Forest & Shade Tree Insect & Disease Conditions for Maine a Summary Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2
Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) by Boris C. Kondratieff, Paul A. Opler, Matthew C. Garhart, and Jason P. Schmidt C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 March 15, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration (top to bottom): Widow Skimmer (Libellula luctuosa) [photo ©Robert Behrstock], Stonefly (Perlesta species) [photo © David H. Funk, White- lined Sphinx (Hyles lineata) [photo © Matthew C. Garhart] ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences, Colorado State University, Fort Collins, Colorado 80523 Copyrighted 2004 Table of Contents EXECUTIVE SUMMARY……………………………………………………………………………….…1 INTRODUCTION…………………………………………..…………………………………………….…3 OBJECTIVE………………………………………………………………………………………….………5 Site Descriptions………………………………………….. METHODS AND MATERIALS…………………………………………………………………………….5 RESULTS AND DISCUSSION………………………………………………………………………..…...11 Dragonflies………………………………………………………………………………….……..11 -
GIS Handbook Appendices
Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Appendix D Cooperating Agency Codes The following table lists the aerial survey cooperating agencies and codes to be used in the agency1, agency2, agency3 fields of the flown/not flown coverages. The contents of this list is available in digital form (.dbf) at the following website: http://www.fs.fed.us/foresthealth/publications/id/id_guidelines.html 28 Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Code Agency Name AFC Alabama Forestry Commission ADNR Alaska Department of Natural Resources AZFH Arizona Forest Health Program, University of Arizona AZS Arizona State Land Department ARFC Arkansas Forestry Commission CDF California Department of Forestry CSFS Colorado State Forest Service CTAES Connecticut Agricultural Experiment Station DEDA Delaware Department of Agriculture FDOF Florida Division of Forestry FTA Fort Apache Indian Reservation GFC Georgia Forestry Commission HOA Hopi Indian Reservation IDL Idaho Department of Lands INDNR Indiana Department of Natural Resources IADNR Iowa Department of Natural Resources KDF Kentucky Division of Forestry LDAF Louisiana Department of Agriculture and Forestry MEFS Maine Forest Service MDDA Maryland Department of Agriculture MADCR Massachusetts Department of Conservation and Recreation MIDNR Michigan Department of Natural Resources MNDNR Minnesota Department of Natural Resources MFC Mississippi Forestry Commission MODC Missouri Department of Conservation NAO Navajo Area Indian Reservation NDCNR Nevada Department of Conservation -
Cankerworms Marion S
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-119-08 March 2020 Cankerworms Marion S. Murray Erin W. Hodgson IPM Project Leader Extension Entomology Specialist What You Should Know • Both spring and fall cankerworms occur sporadically in Utah, typically on a five to seven year cycle. • Larvae feed for six weeks in the spring and cause heavy defoliation in outbreak years. • Treatment is often not warranted for most years; however, using Bacillus thuringiensis or spinosad before larvae exceed 1/2 inch is an effective control option. ankerworms, also known as inchworms, are in 2 the order Lepidoptera and family Geometridae. Fig. 2. Fall cankerworm feeding damage. CGeometrid moth adults have slender bodies and relatively large, broad forewings (Figs. 1, 3). Both Hosts and Life Cycle fall, Alsophila pometaria, and spring, Paleacrita vernata, cankerworms occur in Utah, with the fall cankerworm Fall and spring cankerworm larvae feed on a wide being most common. Insect outbreaks are periodic variety of hardwood tree foliage including apple, ash, and concentrated in urban areas or near deciduous red and white oaks, maple (including boxelder), elm, woodlands, and can cause complete defoliation of cherry, linden, and honeylocust (Fig. 2). trees in early spring. Both cankerworm species are native to deciduous forests of North America, and Cankerworms have one generation per year. Eggs have many natural enemies that regulate outbreak hatch in early spring soon after bud break (about populations. Typically, the cankerworm population will 148-290 degree days after January 1, at 50˚F lower increase to an upper limit where it will remain for 2 to 3 developmental threshold). -
Coleoptera: Carabidae) Assemblages in a North American Sub-Boreal Forest
