTRODUCTION fingerprint is the most common biometric for A personal recognition. The biometric system identifies or authenticate a person using physical characteristics of a person like a fingerprint, DNA, hand, Figure 1. Five Fingerprint Classes [7] face, iris or behavioral characteristics like speech or signature. The fingerprint has been given great attention The paper is organized as follows: In section 2, to developing use to make it faster and more accurate previous studies on the SPs detection, in section 3, results in fingerprint recognition systems, because most proposed technique and process to detect the core and of the real time applications need less time to the delta, in section 4, experimental results and conclusion execution of the recognitions[1], this is available in will be in sections 5. fingerprint recognition. The fingerprint is a duplicate of a fingerprint epidermis II. LITERATURE SURVEY when a person touches a smooth surface[2], in actual, the ridges and valleys shape the fingerprint epidermis. Most previous studies have focused on core point The fingerprint divide into three levels: global, local and detection, only a few works in literature demonstrate Fine-detail [3] , which appear different features for every delta point detection. This section presents a review of level. Global level contains Singular Points (SPs), also literature on singular points detection. called singularity, consists of core and delta. The core Song and Elliott [6] they proposed a method for core defined as the most point on the inner most ridges and a point detection using an orientation map, they used a delta defined as the center point where three different color look-up table, composed of four-color regions. directions flows meet. Sobel operator is used to computing gradient in orientation field estimation, then the smoothing orientation field by Gaussian smoothing operator is done ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ Received 11 Mar, 2020; revised 9 May, 2020; accepted 9 May, to obtain an orientation map. The core point is detected 2020. by searching a point placed in the lowest part of the Available online 10 May, 2020. www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: EN118 167 M.Sullabi and J.AL-Montaser/Using Prewitt Operator as Gradient-Based Method for Fingerprint Singular Points Detection upper-part maximum edge region. The proposed method, figure 2. The methodology divided into three important used images form FVC 2004 database (set A), the steps. obtained detection rates are 95% for DB2 and 97% for DB3. Fingerprint Fingerprint Singular Points The algorithm introduced by [7] for optimal core point Enhancement Segmentation Detection detection, using improved segmentation and orientation. The algorithm is suitable for low quality fingerprint Figure 2. Stages of SPs Detection images. Preprocessing here is required to locate core Fingerprint enhancement is used to enhance the effect point correctly. The modified in segmentation technique of sensor and gray level background by make the level detects Region Of Interest (ROI) by computing the mean values lie within a given set of values. The step used to and standard deviation of gradient of the image. The enhance is called normalization [4]. Fingerprint results of segmentation proposed show the performance segmentation is used to extract the region of interest is better than the Mean and Variance based segmentation (ROI), mean and variance is used to segmentation [4]. technique. The algorithm is applied on fingerprint images Singular Points detection mainly involve core point and form FVC2004 database .The proposed technique of fine delta point detection. In this paper, singular point orientation field estimation gives good results in oily and detection uses edge detection by apply Prewitt operator in dry images. computed orientation field estimation algorithm based on In addition, [2]introduces an algorithm for singular gradient method. point detection based on the fingerprint orientation field Orientation field estimation is the technique to reliability, the algorithm starts by enhancing the determine the directions of ridges in fingerprint image, fingerprint image using the Short Time Fourier the approach used in this paper to estimate orientation is Transform analysis(STFT); followed by calculating the gradient based, Prewitt operator is used to compute orientation field. Sobel operator is used to compute gradient. gradient in orientation field, after the computation of the Prewitt operator will measure two components. The orientation field, reliability for orientation field is vertical edge component is calculated with kernel Gx and computed and locating the singular points. The proposed the horizontal edge component is calculated with kernel algorithm has been evaluated on FVC2002 database DB1, Gy. The convolution masks of the Prewitt operator are the result for the proposed method is 2% locating the given below in figure 3: singular points with spurious (false SP), 1.5% missing locating the singular points (missed SP). According