Disparity of Early Cretaceous Lamniformes Sharks Disparitet I Lamniformes Hajar Från Tidig Krita

Total Page:16

File Type:pdf, Size:1020Kb

Disparity of Early Cretaceous Lamniformes Sharks Disparitet I Lamniformes Hajar Från Tidig Krita Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2015: 7 Disparity of Early Cretaceous Lamniformes Sharks Disparitet i Lamniformes Hajar från Tidig Krita Fredrik Söderblom DEPARTMENT OF EARTH SCIENCES INSTITUTIONEN FÖR GEOVETENSKAPER Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2015: 7 Disparity of Early Cretaceous Lamniformes Sharks Disparitet i Lamniformes Hajar från Tidig Krita Fredrik Söderblom Copyright © Fredrik Söderblom and the Department of Earth Sciences, Uppsala University Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2015 Sammanfattning Disparitet i Lamniformes Hajar från Tidig Krita Fredrik Söderblom Morfologisk disparitet är ett mått på hur stor utsträckningen av morfologisk variation är. Detta mått räknas ut genom att jämföra landmärken utplacerade på bilder av föremål som ska undersökas. I detta projekt undersöktes den morfologiska dispariteten hos tänder från håbrandsartade hajar (Lamniformes) under tidig krita. Att just deras tänder undersöktes beror på att den större delen av hajars skelett är gjort av brosk vilket lätt bryts ned efter djuret avlidit. Deras tänder är dock gjorda av ben vilket har lättare att bli bevarat som fossil. Utöver detta så kan formen på tänder beskriva djurs födoval och levnadssätt. Gruppens tänder undersöktes därför även för att belysa eventuella förändringar i diet och ekologi under tidig krita. Resultatet av denna analys visar på en expansion av tandform under denna period från långa och smala tänder under Barremium till en större variation under Albium där även mer triangelformade och robusta tänder dyker upp. Detta har tolkats som en adaptiv artbildningsperiod för gruppen då både nya byten (t.ex. teleostfiskar och havs- sköldpaddor) diversifierade och uppkom samtidigt som vissa marina predatorer (ichthyosaurer och plesiosaurer) minskade i antal under denna tidsperiod. Detta ändrade troligen de selektiva trycken på håbrandsartade hajars tandmorfologi samt lämnade ekologiska nischer öppna som dessa kunde anpassa sig till vilket i sin tur ledde till expansioner i morfologisk disparitet, diet och ekologi. Nyckelord: Lamniformes, disparitet, tidig krita, morfologi, morfometri Självständigt arbete i geovetenskap, 1GV029, 15 hp, 2015 Handledare: Nicolàs Campione Biträdande handledare: Benjamin Kear Institutionen för geovetenskaper, Uppsala universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se) Hela publikationen finns tillgänglig på www.diva-portal.org Abstract Disparity of Early Cretaceous Lamniformes sharks Fredrik Söderblom The geological range of lamniform sharks stretches from present day species such as Carcharodon carcharias (great white shark) back to the at the moment oldest undoubted fossil finds during the Early Cretaceous. In this paper a geometric morphometric analysis was performed on images of Early Cretaceous lamniform teeth collected from published literature in order to examine the change in disparity (range of morphological variation within a group) throughout the time period. Due to limited availability of published material and time constraints only the Barremian and Albian ages were investigated. The Barremian exhibited tall and narrow tooth morphologies while the Albian showed a wide range of morphological variation including more robust, wide and sometimes triangular shapes but also displayed further specialization of the tall and narrow forms. This change is likely indicative of a dietary and ecological expansion from only eating for example small fish and soft- bodied creatures to a wide range of prey for the group, including larger and more robust animals such as marine turtles and large bony