Forest Ecology and Management 256 (2008) 1104–1123 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Catastrophic windstorm and fuel-reduction treatments alter ground beetle (Coleoptera: Carabidae) assemblages in a North American sub-boreal forest Kamal J.K. Gandhi a,b,1, Daniel W. Gilmore b,2, Steven A. Katovich c, William J. Mattson d, John C. Zasada e,3, Steven J. Seybold a,b,* a Department of Entomology, 219 Hodson Hall, 1980 Folwell Avenue, University of Minnesota, St. Paul, MN 55108, USA b Department of Forest Resources, 115 Green Hall, University of Minnesota, St. Paul, MN 55108, USA c USDA Forest Service, State and Private Forestry, 1992 Folwell Avenue, St. Paul, MN 55108, USA d USDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, 5985 Hwy K, Rhinelander, WI 54501, USA e USDA Forest Service, Northern Research Station, 1831 Hwy 169E, Grand Rapids, MN 55744, USA ARTICLE INFO ABSTRACT Article history: We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and Received 9 September 2007 prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a Received in revised form 8 June 2008 sub-borealforestinnortheasternMinnesota,USA. During2000–2003, 29,873groundbeetlesrepresentedby Accepted 9 June 2008 71 species were caught in unbaited and baited pitfall traps in aspen/birch/conifer (ABC) and jack pine (JP) cover types. At the family level, both land-area treatment and cover type had significant effects on ground Keywords: beetle trap catches, but there were no effects of pinenes and ethanol as baits. -
Fall Cankerworm
Pest Profile Photo credit: David Keith & Tim Miller, UNL Entomology Extension Common Name: Fall Cankerworm Scientific Name: Alsophila pometaria Order and Family: Lepidoptera, Geometridae Size and Appearance: Length (mm) Appearance Egg dark grayish-brown with a dot and a ring 1.0 mm on top Larva/Nymph vary between light green and dark 25.0 mm (mature larvae) brownish-green have white lines running down their body from the head to the tip of the abdomen dark-brownish green caterpillars have a black stripe the length of their back Adult males are small, have wings, and are grayish color with some white lines along 25.0 – 35.0 mm (male the wings wingspread) females have a grayish colored body and 10.0 – 12.0 mm (female) wingless Pupa (if applicable) yellow to yellow-green in color wrapped in a silken cocoon Type of feeder (Chewing, sucking, etc.): Chewing (caterpillar) Host plant/s: black cherry, basswood, red and white oaks, beech, ash, boxelder, elm, sugar and red maples Description of Damage (larvae and adults): When the larvae are young, they eat on the underside of the leaves, making the leaf appear skeletonized. As the larvae get older, they cause more damage by eating almost the whole leaf. In some cases, the damage is to the extent of defoliation of the tree, especially in severe cases of outbreaks. Sometimes in bad outbreaks, these caterpillars can defoliate many trees. References: Ciesla, M, W. & Asaro, C (2016) Fall Crankerworm. Forest Insect & Disease Leaflet 182. Published by U.S. Deparment of Agriculture- Forest Service. Portland, Oregon. -
Korscheltellus Gracilis, a Root Feeder Associated with Spruce-Fir Decline William E
BIOECOLOGY OF THE CONIFER SWIFT MOTH, KORSCHELTELLUS GRACILIS, A ROOT FEEDER ASSOCIATED WITH SPRUCE-FIR DECLINE WILLIAM E. WALLNER1 DAVID L. WAGNER2 BRUCE L. PARKER3 and DONALD R. TOB13 'USDA Forest Service Northeastern Forest Experiment Station 51 Mill Pond Road Hamden, CT 06514 U.S.A. 2~niversityof Connecticut Department of Ecology and Evolutionary Biology Storrs, CT 06268 U.S.A. 3~niversityof Vermont Department of Plant and Soil Science Burlington, VT 05401 U.S.A. INTRODUCTION During the past two decades, the decline of red spruce, Picea nrbens Sargent, and balsam fir, Abies bahamea (L), at high elevations (900-1200 m) in eastern North America has evoked concern about the effects of anthropogenic deposition upon terrestrial ecosystems. In many high-elevation forests across New England, as many as 50 percent of the standing red spruce are dead (Hertel et al. 1987). Wood cores indicate that growth has been severely curtailed since the 1960s (Hornbeck and Smith 19s). Although acid rain is most commonly invoked as the principal causal agent of this decline, there is yet little hard evidence to support this claim (Johnson and Siccama 1983, Pitelka and Rayno1 1989). A wide array of anthropogenic pollutants in combination with natural stress factors are probably involved. Above-ground portions of declining trees appear relatively pest free, and SO do the roots except for observations of a few soil-inhabiting arthropods. The most prevalent among those few was a subterranean lepidopteran polyphage, Korscheltelhcs gracilis Grote, found to be extremely abundant in these declining forests (Tobi et al. 1989, Wagner et al. -