to[8], second derivate of Gaussian filter to calculated the gradient in orientation field estimation in detect core point detection, also Geometry of Region(GR) technique is achieved in the fine finding of core point. FVC2004 database DB1 (set A) was applied for experiments. Images in this study categorized as good, bad and low quality. For good quality images, 98 images Figure 3. Prewitt Operator on Horizontal and Vertical Directions [12] showed correct core point out of 100 images. The research [1], presents a mask that locates the core Matlab Language providing function, to compute point at the end of the discontinuous line appearing in the gradient, we used a Matlab expression as in equation (1) orientation map. The experiment use FVC2002 (set A) to implement gradient magnitude and gradient direction DB1 and DB2 and FVC2004 DB1 (set A) databases. using Prewitt's gradient operator: Proposed mask achieve accuracy of 96.66%, 91.06% and 87.5% respectively. Significantly, also[4] proposes [Gx, Gy] = imgradientxy (I, 'prewitt') (1) modified Poincare Index method for resolving the limitations of some existing fingerprint singular point After enhancement and segmentation steps. The steps detection algorithms like inaccurate detection, and for orientation field estimation is in the following [9,10],: elimination of forged detection in Poincare Index method, 1. We divide the fingerprint image into non- The experiment study on FVC2000 database DB1,a overlapping blocks of size W × W of the image, modified Poincare index method is suitable for image of W is set equal to 16. medium quality, but it is not good for poor quality 2. Compute the gradients based on Prewitt operator images. using equation (1). Although studies have been conducted by many 3. Compute the local orientation felid using authors, this problem is still needing more attention, so to equation (2). fill this literature gap of delta detection. The study in this paper is addresses singular points detection for both; core point and delta point detection. III. THE PROPOSED TECHNIQUE FOR 4. Smoothing Orientation field estimation using SPS DETECTION equation (3) The proposed technique of this study for singular points detection is following the methodology shows in www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: EN118 THE INTERNATIONAL JOURNAL OF ENGINEERING AND INFORMATION TECHNOLOGY (IJEIT), VOL.6, NO.2,2020 611 5. Before applying equation (3), we need to Table 1. SPs Detection and Not Detection in Datasets Detected convert orientation felid image into a continuous No Data Set SPs vector felid by following equations (4), (5): Correct Forged Detected Detection Detection (4) Core Point 69 5 7 DB1 And Delta Point 21 16 43 Core Point 55 24 1 DB2 Delta Point 10 45 25 Then Applying the Gaussian low-pass filter as Core Point 54 26 0 DB3 following equations (6), (7): Delta Point 17 62 1 Core Point 76 4 0 DB4 Delta Point 43 15 22 The correct detection describes the accurate results of Where and are the sets after filtering, the core point and delta point detection. In table 2, the is the Gaussian low-pass filter. high detection rates were recorded with core points, but The technique used for singular point detection is with delta points, the detection rates were low compared based on Poincare index [10].
Recommended publications
  • Edge Detection of Noisy Images Using 2-D Discrete Wavelet Transform Venkata Ravikiran Chaganti
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2005 Edge Detection of Noisy Images Using 2-D Discrete Wavelet Transform Venkata Ravikiran Chaganti Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY FAMU-FSU COLLEGE OF ENGINEERING EDGE DETECTION OF NOISY IMAGES USING 2-D DISCRETE WAVELET TRANSFORM BY VENKATA RAVIKIRAN CHAGANTI A thesis submitted to the Department of Electrical Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2005 The members of the committee approve the thesis of Venkata R. Chaganti th defended on April 11 , 2005. __________________________________________ Simon Y. Foo Professor Directing Thesis __________________________________________ Anke Meyer-Baese Committee Member __________________________________________ Rodney Roberts Committee Member Approved: ________________________________________________________________________ Leonard J. Tung, Chair, Department of Electrical and Computer Engineering Ching-Jen Chen, Dean, FAMU-FSU College of Engineering The office of Graduate Studies has verified and approved the above named committee members. ii Dedicate to My Father late Dr.Rama Rao, Mother, Brother and Sister-in-law without whom this would never have been possible iii ACKNOWLEDGEMENTS I thank my thesis advisor, Dr.Simon Foo, for his help, advice and guidance during my M.S and my thesis. I also thank Dr.Anke Meyer-Baese and Dr. Rodney Roberts for serving on my thesis committee. I would like to thank my family for their constant support and encouragement during the course of my studies. I would like to acknowledge support from the Department of Electrical Engineering, FAMU-FSU College of Engineering.