fish. This in combination with the decline of some marine predators as well as the diversification of possible prey is interpreted as that an adaptive radiation of the Lamniformes could have taken place during the latter half of the Early Cretaceous. Key words: Lamniformes, disparity, Early Cretaceous, morphology, morphometric Independent Project in Earth Science, 1GV029, 15 credits, 2015 Supervisor: Nicolàs Campione Co-Supervisor: Benjamin Kear Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se) The whole document is available at www.diva-portal.org Table of contents 1. Introduction 1 2. Materials and methods 2 3. Results 3 4. Discussion 5 4.1 Discussion of the results 5 4.2 Dental adaptations and habitats 6 4.2.1 The Barremian 6 4.2.2 The Albian 8 4.3 On changes in disparity, diversity, diet and feeding strategies 10 5. Conclusions 13 6. Acknowledgements 14 7. References 14 7.1 Printed refereces 14 7.2 Internet references 17 8. Appendix 17 1. Introduction Chondrichthyes is the name of a group including the clades Holocephali (chimaeras) as well as Elasmobranchii (sharks and rays) (Miller et al., 2003; Hickman et al., 2011). Fossil scales prove chondrichthyans to possibly have existed since the Late Ordovician (Janvier, P., 1996 & Turner, S. in Miller et al., 2003). They are fish with a skeleton made of cartilage, a feature that developed as they evolved out of their ancestors with skeletons made of bone (Hickman et al., 2011). The fact that their teeth are better mineralized than the rest of their skeleton is the reason that teeth are one of the most common kind of fossil found belonging to them since cartilage is less likely to survive the fossilization process (Shimada, 2005, 2007; Whitenack & Gottfried, 2010). Sharks that are a part of them have been determined to have existed during the Early Devonian on the basis of fossil teeth (Miller et al., 2003) and even back to the Lower Siluran on the basis of simple placoid scales (Karatajūté- Talimaa, V., 1973, 1992 in Sansom et al., 1996). The clade Lamniformes is an order of sharks that is present on Earth today and includes the great white shark (Carcharodon carcharias) (Cappetta, 2012). The order’s origin was however during the Early Cretaceous with one of the earliest undoubted fossil finds belonging to the early part of the Late Valanginian (Rees, 2005). Although the possibility of an origin during the Jurassic has also been proposed (Underwood, 2006). The Cretaceous is a time period that spans from 145-66 million years ago (Ma) (Cohen et al., 2015). The period is divided into the Early Cretaceous (145- 100.5 Ma) and the Late Cretaceous (100.5-66 Ma) (Cohen et al., 2015). The Early Cretaceous was the focus of this study. It can be further subdivided into the Berriasian (145-139.8 Ma), the Valanginian (139.8-132.9 Ma), the Hauterivian (132.9- 129.4 Ma), the Barremian (129.4-125 Ma), the Aptian (125-113 Ma) and the Albian (113-100,5 Ma) (Cohen et al., 2015). During the beginning of the Early Cretaceous the global climate became more arid than before (Benson & Druckenmiller, 2014) (evidenced in part by clays having an increased proportion of the mineral smectite (Weissert & Channell, 1989; Hallam et al., 1991)), the ocean surface became more oligotrophic (Danelian & Johnson, 2001; Tremolada et al., 2006 in Benson & Druckenmiller, 2014) and temperatures rose to eventually reach a high approximately 100 million years ago (Gould et al., 2001). Radiations of several different organisms took place in the Cretaceous and many of them originated during the Early Cretaceous (Sadava et al., 2011). The first angiosperms (flowering plants) appeared during the Early Cretaceous (Gould et al., 2001; Sadava et al., 2011), triggering a radiation of insects such as butterflies, bees, moths, as well as ants (Gould et al., 2001). The first snakes arose during the Early Cretaceous (Benton, 