The Saddled Prominent Complex in Maine with Special Consideration of Eastern Maine Conditions
Maine State Library Digital Maine Forest Service Documents Maine Forest Service 3-1-1978 The Saddled Prominent Complex in Maine with Special Consideration of Eastern Maine Conditions Maine Forest Service Entomology Division Richard G. Dearborn Henry Trial JR Dave Struble Follow this and additional works at: https://digitalmaine.com/for_docs Recommended Citation Maine Forest Service; Dearborn, Richard G.; Trial, Henry JR; and Struble, Dave, "The Saddled Prominent Complex in Maine with Special Consideration of Eastern Maine Conditions" (1978). Forest Service Documents. 278. https://digitalmaine.com/for_docs/278 This Text is brought to you for free and open access by the Maine Forest Service at Digital Maine. It has been accepted for inclusion in Forest Service Documents by an authorized administrator of Digital Maine. For more information, please contact [email protected]. THE SADDLED PROMINENT COMPLEX IN MAINE with special consideration of Eastern Maine conditions 1974-1977 by R. G. Dearborn H. Trial, Jr. D. Struble M. Devine ENTOMOLOGY DIVISION Maine Department of Conservation TECHNICAL REPORT NO. 2 Bureau of Forestry Augusta, Maine MARCH 1978 THE SADDLED PROMINENT COMPLEX IN MAINE With special consideration of Eastern Maine Conditions 1974-1977 Richard Dearborn, Henry T-rial, Jr. , Dave Struble, Michael Devine Abstract Both aesthetically and economically, hardwood stands form a very important resource within the State of Maine. When a large, severe and unprecedented series of outbreaks of the saddled prominent and its allies began their rise in 1969 the concern of forest entomologists was drawn to the problem. Attempts to define the problem were divided into two categories. The first involved estab lishing a series of plots to measure the impact of the insect on the host re source. -
Maine Forest Service MAINE DEPARTMENT OF
Maine Forest Service ● MAINE DEPARTMENT OF CONSERVATION FALL CANKERWORM Alsophila pometaria (Harris) Insect and Disease Laboratory ● 168 State House Station ● 50 Hospital Street ● Augusta, Maine ● 043330168 Damage This important pest of forest and shade trees occurs generally throughout most of Northeastern America where it feeds on a variety of hardwoods. Damage is first noticed in early May when feeding by the tiny larvae known as "cankerworms," "loopers," "inchworms" or "measuring worms" on the opening buds and expanding leaves causes the foliage to be skeletonized. Later as the larvae mature all but the midrib (and veins) of leaves are devoured. Occasional outbreaks of this pest in Maine have caused severe defoliation of oak and elm. The outbreaks are most often localized and usually last three to four years before natural control factors cause the population to collapse. Trees subjected to two or more years of heavy defoliation may be seriously damaged, especially weaker trees or trees growing on poor sites. Hosts Its preferred hosts are oak, elm and apple, but it also occurs on maple, beech, ash, poplar, box elder, basswood, and cherry. Description and Habits The wingless, greyishbrown female cankerworm moths emerge from the duff with the onset of cold weather in October and November and crawl up the tree trunks. The male moth is greyishbrown with a one inch wing span. Males can often be seen flitting through infested stands during the day or warmer nights during hunting season. The females are not often seen. Females deposit their eggs in singlelayered compact masses of 100 or more on the bark of smaller branches and twigs of trees often high in the crown from October to early December. -
Forest Health Conditions in Ontario, 2017