    [Show full text]
  • Study and Comparison of Different Edge Detectors for Image
    Global Journal of Computer Science and Technology Graphics & Vision Volume 12 Issue 13 Version 1.0 Year 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350 Study and Comparison of Different Edge Detectors for Image Segmentation By Pinaki Pratim Acharjya, Ritaban Das & Dibyendu Ghoshal Bengal Institute of Technology and Management Santiniketan, West Bengal, India Abstract - Edge detection is very important terminology in image processing and for computer vision. Edge detection is in the forefront of image processing for object detection, so it is crucial to have a good understanding of edge detection operators. In the present study, comparative analyses of different edge detection operators in image processing are presented. It has been observed from the present study that the performance of canny edge detection operator is much better then Sobel, Roberts, Prewitt, Zero crossing and LoG (Laplacian of Gaussian) in respect to the image appearance and object boundary localization. The software tool that has been used is MATLAB. Keywords : Edge Detection, Digital Image Processing, Image segmentation. GJCST-F Classification : I.4.6 Study and Comparison of Different Edge Detectors for Image Segmentation Strictly as per the compliance and regulations of: © 2012. Pinaki Pratim Acharjya, Ritaban Das & Dibyendu Ghoshal. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. Study and Comparison of Different Edge Detectors for Image Segmentation Pinaki Pratim Acharjya α, Ritaban Das σ & Dibyendu Ghoshal ρ Abstract - Edge detection is very important terminology in noise the Canny edge detection [12-14] operator has image processing and for computer vision.
    [Show full text]
  • Feature-Based Image Comparison and Its Application in Wireless Visual Sensor Networks
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2011 Feature-based Image Comparison and Its Application in Wireless Visual Sensor Networks Yang Bai University of Tennessee Knoxville, Department of EECS, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Other Computer Engineering Commons, and the Robotics Commons Recommended Citation Bai, Yang, "Feature-based Image Comparison and Its Application in Wireless Visual Sensor Networks. " PhD diss., University of Tennessee, 2011. https://trace.tennessee.edu/utk_graddiss/946 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yang Bai entitled "Feature-based Image Comparison and Its Application in Wireless Visual Sensor Networks." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Computer Engineering. Hairong Qi, Major Professor We have read this dissertation and recommend its acceptance: Mongi A. Abidi, Qing Cao, Steven Wise Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Feature-based Image Comparison and Its Application in Wireless Visual Sensor Networks A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Yang Bai May 2011 Copyright c 2011 by Yang Bai All rights reserved.
    [Show full text]
  • Computer Vision: Edge Detection
    Edge Detection Edge detection Convert a 2D image into a set of curves • Extracts salient features of the scene • More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity Edges are caused by a variety of factors Edge detection How can you tell that a pixel is on an edge? Profiles of image intensity edges Edge detection 1. Detection of short linear edge segments (edgels) 2. Aggregation of edgels into extended edges (maybe parametric description) Edgel detection • Difference operators • Parametric-model matchers Edge is Where Change Occurs Change is measured by derivative in 1D Biggest change, derivative has maximum magnitude Or 2nd derivative is zero. Image gradient The gradient of an image: The gradient points in the direction of most rapid change in intensity The gradient direction is given by: • how does this relate to the direction of the edge? The edge strength is given by the gradient magnitude The discrete gradient How can we differentiate a digital image f[x,y]? • Option 1: reconstruct a continuous image, then take gradient • Option 2: take discrete derivative (finite difference) How would you implement this as a cross-correlation? The Sobel operator Better approximations of the derivatives exist • The Sobel operators below are very commonly used -1 0 1 1 2 1 -2 0 2 0 0 0 -1 0 1 -1 -2 -1 • The standard defn. of the Sobel operator omits the 1/8 term – doesn’t make a difference for edge detection – the 1/8 term is needed to get the right gradient