2005; Sadava et al., 2011). Other organisms such as gymnosperms, teleost fishes, sharks, plesiosaurs, belemnites, ammonites (Gould et al., 2001), dinosaurs (Gould et al., 2001; Sadava et al., 2011), pterosaurs (Gould et al., 2001) (pterodactyloid pterosaurs during the Early Cretaceous (Benson & Druckenmiller, 2014)) and turtles (Early Cretaceous) (Scheyer et al., 2014) would diversify during the Cretaceous. Large predators such as mosasaurs also appeared in the Cretaceous as well as the first true lobsters and crabs (Gould et al., 2001). With this paper a dataset connected to images of Early Cretaceous Lamniformes shark teeth will be presented (see appendix). A geometric morphometric analysis of the teeth in these images was also performed. The results of this analysis will be presented as diagrams. A morphospace diagram showcasing 1 the measure of morphological variation between specimen in a mathematical space and a disparity through time diagram showing the disparity (the range of morphological variation within a group (Briggs & Crowther, 2001)) of lamniform teeth during the different ages of the Early Cretaceous. A t-test was also performed to account for the significance of the sampled specimen in question between the different time bins. The hypothesis being tested is that since a sizeable amount of radiations seem to have taken place at the time investigated in this paper, the results of the analysis might show a high amount disparity and possibly an increase in morphological variation during the aforementioned time period. 2. Materials and methods A total of 146 images of Lamniformes teeth specimen were located using published literature available in both digital and physical formats and compiled into a dataset (see table 1 in appendix). The preferred view in the images was labial (seen from the outside of the mouth),
Recommended publications
  • Vertebral Morphology, Dentition, Age, Growth, and Ecology of the Large Lamniform Shark Cardabiodon Ricki
    Vertebral morphology, dentition, age, growth, and ecology of the large lamniform shark Cardabiodon ricki MICHAEL G. NEWBREY, MIKAEL SIVERSSON, TODD D. COOK, ALLISON M. FOTHERINGHAM, and REBECCA L. SANCHEZ Newbrey, M.G., Siversson, M., Cook, T.D., Fotheringham, A.M., and Sanchez, R.L. 2015. Vertebral morphology, denti- tion, age, growth, and ecology of the large lamniform shark Cardabiodon ricki. Acta Palaeontologica Polonica 60 (4): 877–897. Cardabiodon ricki and Cardabiodon venator were large lamniform sharks with a patchy but global distribution in the Cenomanian and Turonian. Their teeth are generally rare and skeletal elements are less common. The centra of Cardabiodon ricki can be distinguished from those of other lamniforms by their unique combination of characteristics: medium length, round articulating outline with a very thick corpus calcareum, a corpus calcareum with a laterally flat rim, robust radial lamellae, thick radial lamellae that occur in low density, concentric lamellae absent, small circular or subovate pores concentrated next to each corpus calcareum, and papillose circular ridges on the surface of the corpus calcareum. The large diameter and robustness of the centra of two examined specimens suggest that Cardabiodon was large, had a rigid vertebral column, and was a fast swimmer. The sectioned corpora calcarea show both individuals deposited 13 bands (assumed to represent annual increments) after the birth ring. The identification of the birth ring is supported in the holotype of Cardabiodon ricki as the back-calculated tooth size at age 0 is nearly equal to the size of the smallest known isolated tooth of this species. The birth ring size (5–6.6 mm radial distance [RD]) overlaps with that of Archaeolamna kopingensis (5.4 mm RD) and the range of variation of Cretoxyrhina mantelli (6–11.6 mm RD) from the Smoky Hill Chalk, Niobrara Formation.
