Methanogenic Biodegradation of Crude Oil and Polycyclic Aromatic Hydrocarbons

Total Page:16

File Type:pdf, Size:1020Kb

Methanogenic Biodegradation of Crude Oil and Polycyclic Aromatic Hydrocarbons University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2015-01-29 Methanogenic biodegradation of crude oil and polycyclic aromatic hydrocarbons Berdugo-Clavijo, Carolina Berdugo-Clavijo, C. (2015). Methanogenic biodegradation of crude oil and polycyclic aromatic hydrocarbons (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26891 http://hdl.handle.net/11023/2043 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Methanogenic biodegradation of crude oil and polycyclic aromatic hydrocarbons by Carolina Berdugo-Clavijo A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA JANUARY, 2015 © Carolina Berdugo-Clavijo 2015 Abstract The methanogenic biodegradation of crude oil is an important process occurring in many subsurface hydrocarbon-associated environments, but little is known about this metabolism in such environments. In this thesis work, the methanogenic biodegradation of crude oil and polycyclic aromatic hydrocarbons (PAH) was investigated. Methanogenic cultures able to metabolize light and heavy crude oil components were enriched from oilfield produced waters. Metabolites (e.g., alkylsuccinates) and genes (e.g. assA and bssA) associated with a fumarate addition mechanism were detected in the light oil-amended culture. A Smithella sp. dominated the community, suggesting this organism was involved in the degradation of the hydrocarbon components. In experiments conducted in sandstone-packed column systems simulating marginal oil fields, the light oil-amended culture was shown to bioconvert alkanes and aromatic hydrocarbons to CH4. Other oil-associated microbial inocula also enhanced CH4 production from oil in the column systems. Shifts in the microbial communities were observed after the inocula were incubated in the columns. Methanogenic hydrocarbon metabolism was also investigated using new enrichment cultures that biodegraded 2-ringed PAHs under methanogenic conditions. Metabolite and marker gene analyses were conducted on these cultures to investigate the mechanism(s) involved in PAH metabolism. The PAH-utilizing enrichments were dominated by methanogens closely affiliating with Methanosaeta and Methanoculleus, and bacterial members most closely related to the Clostridiaceae family. Further qPCR analysis with a 2- methylnaphthalene-amended culture suggested that Clostridium was the main hydrocarbon degrader in the enrichment. The results of these studies have added new knowledge to the field of methanogenic hydrocarbon biodegradation that may find application in bioremediation or microbial enhanced energy recovery. ii Acknowledgements These years of graduate school have been for me an incredible opportunity filled with challenges, but also full of fun and satisfactory experiences. I would like to express my sincere gratitude to my supervisor Dr. Lisa Gieg from whom I have learned a lot during these years of my PhD. I appreciate your unconditional help, and your patience for guiding me in the writing of this thesis. Your encouragement and positive attitude at all times helped me to be persistent and enjoy my work in the lab. I also want to thank the members of my committee. Dr. Gerrit Voordouw for his guidance and reinforcement to do conscientious research, and Dr. Peter Dunfield for his advice. I want to thank my external examiners Dr. Angus Chu and Dr. Joel Kostka for their feedback to improve this dissertation. I also would like to thank Dr. Xiaoli Dong and Dr. Jung Soh for their support in sequencing and phylogenetic analyses. I want to express my gratitude to Dr. Jane Fowler, Dr. Esther Ramos and Dr. Sandra Wilson for their help on genetics and molecular work. Also, my sincere thanks to Courtney Toth for her help setting up columns and enrichments, and Kathy Semple for her guidance on the oil fractionation analysis. My special thanks to Dr. Rhonda Clark who facilitated many things for me during this Ph.D. Thanks to the past and present members of the Gieg and Voordouw lab who were with me during this journey, especially my friends Yetty, Ginny, Jane, Esther and Shawna. I would like to thank all my family for being always supportive, especially my mother for her unconditional love and encouragement to seek success in what I do. Finally, I want to thank my fiancé Tim for joining me in this “Canadian adventure”, and for giving me the strength to finish this thesis. “It is good to have an end to journey toward; but it is the journey that matters, in the end” -Ernest Hemingway iii For my grandparents, an inspiration of hard work, endurance, and love iv Table of Contents Abstract ............................................................................................................................... ii Acknowledgements ............................................................................................................ iii Table of Contents .................................................................................................................v List of Tables ..................................................................................................................... ix List of Figures and Illustrations ........................................................................................ xii List of Symbols, Abbreviations and Nomenclature ......................................................... xvi CHAPTER ONE: INTRODUCTION ..................................................................................1 1.1 Rationale and significance of the project ...................................................................1 1.2 Research objectives ....................................................................................................2 1.3 Organization of thesis ................................................................................................3 CHAPTER TWO: LITERATURE REVIEW ......................................................................6 2.1 Microorganisms in hydrocarbon-laden environments ...............................................6 2.2 Anaerobic biodegradation of hydrocarbons ...............................................................7 2.2.1 Metabolic mechanisms involved in anaerobic crude oil biodegradation ..........9 2.2.1.1 Fumarate addition ....................................................................................9 2.2.1.2 Carboxylation .........................................................................................14 2.2.1.3 Methylation ............................................................................................16 2.2.1.4 Hydroxylation ........................................................................................17 2.3 Syntrophy and methanogenesis ...............................................................................18 2.3.1 Principles of syntrophic metabolism ...............................................................18 2.3.2 Syntrophy in methanogenic hydrocarbon degradation ....................................20 2.4 Tools for assessing anaerobic hydrocarbon biodegradation pathways ....................23 2.4.1 Hydrocarbon metabolomics .............................................................................23 2.4.2 PCR -based approaches ...................................................................................25 2.4.2.1 Functional gene-based analysis .............................................................25 2.4.2.2 Pyrotag sequencing ................................................................................27 2.4.2.3 qPCR ......................................................................................................28 2.5 Biotechnology applications of petroleum microbiology .........................................29 2.5.1 Crude oil bioremediation .................................................................................29 2.5.2 Improved energy production ...........................................................................31 2.6 Conclusions ..............................................................................................................33 CHAPTER THREE: METHANOGENIC BIODEGRADATION OF HYDROCARBON COMPOUNDS FROM LIGHT AND HEAVY CRUDE OIL .................................36 3.1 Introduction ..............................................................................................................36 3.2 Materials and Methods .............................................................................................38 3.2.1 Development of a crude oil-degrading enrichment culture .............................38 3.2.2 Methane measurements ...................................................................................38 3.2.3 Metabolite analysis ..........................................................................................39 3.2.4 DNA isolation from light oil-degrading culture ..............................................40 3.2.5 Identification of putative bssA and assA sequences ........................................40
Recommended publications
  • The Microbiome of Otitis Media with Effusion and the Influence of Alloiococcus Otitidis on Haemophilus Influenzae in Polymicrobial Biofilm
    The microbiome of otitis media with effusion and the influence of Alloiococcus otitidis on Haemophilus influenzae in polymicrobial biofilm Chun L Chan Bachelor of Radiography and Medical Imaging (Honours) Bachelor of Medicine, Bachelor of Surgery Department of Otolaryngology, Head and Neck Surgery University of Adelaide, Adelaide, Australia Submitted for the title of Doctor of Philosophy November 2016 C L Chan i This thesis is dedicated to those who have sacrificed the most during my scientific endeavours My amazing family Flora, Aidan and Benjamin C L Chan ii Table of Contents TABLE OF CONTENTS .............................................................................................................................. III THESIS DECLARATION ............................................................................................................................. VII ACKNOWLEDGEMENTS ........................................................................................................................... VIII THESIS SUMMARY ................................................................................................................................... X PUBLICATIONS ARISING FROM THIS THESIS .................................................................................................. XII PRESENTATIONS ARISING FROM THIS THESIS ............................................................................................... XIII ABBREVIATIONS ...................................................................................................................................