    [Show full text]
  • Features Extraction in Context Based Image Retrieval
    =================================================================== Engineering & Technology in India www.engineeringandtechnologyinindia.com Vol. 1:2 March 2016 =================================================================== FEATURES EXTRACTION IN CONTEXT BASED IMAGE RETRIEVAL A project report submitted by ARAVINDH A S J CHRISTY SAMUEL in partial fulfilment for the award of the degree of BACHELOR OF TECHNOLOGY in ELECTRONICS AND COMMUNICATION ENGINEERING under the supervision of Mrs. M. A. P. MANIMEKALAI, M.E. SCHOOL OF ELECTRICAL SCIENCES KARUNYA UNIVERSITY (Karunya Institute of Technology and Sciences) (Declared as Deemed to be University under Sec-3 of the UGC Act, 1956) Karunya Nagar, Coimbatore - 641 114, Tamilnadu, India APRIL 2015 Engineering & Technology in India www.engineeringandtechnologyinindia.com Vol. 1:2 March 2016 Aravindh A S. and J. Christy Samuel Features Extraction in Context Based Image Retrieval 3 BONA FIDE CERTIFICATE Certified that this project report “Features Extraction in Context Based Image Retrieval” is the bona fide work of ARAVINDH A S (UR11EC014), and CHRISTY SAMUEL J. (UR11EC026) who carried out the project work under my supervision during the academic year 2014-2015. Mrs. M. A. P. MANIMEKALAI, M.E SUPERVISOR Assistant Professor Department of ECE School of Electrical Sciences Dr. SHOBHA REKH, M.E., Ph.D., HEAD OF THE DEPARTMENT Professor Department of ECE School of Electrical Sciences Engineering & Technology in India www.engineeringandtechnologyinindia.com Vol. 1:2 March 2016 Aravindh A S. and J. Christy Samuel Features Extraction in Context Based Image Retrieval 4 ACKNOWLEDGEMENT First and foremost, we praise and thank ALMIGHTY GOD whose blessings have bestowed in us the will power and confidence to carry out our project. We are grateful to our most respected Founder (late) Dr.
    [Show full text]
  • Computer Vision Based Human Detection Md Ashikur
    Computer Vision Based Human Detection Md Ashikur. Rahman To cite this version: Md Ashikur. Rahman. Computer Vision Based Human Detection. International Journal of Engineer- ing and Information Systems (IJEAIS), 2017, 1 (5), pp.62 - 85. hal-01571292 HAL Id: hal-01571292 https://hal.archives-ouvertes.fr/hal-01571292 Submitted on 2 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2000-000X Vol. 1 Issue 5, July– 2017, Pages: 62-85 Computer Vision Based Human Detection Md. Ashikur Rahman Dept. of Computer Science and Engineering Shaikh Burhanuddin Post Graduate College Under National University, Dhaka, Bangladesh [email protected] Abstract: From still images human detection is challenging and important task for computer vision-based researchers. By detecting Human intelligence vehicles can control itself or can inform the driver using some alarming techniques. Human detection is one of the most important parts in image processing. A computer system is trained by various images and after making comparison with the input image and the database previously stored a machine can identify the human to be tested. This paper describes an approach to detect different shape of human using image processing.
    [Show full text]
  • Ffmpeg Filters Documentation Table of Contents
    FFmpeg Filters Documentation Table of Contents 1 Description 2 Filtering Introduction 3 graph2dot 4 Filtergraph description 4.1 Filtergraph syntax 4.2 Notes on filtergraph escaping 5 Timeline editing 6 Options for filters with several inputs (framesync) 7 Audio Filters 7.1 acompressor 7.2 acopy 7.3 acrossfade 7.3.1 Examples 7.4 acrusher 7.5 adelay 7.5.1 Examples 7.6 aecho 7.6.1 Examples 7.7 aemphasis 7.8 aeval 7.8.1 Examples 7.9 afade 7.9.1 Examples 7.10 afftfilt 7.10.1 Examples 7.11 afir 7.11.1 Examples 7.12 aformat 7.13 agate 7.14 alimiter 7.15 allpass 7.16 aloop 7.17 amerge 7.17.1 Examples 7.18 amix 7.19 anequalizer 7.19.1 Examples 7.19.2 Commands 7.20 anull 7.21 apad 7.21.1 Examples 7.22 aphaser 7.23 apulsator 7.24 aresample 7.24.1 Examples 7.25 areverse 7.25.1 Examples 7.26 