    [Show full text]
  • Papers in Press
    Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR013 Features and paleoecological significance of the shark fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan Accepted Naoshi Kitamura 4-8-7 Motoyama, Chuo-ku Kumamoto, Kumamoto 860-0821, Japan (e-mail: [email protected]) Abstract. The shark fauna of the Upper Cretaceous Hinoshima Formation (Santonian: 86.3–83.6 Ma) of the manuscriptHimenoura Group (Kamiamakusa, Kumamoto Prefecture, Kyushu, Japan) was investigated based on fossil shark teeth found at five localities: Himedo Park, Kugushima, Wadanohana, Higashiura, and Kotorigoe. A detailed geological survey and taxonomic analysis was undertaken, and the habitat, depositional environment, and associated mollusks of each locality were considered in the context of previous studies. Twenty-one species, 15 genera, 11 families, and 6 orders of fossil sharks are recognized from the localities. This assemblage is more diverse than has previously been reported for Japan, and Lamniformes and Hexanchiformes were abundant. Three categories of shark fauna are recognized: a coastal region (Himedo Park; probably a breeding site), the coast to the open sea (Kugushima and Wadanohana), and bottom-dwelling or near-seafloor fauna (Kugushima, Wadanohana, Higashiura, and Kotorigoe).
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Ecological Impact of the End-Cretaceous Extinction on Lamniform Sharks
    RESEARCH ARTICLE Ecological impact of the end-Cretaceous extinction on lamniform sharks Rachel A. Belben1*, Charlie J. Underwood2, Zerina Johanson1, Richard J. Twitchett1 1 Department of Earth Sciences, Natural History Museum, London, United Kingdom, 2 Department of Earth and Planetary Sciences, Birkbeck, University of London, London, United Kingdom * [email protected] Abstract a1111111111 Lamniform sharks are apex marine predators undergoing dramatic local and regional a1111111111 a1111111111 decline worldwide, with consequences for marine ecosystems that are difficult to predict. a1111111111 Through their long history, lamniform sharks have faced widespread extinction, and under- a1111111111 standing those `natural experiments' may help constrain predictions, placing the current cri- sis in evolutionary context. Here we show, using novel morphometric analyses of fossil shark teeth, that the end-Cretaceous extinction of many sharks had major ecological conse- quences. Post-extinction ecosystems supported lower diversity and disparity of lamniforms, OPEN ACCESS and were dominated by significantly smaller sharks with slimmer, smoother and less robust Citation: Belben RA, Underwood CJ, Johanson Z, teeth. Tooth shape is intimately associated with ecology, feeding and prey type, and by inte- Twitchett RJ (2017) Ecological impact of the end- grating data from extant sharks we show that latest Cretaceous sharks occupied similar Cretaceous extinction on lamniform sharks. PLoS niches to modern lamniforms, implying similar ecosystem structure and function. By com- ONE 12(6): e0178294. https://doi.org/10.1371/ parison, species in the depauperate post-extinction community occupied niches most simi- journal.pone.0178294 lar to those of juvenile sand tigers (Carcharias taurus). Our data show that quantitative tooth Editor: Matt Friedman, University of Michigan, morphometrics can distinguish lamniform sharks due to dietary differences, providing critical UNITED STATES insights into ecological consequences of past extinction episodes.
    [Show full text]
  • The Great White Shark Quick Questions
    The Great White Shark Quick Questions 11 Great white sharks are the top of the ocean’s food chain. 1. Why do you think that the great white shark is at 22 They are the biggest fish on our planet which eat other the top of the ocean’s food chain? 32 fish and animals. They are known to live between thirty 45 and one hundred years old and can be found in all of the 55 world’s oceans, but they are mostly found in cool water 59 close to the coast. 2. Where are most great white sharks found? 69 Even though they are mostly grey, they get their name 78 from their white underbelly. The great white shark has 89 been known to grow up to six metres long and have 99 up to three hundred sharp teeth, in seven rows. Their 3. Find and copy the adjective that the author uses 109 amazing sense of smell allows them to hunt for prey, to describe the shark’s sense of smell. 119 such as seals, rays and small whales from miles away. 4. Number these facts from 1 to 3 to show the order they appear in the text. They live between thirty and one hundred years. They can grow up to six metres long. They have up to three hundred teeth. The Great White Shark Answers 11 Great white sharks are the top of the ocean’s food chain. 1. Why do you think that the great white shark is at 22 They are the biggest fish on our planet which eat other the top of the ocean’s food chain? 32 fish and animals.