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Multi-Product Lactic Acid Bacteria Fermentations: a Review
    fermentation Review Multi-Product Lactic Acid Bacteria Fermentations: A Review José Aníbal Mora-Villalobos 1 ,Jéssica Montero-Zamora 1, Natalia Barboza 2,3, Carolina Rojas-Garbanzo 3, Jessie Usaga 3, Mauricio Redondo-Solano 4, Linda Schroedter 5, Agata Olszewska-Widdrat 5 and José Pablo López-Gómez 5,* 1 National Center for Biotechnological Innovations of Costa Rica (CENIBiot), National Center of High Technology (CeNAT), San Jose 1174-1200, Costa Rica; [email protected] (J.A.M.-V.); [email protected] (J.M.-Z.) 2 Food Technology Department, University of Costa Rica (UCR), San Jose 11501-2060, Costa Rica; [email protected] 3 National Center for Food Science and Technology (CITA), University of Costa Rica (UCR), San Jose 11501-2060, Costa Rica; [email protected] (C.R.-G.); [email protected] (J.U.) 4 Research Center in Tropical Diseases (CIET) and Food Microbiology Section, Microbiology Faculty, University of Costa Rica (UCR), San Jose 11501-2060, Costa Rica; [email protected] 5 Bioengineering Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany; [email protected] (L.S.); [email protected] (A.O.-W.) * Correspondence: [email protected]; Tel.: +49-(0331)-5699-857 Received: 15 December 2019; Accepted: 4 February 2020; Published: 10 February 2020 Abstract: Industrial biotechnology is a continuously expanding field focused on the application of microorganisms to produce chemicals using renewable sources as substrates. Currently, an increasing interest in new versatile processes, able to utilize a variety of substrates to obtain diverse products, can be observed.
    [Show full text]
  • The Nasal Microbiome Mirrors and Potentially Shapes Olfactory Function Received: 10 August 2017 Kaisa Koskinen 1,2, Johanna L
    www.nature.com/scientificreports OPEN The nasal microbiome mirrors and potentially shapes olfactory function Received: 10 August 2017 Kaisa Koskinen 1,2, Johanna L. Reichert2,3, Stefan Hoier4, Jochen Schachenreiter5, Accepted: 29 December 2017 Stefanie Duller1, Christine Moissl-Eichinger1,2 & Veronika Schöpf 2,3 Published: xx xx xxxx Olfactory function is a key sense for human well-being and health, with olfactory dysfunction having been linked to serious diseases. As the microbiome is involved in normal olfactory epithelium development, we explored the relationship between olfactory function (odor threshold, discrimination, identifcation) and nasal microbiome in 67 healthy volunteers. Twenty-eight subjects were found to have normal olfactory function, 29 had a particularly good sense of smell (“good normosmics”) and 10 were hyposmic. Microbial community composition difered signifcantly between the three olfactory groups. In particular, butyric acid-producing microorganisms were found to be associated with impaired olfactory function. We describe the frst insights of the potential interplay between the olfactory epithelium microbial community and olfactory function, and suggest that the microbiome composition is able to mirror and potentially shape olfactory function by producing strong odor compounds. Te human olfactory system is able to discriminate a vast number of odors1. Tis function is mediated by olfac- tory receptors situated within the olfactory epithelium. Te sense of smell shapes our perception of our external environment and is essential in decision-making and in guiding behavior, including eating behavior, and detec- tion of danger, as well as contributing signifcantly to the hedonic component of everyday life (e.g. favor and fragrance perception2,3). Anosmia (complete loss of olfactory function) and hyposmia (decreased olfactory function) together afect approximately 20% of the population3.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • Bacterial Diversity and Functional Analysis of Severe Early Childhood