asetnsamples 7.27 asetrate 7.28 ashowinfo 7.29 astats 7.30 atempo 7.30.1 Examples 7.31 atrim 7.32 bandpass 7.33 bandreject 7.34 bass 7.35 biquad 7.36 bs2b 7.37 channelmap 7.38 channelsplit 7.39 chorus 7.39.1 Examples 7.40 compand 7.40.1 Examples 7.41 compensationdelay 7.42 crossfeed 7.43 crystalizer 7.44 dcshift 7.45 dynaudnorm 7.46 earwax 7.47 equalizer 7.47.1 Examples 7.48 extrastereo 7.49 firequalizer 7.49.1 Examples 7.50 flanger 7.51 haas 7.52 hdcd 7.53 headphone 7.53.1 Examples 7.54 highpass 7.55 join 7.56 ladspa 7.56.1 Examples 7.56.2 Commands 7.57 loudnorm 7.58 lowpass 7.58.1 Examples 7.59 pan 7.59.1 Mixing examples 7.59.2 Remapping examples 7.60 replaygain 7.61 resample 7.62 rubberband 7.63 sidechaincompress 7.63.1 Examples 7.64 sidechaingate 7.65 silencedetect
    [Show full text]
  • Edge Detection 1-D &
    Edge Detection CS485/685 Computer Vision Dr. George Bebis Modified by Guido Gerig for CS/BIOEN 6640 U of Utah www.cse.unr.edu/~bebis/CS485/Lectures/ EdgeDetection.ppt Edge detection is part of segmentation image human segmentation gradient magnitude • Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ Goal of Edge Detection • Produce a line “drawing” of a scene from an image of that scene. Why is Edge Detection Useful? • Important features can be extracted from the edges of an image (e.g., corners, lines, curves). • These features are used by higher-level computer vision algorithms (e.g., recognition). Modeling Intensity Changes • Step edge: the image intensity abruptly changes from one value on one side of the discontinuity to a different value on the opposite side. Modeling Intensity Changes (cont’d) • Ramp edge: a step edge where the intensity change is not instantaneous but occur over a finite distance. Modeling Intensity Changes (cont’d) • Ridge edge: the image intensity abruptly changes value but then returns to the starting value within some short distance (i.e., usually generated by lines). Modeling Intensity Changes (cont’d) • Roof edge: a ridge edge where the intensity change is not instantaneous but occur over a finite distance (i.e., usually generated by the intersection of two surfaces). Edge Detection Using Derivatives • Often, points that lie on an edge are detected by: (1) Detecting the local maxima or minima of the first derivative. 1st derivative (2) Detecting the zero-crossings of the second derivative. 2nd derivative Image Derivatives • How can we differentiate a digital image? – Option 1: reconstruct a continuous image, f(x,y), then compute the derivative.
    [Show full text]
  • Edge Detection (Trucco, Chapt 4 and Jain Et Al., Chapt 5)
    Edge detection (Trucco, Chapt 4 AND Jain et al., Chapt 5) • Definition of edges -Edges are significant local changes of intensity in an image. -Edges typically occur on the boundary between twodifferent regions in an image. • Goal of edge detection -Produce a line drawing of a scene from an image of that scene. -Important features can be extracted from the edges of an image (e.g., corners, lines, curves). -These features are used by higher-levelcomputer vision algorithms (e.g., recogni- tion). -2- • What causes intensity changes? -Various physical events cause intensity changes. -Geometric events *object boundary (discontinuity in depth and/or surface color and texture) *surface boundary (discontinuity in surface orientation and/or surface color and texture) -Non-geometric events *specularity (direct reflection of light, such as a mirror) *shadows (from other objects or from the same object) *inter-reflections • Edge descriptors Edge normal: unit vector in the direction of maximum intensity change. Edge direction: unit vector to perpendicular to the edge normal. Edge position or center: the image position at which the edge is located. Edge strength: related to the local image contrast along the normal. -3- • Modeling intensity changes -Edges can be modeled according to their intensity profiles. Step edge: the image intensity abruptly changes from one value to one side of the discontinuity to a different value on the opposite side. Ramp edge: astep edge where the intensity change is not instantaneous but occur overafinite distance. Ridge edge: the image intensity abruptly changes value but then returns to the starting value within some short distance (generated usually by lines).