    [Show full text]
  • OFR21 a Guide to Fossil Sharks, Skates, and Rays from The
    STATE OF DELAWARE UNIVERSITY OF DELAWARE DELAWARE GEOLOGICAL SURVEY OPEN FILE REPORT No. 21 A GUIDE TO FOSSIL SHARKS J SKATES J AND RAYS FROM THE CHESAPEAKE ANU DELAWARE CANAL AREA) DELAWARE BY EDWARD M. LAUGINIGER AND EUGENE F. HARTSTEIN NEWARK) DELAWARE MAY 1983 Reprinted 6-95 FOREWORD The authors of this paper are serious avocational students of paleontology. We are pleased to present their work on vertebrate fossils found in Delaware, a subject that has not before been adequately investigated. Edward M. Lauginiger of Wilmington, Delaware teaches biology at Academy Park High School in Sharon Hill, Pennsyl­ vania. He is especially interested in fossils from the Cretaceous. Eugene F. Hartstein, also of Wilmington, is a chemical engineer with a particular interest in echinoderm and vertebrate fossils. Their combined efforts on this study total 13 years. They have pursued the subject in New Jersey, Maryland, and Texas as well as in Delaware. Both authors are members of the Mid-America Paleontology Society, the Delaware Valley Paleontology Society, and the Delaware Mineralogical Society. We believe that Messrs. Lauginiger and Hartstein have made a significant technical contribution that will be of interest to both professional and amateur paleontologists. Robert R. Jordan State Geologist A GUIDE TO FOSSIL SHARKS, SKATES, AND RAYS FROM THE CHESAPEAKE AND DELAWARE CANAL AREA, DELAWARE Edward M. Lauginiger and Eugene F. Hartstein INTRODUCTION In recent years there has been a renewed interest by both amateur and professional paleontologists in the rich upper Cretaceous exposures along the Chesapeake and Delaware Canal, Delaware (Fig. 1). Large quantities of fossil material, mostly clams, oysters, and snails have been collected as a result of this activity.
    [Show full text]
  • Early Cretaceous) Wessex Formation of the Isle of Wight, Southern England
    A new albanerpetontid amphibian from the Barremian (Early Cretaceous) Wessex Formation of the Isle of Wight, southern England STEVEN C. SWEETMAN and JAMES D. GARDNER Sweetman, S.C. and Gardner, J.D. 2013. A new albanerpetontid amphibian from the Barremian (Early Cretaceous) Wes− sex Formation of the Isle of Wight, southern England. Acta Palaeontologica Polonica 58 (2): 295–324. A new albanerpetontid, Wesserpeton evansae gen. et sp. nov., from the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern England, is described. Wesserpeton is established on the basis of a unique combination of primitive and derived characters relating to the frontals and jaws which render it distinct from currently recognized albanerpetontid genera: Albanerpeton (Late Cretaceous to Pliocene of Europe, Early Cretaceous to Paleocene of North America and Late Cretaceous of Asia); Celtedens (Late Jurassic to Early Cretaceous of Europe); and Anoualerpeton (Middle Jurassic of Europe and Early Cretaceous of North Africa). Although Wesserpeton exhibits considerable intraspecific variation in characters pertaining to the jaws and, to a lesser extent, frontals, the new taxon differs from Celtedens in the shape of the internasal process and gross morphology of the frontals in dorsal or ventral view. It differs from Anoualerpeton in the lack of pronounced heterodonty of dentary and maxillary teeth; and in the more medial loca− tion and direction of opening of the suprapalatal pit. The new taxon cannot be referred to Albanerpeton on the basis of the morphology of the frontals. Wesserpeton currently represents the youngest record of Albanerpetontidae in Britain. Key words: Lissamphibia, Albanerpetontidae, microvertebrates, Cretaceous, Britain. Steven C.