    www.nature.com/scientificreports OPEN Bacterial diversity and functional analysis of severe early childhood caries and recurrence in India Balakrishnan Kalpana1,3, Puniethaa Prabhu3, Ashaq Hussain Bhat3, Arunsaikiran Senthilkumar3, Raj Pranap Arun1, Sharath Asokan4, Sachin S. Gunthe2 & Rama S. Verma1,5* Dental caries is the most prevalent oral disease afecting nearly 70% of children in India and elsewhere. Micro-ecological niche based acidifcation due to dysbiosis in oral microbiome are crucial for caries onset and progression. Here we report the tooth bacteriome diversity compared in Indian children with caries free (CF), severe early childhood caries (SC) and recurrent caries (RC). High quality V3–V4 amplicon sequencing revealed that SC exhibited high bacterial diversity with unique combination and interrelationship. Gracillibacteria_GN02 and TM7 were unique in CF and SC respectively, while Bacteroidetes, Fusobacteria were signifcantly high in RC. Interestingly, we found Streptococcus oralis subsp. tigurinus clade 071 in all groups with signifcant abundance in SC and RC. Positive correlation between low and high abundant bacteria as well as with TCS, PTS and ABC transporters were seen from co-occurrence network analysis. This could lead to persistence of SC niche resulting in RC. Comparative in vitro assessment of bioflm formation showed that the standard culture of S. oralis and its phylogenetically similar clinical isolates showed profound bioflm formation and augmented the growth and enhanced bioflm formation in S. mutans in both dual and multispecies cultures. Interaction among more than 700 species of microbiota under diferent micro-ecological niches of the human oral cavity1,2 acts as a primary defense against various pathogens. Tis has been observed to play a signifcant role in child’s oral and general health.
    [Show full text]
  • Supplementary Figure Legends for Rands Et Al. 2019
    Supplementary Figure legends for Rands et al. 2019 Figure S1: Display of all 485 prophage genome maps predicted from Gram-Negative Firmicutes. Each horizontal line corresponds to an individual prophage shown to scale and color-coded for annotated phage genes according to the key displayed in the right- side Box. The left vertical Bar indicates the Bacterial host in a colour code. Figure S2: Projection of virome sequences from 183 human stool samples on A. Acidaminococcus intestini RYC-MR95, and B. Veillonella parvula UTDB1-3. The first panel shows the read coverage (Y-axis) across the complete Bacterial genome sequence (X-axis; with bp coordinates). Predicted prophage regions are marked with red triangles and magnified in the suBsequent panels. Virome reads projected outside of prophage prediction are listed in Table S4. Figure S3: The same display of virome sequences projected onto Bacterial genomes as in Figure S2, But for two different Negativicute species: A. Dialister Marseille, and B. Negativicoccus massiliensis. For non-phage peak annotations, see Table S4. Figure S4: Gene flanking analysis for the lysis module from all prophages predicted in all the different Bacterial clades (Table S2), a total of 3,462 prophages. The lysis module is generally located next to the tail module in Firmicute prophages, But adjacent to the packaging (terminase) module in Escherichia phages. 1 Figure S5: Candidate Mu-like prophage in the Negativicute Propionispora vibrioides. Phage-related genes (arrows indicate transcription direction) are coloured and show characteristics of Mu-like genome organization. Figure S6: The genome maps of Negativicute prophages harbouring candidate antiBiotic resistance genes MBL (top three Veillonella prophages) and tet(32) (bottom Selenomonas prophage remnant); excludes the ACI-1 prophage harbouring example characterised previously (Rands et al., 2018).