Forest Health Conditions in Ontario, 2017 Ministry of Natural Resources and Forestry Forest Health Conditions in Ontario, 2017 Compiled by: • Ontario Ministry of Natural Resources and Forestry, Science and Research Branch © 2018, Queen’s Printer for Ontario Printed in Ontario, Canada Find the Ministry of Natural Resources and Forestry on-line at: <http://www.ontario.ca>. For more information about forest health monitoring in Ontario visit the natural resources website: <http://ontario.ca/page/forest-health-conditions> Some of the information in this document may not be compatible with assistive technologies. If you need any of the information in an alternate format, please contact [email protected]. Cette publication hautement spécialisée Forest Health Conditions in Ontario, 2017 n'est disponible qu'en anglais en vertu du Règlement 671/92 qui en exempte l’application de la Loi sur les services en français. Pour obtenir de l’aide en français, veuillez communiquer avec le ministère des Richesses naturelles au <[email protected]>. ISSN 1913-617X (Online) ISBN 978-1-4868-2275-1 (2018, pdf) Contents Contributors ........................................................................................................................ 4 État de santé des forêts 2017 ............................................................................................. 5 Introduction......................................................................................................................... 6 Contributors Weather patterns ................................................................................................... -
Butterflies and Moths of Camden County, New Jersey, United States
Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail -
Biology and Ecology of Leptographium Species and Their Vectos As Components of Loblolly Pine Decline Lori G
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 Biology and ecology of Leptographium species and their vectos as components of loblolly pine decline Lori G. Eckhardt Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Plant Sciences Commons Recommended Citation Eckhardt, Lori G., "Biology and ecology of Leptographium species and their vectos as components of loblolly pine decline" (2003). LSU Doctoral Dissertations. 2133. https://digitalcommons.lsu.edu/gradschool_dissertations/2133 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. BIOLOGY AND ECOLOGY OF LEPTOGRAPHIUM SPECIES AND THEIR VECTORS AS COMPONENTS OF LOBLOLLY PINE DECLINE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Plant Pathology & Crop Physiology by Lori G. Eckhardt B.S., University of Maryland, 1997 August 2003 © Copyright 2003 Lori G. Eckhardt All rights reserved ii ACKNOWLEDGMENTS I gratefully acknowledge the invaluable input provided by my dissertation advisor, Dr. John P. Jones. Among many other things, he has demonstrated his patients, enthusiasm and understanding as I struggled to pursue my graduate studies. I am indebted to Dr. Marc A. Cohn, for his guidance, encouragement, support and most of all, his friendship. -
Conifer Swift Moth Korscheltellus Gracilis (Grote) Lepidoptera: Hepialidae
Conifer Swift Moth Korscheltellus gracilis (Grote) Lepidoptera: Hepialidae Tobi, D. R.; Leonard, J. G.; Parker B. L.; Wallner, W. E. 1992. Survey methods, distribution, and seasonality of Korshceltellus gracilis (Lepidoptera: Hepialidae) in the Green Mountains, Vermont. Environmental Entomology 21: 447-452. Objective: To develop methods for interpreting the basic biology and potential pest status of K. gracilis. Abstract: The larvae of the conifer swift moth, Korscheltellus gracilis (Grote), feed on the roots of red spruce, Picea rubens Sarg., balsam fir, Abies balsamea (L.), and the leaf petiole bases of mountain wood fern, Dryopteris campyloptera Clarkson. Although this particular outbreak was found in red spruce-balsam fir stands near Camels Hump Mountain, Vermont, K. gracilis larvae could possibly be present in other mountain areas having the same host species. Feeding by K. gracilis can impair the trees’ assimilation of water and nutrients, predispose roots to attack by root pathogens, reduce the regeneration potentials of red spruce and balsam fir, and cause decline or death. This insect was found to have a two-year life cycle with greatest densities found above 885 m in elevation. Adult flight and mating occurred within a half hour before sunset and after sunrise, from late June through early August. Peak flight activity occurred during July, with the heaviest flights occurring on even numbered years. Greater numbers of K. gracilis were caught in Malaise traps than in 50-cm2, clear plastic sticky traps placed 15 cm above the ground. However, Malaise traps were found to be too costly for widespread use. Sampling Procedure: Interception trap study: Use sticky board traps to sample large stands and Malaise traps for smaller units.