    [Show full text]
  • Sift Based Image Stitching
    Journal of Computing Technologies (2278 – 3814) / # 14 / Volume 3 Issue 3 SIFT BASED IMAGE STITCHING Amol Tirlotkar, Swapnil S. Thakur, Gaurav Kamble, Swati Shishupal Department of Information Technology Atharva College of Engineering, University of Mumbai, India. { amoltirlotkar, thakur.swapnil09, gauravkamble293 , shishupal.swati }@gmail.com Abstract - This paper concerns the problem of image Camera. Image stitching is one of the methods that can be stitching which applies to stitch the set of images to form used to create large image by the use of overlapping FOV a large image. The process to generate one large [8]. The drawback is the memory requirement and the panoramic image from a set of small overlapping images amount of computations for image stitching is very high. In is called Image stitching. Stitching algorithm implements this project, this problem is resolved by performing the a seamless stitching or connection between two images image stitching by reducing the amount of required key having its overlapping part to get better resolution or points. First, the stitching key points are determined by viewing angle in image. Stitched images are used in transmitting two reference images which are to be merged various applications such as creating geographic maps or together. in medical fields. Most of the existing methods of image stitching either It uses a method based on invariant features to stitch produce a ‘rough’ stitch or produce a ghosting or blur effect. image which includes image matching and image For region-based image stitching algorithm detect the image merging. Image stitching represents different stages to edge, prepare for the extraction of feature points.
    [Show full text]
  • Edge Detection CS 111
    Edge Detection CS 111 Slides from Cornelia Fermüller and Marc Pollefeys Edge detection • Convert a 2D image into a set of curves – Extracts salient features of the scene – More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity • Edges are caused by a variety of factors Edge detection 1.Detection of short linear edge segments (edgels) 2.Aggregation of edgels into extended edges 3.Maybe parametric description Edge is Where Change Occurs • Change is measured by derivative in 1D • Biggest change, derivative has maximum magnitude •Or 2nd derivative is zero. Image gradient • The gradient of an image: • The gradient points in the direction of most rapid change in intensity • The gradient direction is given by: – Perpendicular to the edge •The edge strength is given by the magnitude How discrete gradient? • By finite differences f(x+1,y) – f(x,y) f(x, y+1) – f(x,y) The Sobel operator • Better approximations of the derivatives exist –The Sobel operators below are very commonly used -1 0 1 121 -2 0 2 000 -1 0 1 -1 -2 -1 – The standard defn. of the Sobel operator omits the 1/8 term • doesn’t make a difference for edge detection • the 1/8 term is needed to get the right gradient value, however Gradient operators (a): Roberts’ cross operator (b): 3x3 Prewitt operator (c): Sobel operator (d) 4x4 Prewitt operator Finite differences responding to noise Increasing noise -> (this is zero mean additive gaussian noise) Solution: smooth first • Look for peaks in Derivative
    [Show full text]
  • Edge Detection
    Edge detection Digital Image Processing, K. Pratt, Chapter 15 Edge detection • Goal: identify objects in images – but also feature extraction, multiscale analysis, 3D reconstruction, motion recognition, image restoration, registration • Classical definition of the edge detection problem: localization of large local changes in the grey level image → large graylevel gradients – This definition does not apply to apparent edges, which require a more complex definition – Extension to color images • Contours are very important perceptual cues! – They provide a first saliency map for the interpretation of image semantics Contours as perceptual cues Contours as perceptual cues What do we detect? • Depending on the impulse response of the filter, we can detect different types of graylevel discontinuities – Isolate points (pixels) – Lines with a predefined slope – Generic contours • However, edge detection implies the evaluation of the local gradient and corresponds to a (directional) derivative Detection of Discontinuities • Point Detection Detected point Detection of Discontinuities • Line detection R1 R2 R3 R4 Detection of Discontinuities • Line Detection Example: Edge detection • mage locations with abrupt I changes → differentiation → high pass filtering f[,] m n Intensity profile n m ∂ f[,] m n ∂n n Types of edges Continuous domain edge models 2D discrete domain single pixel spot models Discrete domain edge models b a Profiles of image intensity edges Types of edge detectors • Unsupervised or autonomous: only rely on local image features
    [Show full text]