    [Show full text]
  • Twenty-Three Species of Hypobarophilic Bacteria Recovered from Diverse Ecosystems 2 Exhibit Growth Under Simulated Martian Conditions at 0.7 Kpa
    Schuerger and Nicholson, 2015 Astrobiology, accepted 12-02-15 1 Twenty-three Species of Hypobarophilic Bacteria Recovered from Diverse Ecosystems 2 Exhibit Growth under Simulated Martian Conditions at 0.7 kPa 3 4 Andrew C. Schuerger1* and Wayne L. Nicholson2 5 6 1Dept. of Plant Pathology, University of Florida, Gainesville, FL, email: [email protected], USA. 7 2Dept of Microbiology and Cell Science, University of Florida, Gainesville, FL; email: 8 [email protected]; USA. 9 10 11 12 Running title: Low-pressure growth of bacteria at 0.7 kPa. 13 14 15 16 17 *Corresponding author: University of Florida, Space Life Sciences Laboratory, 505 Odyssey 18 Way, Merritt Island, FL 32953. Phone 321-261-3774. Email: [email protected]. 19 20 21 22 23 Pages: 22 24 Tables: 3 25 Figures: 4 26 1 Schuerger and Nicholson, 2015 Astrobiology, accepted 12-02-15 27 Summary 28 Bacterial growth at low pressure is a new research area with implications for predicting 29 microbial activity in clouds, the bulk atmosphere on Earth, and for modeling the forward 30 contamination of planetary surfaces like Mars. Here we describe experiments on the recovery 31 and identification of 23 species of bacterial hypobarophiles (def., growth under hypobaric 32 conditions of approximately 1-2 kPa) in 11 genera capable of growth at 0.7 kPa. Hypobarophilic 33 bacteria, but not archaea or fungi, were recovered from soil and non-soil ecosystems. The 34 highest numbers of hypobarophiles were recovered from Arctic soil, Siberian permafrost, and 35 human saliva. Isolates were identified through 16S rRNA sequencing to belong to the genera 36 Carnobacterium, Exiguobacterium, Leuconostoc, Paenibacillus, and Trichococcus.
    [Show full text]
  • Reclassification of Eubacterium Hallii As Anaerobutyricum Hallii Gen. Nov., Comb
    TAXONOMIC DESCRIPTION Shetty et al., Int J Syst Evol Microbiol 2018;68:3741–3746 DOI 10.1099/ijsem.0.003041 Reclassification of Eubacterium hallii as Anaerobutyricum hallii gen. nov., comb. nov., and description of Anaerobutyricum soehngenii sp. nov., a butyrate and propionate-producing bacterium from infant faeces Sudarshan A. Shetty,1,* Simone Zuffa,1 Thi Phuong Nam Bui,1 Steven Aalvink,1 Hauke Smidt1 and Willem M. De Vos1,2,3 Abstract A bacterial strain designated L2-7T, phylogenetically related to Eubacterium hallii DSM 3353T, was previously isolated from infant faeces. The complete genome of strain L2-7T contains eight copies of the 16S rRNA gene with only 98.0– 98.5 % similarity to the 16S rRNA gene of the previously described type strain E. hallii. The next closest validly described species is Anaerostipes hadrus DSM 3319T (90.7 % 16S rRNA gene similarity). A polyphasic taxonomic approach showed strain L2-7T to be a novel species, related to type strain E. hallii DSM 3353T. The experimentally observed DNA–DNA hybridization value between strain L2-7T and E. hallii DSM 3353T was 26.25 %, close to that calculated from the genomes T (34.3 %). The G+C content of the chromosomal DNA of strain L2-7 was 38.6 mol%. The major fatty acids were C16 : 0,C16 : 1 T cis9 and a component with summed feature 10 (C18 : 1c11/t9/t6c). Strain L2-7 had higher amounts of C16 : 0 (30.6 %) compared to E. hallii DSM 3353T (19.5 %) and its membrane contained phosphatidylglycerol and phosphatidylethanolamine, which were not detected in E.
    [Show full text]
  • Oral Microbiome Shifts from Caries-Free to Caries-Affected Status in 3-Year-Old Chinese Children: a Longitudinal Study
    fmicb-09-02009 August 27, 2018 Time: 17:19 # 1 ORIGINAL RESEARCH published: 28 August 2018 doi: 10.3389/fmicb.2018.02009 Oral Microbiome Shifts From Caries-Free to Caries-Affected Status in 3-Year-Old Chinese Children: A Longitudinal Study He Xu1†, Jing Tian1†, Wenjing Hao1, Qian Zhang2, Qiong Zhou1, Weihua Shi1, Man Qin1*, Xuesong He3* and Feng Chen2* 1 Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China, 2 Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China, 3 The Forsyth Institute, Cambridge, MA, United States As one of the most prevalent human infectious diseases, dental caries results from dysbiosis of the oral microbiota driven by multiple factors. However, most of caries studies were cross-sectional and mainly focused on the differences in the oral microbiota Edited by: Giovanna Batoni, between caries-free (CF) and caries-affected (CA) populations, while little is known Università degli Studi di Pisa, Italy about the dynamic shift in microbial composition, and particularly the change in species Reviewed by: association pattern during disease transition. Here, we reported a longitudinal study Rainer Haak, of a 12-month follow-up of a cohort of 3-year-old children. Oral examinations and Leipzig University, Germany Xuedong Zhou, supragingival plaque collections were carried out at the beginning and every subsequent Sichuan University, China 6 months, for a total of three time points. All the children were CF at enrollment. Children *Correspondence: who developed caries at 6-month follow-up but had not received any dental treatment Man Qin [email protected]; until the end of the study were incorporated into the CA group.