    [Show full text]
  • Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 147064, 11 pages http://dx.doi.org/10.1155/2013/147064 Research Article Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences Keiko Tanaka,1 Takashi Shiina,1 Taketeru Tomita,2 Shingo Suzuki,1 Kazuyoshi Hosomichi,3 Kazumi Sano,4 Hiroyuki Doi,5 Azumi Kono,1 Tomoyoshi Komiyama,6 Hidetoshi Inoko,1 Jerzy K. Kulski,1,7 and Sho Tanaka8 1 Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 2 Fisheries Science Center, The Hokkaido University Museum, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan 3 Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan 4 Division of Science Interpreter Training, Komaba Organization for Education Excellence College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan 5 Shimonoseki Marine Science Museum, 6-1 Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan 6 Department of Clinical Pharmacology, Division of Basic Clinical Science and Public Health, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 7 Centre for Forensic Science, The University of Western Australia, Nedlands, WA 6008, Australia 8 Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan Correspondence should be addressed to Takashi Shiina; [email protected] Received 1 March 2013; Accepted 26 July 2013 Academic Editor: Dietmar Quandt Copyright © 2013 Keiko Tanaka et al.
    [Show full text]
  • Short Communication a Remarkable Case of a Shark
    Journal of Vertebrate Paleontology 30(2):592–597, March 2010 © 2010 by the Society of Vertebrate Paleontology SHORT COMMUNICATION A REMARKABLE CASE OF A SHARK-BITTEN ELASMOSAURID PLESIOSAUR ∗ KENSHU SHIMADA, ,1,2 TAKANOBU TSUIHIJI,3 TAMAKI SATO,4 and YOSHIKAZU HASEGAWA5; 1Environmental Science Program and Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, Illinois 60614, U.S.A., [email protected]; 2Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601, U.S.A.; 3National Museum of Nature and Science, 3-23-1 Hyakuhin-cho, Shinjuku-ku, Tokyo 169-0073, Japan, [email protected]; 4Department of Astronomy and Earth Sciences, Tokyo Gakugei University, 4-1-1 Nukui-Kita-Machi, Koganei City, Tokyo 184-8501, Japan, [email protected]; 5Gunma Museum of Natural History, 1674-1 Kamikuroiwa, Tomimoka, Gunma 370-2345, Japan, [email protected] Futabasaurus suzukii Sato, Hasegawa, and Manabe, 2006, is an is embedded near the anterodorsal corner of the right humerus elasmosaurid plesiosaur from the Upper Cretaceous in central immediately distal to its tuberosity (Fig. 3A). The labial face of Japan. The holotype and the only known specimen of this taxon Tooth 85 faces the posterior side of the right humerus, suggest- is a partial skeleton (Fig. 1), which co-occurred with “several tens ing that the shark bit the forelimb from its anterior side. Two of shark teeth” (Sato et al., 2006:468). The shark teeth were pre- teeth, Teeth 83 and 84, are embedded in the posterodorsal cor- viously identified as those of ‘Odontaspis sp.’ (e.g., Obata et al., ner of the neural spine of “Vertebra #34,” a posterior cervical 1970), but we re-identified them as an extinct lamniform shark, vertebra (Fig.
    [Show full text]
  • Great White Shark) on Appendix I of the Convention of International Trade in Endangered Species of Wild Fauna and Flora (CITES)
    Prop. 11.48 Proposal to include Carcharodon carcharias (Great White Shark) on Appendix I of the Convention of International Trade in Endangered Species of Wild Fauna and Flora (CITES) A. PROPOSAL ..............................................................................................3 B. PROPONENT............................................................................................3 C. SUPPORTING STATEMENT....................................................................3 1. Taxonomy.........................................................................................................................3 1.1 Class.................................................................................................................................... 1.2 Order................................................................................................................................... 1.3 Family ................................................................................................................................. 1.4 Species ................................................................................................................................ 1.5 Scientific Synonyms............................................................................................................. 1.6 Common Names .................................................................................................................. 2. Biological Parameters......................................................................................................3
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]