    [Show full text]
  • Insights Into 6S RNA in Lactic Acid Bacteria (LAB) Pablo Gabriel Cataldo1,Paulklemm2, Marietta Thüring2, Lucila Saavedra1, Elvira Maria Hebert1, Roland K
    Cataldo et al. BMC Genomic Data (2021) 22:29 BMC Genomic Data https://doi.org/10.1186/s12863-021-00983-2 RESEARCH ARTICLE Open Access Insights into 6S RNA in lactic acid bacteria (LAB) Pablo Gabriel Cataldo1,PaulKlemm2, Marietta Thüring2, Lucila Saavedra1, Elvira Maria Hebert1, Roland K. Hartmann2 and Marcus Lechner2,3* Abstract Background: 6S RNA is a regulator of cellular transcription that tunes the metabolism of cells. This small non-coding RNA is found in nearly all bacteria and among the most abundant transcripts. Lactic acid bacteria (LAB) constitute a group of microorganisms with strong biotechnological relevance, often exploited as starter cultures for industrial products through fermentation. Some strains are used as probiotics while others represent potential pathogens. Occasional reports of 6S RNA within this group already indicate striking metabolic implications. A conceivable idea is that LAB with 6S RNA defects may metabolize nutrients faster, as inferred from studies of Echerichia coli.Thismay accelerate fermentation processes with the potential to reduce production costs. Similarly, elevated levels of secondary metabolites might be produced. Evidence for this possibility comes from preliminary findings regarding the production of surfactin in Bacillus subtilis, which has functions similar to those of bacteriocins. The prerequisite for its potential biotechnological utility is a general characterization of 6S RNA in LAB. Results: We provide a genomic annotation of 6S RNA throughout the Lactobacillales order. It laid the foundation for a bioinformatic characterization of common 6S RNA features. This covers secondary structures, synteny, phylogeny, and product RNA start sites. The canonical 6S RNA structure is formed by a central bulge flanked by helical arms and a template site for product RNA synthesis.
    [Show full text]
  • Mitigating Biofouling on Reverse Osmosis Membranes Via Greener Preservatives
    Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Civil Engineering, University of Victoria © Anna Curtin, 2020 University of Victoria All rights reserved. This Thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisory Committee Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 Supervisory Committee Heather Buckley, Department of Civil Engineering Supervisor Caetano Dorea, Department of Civil Engineering, Civil Engineering Departmental Member ii Abstract Water scarcity is an issue faced across the globe that is only expected to worsen in the coming years. We are therefore in need of methods for treating non-traditional sources of water. One promising method is desalination of brackish and seawater via reverse osmosis (RO). RO, however, is limited by biofouling, which is the buildup of organisms at the water-membrane interface. Biofouling causes the RO membrane to clog over time, which increases the energy requirement of the system. Eventually, the RO membrane must be treated, which tends to damage the membrane, reducing its lifespan. Additionally, antifoulant chemicals have the potential to create antimicrobial resistance, especially if they remain undegraded in the concentrate water. Finally, the hazard of chemicals used to treat biofouling must be acknowledged because although unlikely, smaller molecules run the risk of passing through the membrane and negatively impacting humans and the environment.
    [Show full text]