Outlook Emerging Technologies for the Molecular Study of Infertility, and Potential Clinical Applications

Total Page:16

File Type:pdf, Size:1020Kb

Outlook Emerging Technologies for the Molecular Study of Infertility, and Potential Clinical Applications RBMOnline - Vol 15 No 4. 2007 451-456 Reproductive BioMedicine Online; www.rbmonline.com/Article//2988 on web 17 August 2007 Outlook Emerging technologies for the molecular study of infertility, and potential clinical applications Dr Ashok Agarwal is a Professor in the Lerner College of Medicine at Case Western Reserve University and the Director of Reproductive Research Center, and the Clinical Andrology Laboratory at The Cleveland Clinic, Cleveland, Ohio, United States. He has published over 300 scientific articles, reviews and book chapters in different areas of andrology and reproductive biology. His long-term research interests include studies on the role of oxidative stress, DNA integrity, and apoptosis in the pathophysiology of male and female reproduction. Dr Ashok Agarwal Alex C Varghese1,2, Eric Goldberg3, Asok K Bhattacharyya1,2, Ashok Agarwal3,4 1DeCode Life Foundation; 2 Department of Biochemistry, University of Calcutta, Kolkata, India; 3Reproductive Research Centre, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA 4Correspondence: Tel: +1 216 4449485; Fax: +1 216 4456049; e-mail: [email protected] Abstract The techniques currently used to treat infertility cases are quite limited in their capabilities, due to an incomplete understanding of the molecular activities of germ cells. Fortunately, several technologies are presently being researched that should aid in the understanding of the various molecular causes of germ cell pathologies. This review discusses microarray technology, proteomics, metabolic profiling, the PolScope, atomic force microscopy and microfluidics. These technologies have all seen success in preliminary studies, and promise directly or indirectly to improve the low success rates of IVF and other related therapies. However, their widespread use in laboratories and clinics may not be seen until preliminary studies confirming their safety and effectiveness are published, and until standardized protocols for their utilization are established. Keywords: infertility, IVF, microbiology, research, technology Introduction It is estimated that worldwide, 15% of couples of reproductive this relates to the molecular pathways in the testis remains age encounter fertility problems (Nishimune and Tanaka, rudimentary. To gain a more detailed understanding of the 2006). This has been attributed to a variety of factors, including molecular basis of male infertility, it would be advantageous environmental pollutants (He et al., 2006), and the increasing age to study the differences in gene expression between fertile and at which couples decide to have children (Manipalviratn et al., infertile males. If the differences in mRNA profiles, otherwise 2006). There are currently a number of techniques available to known as transcriptomes, are uncovered, there will be greater clinicians in diagnosing and managing infertility, but there are insight into identifying potential biochemical markers for still limitations in the field. Regarding IVF, multiple pregnancies infertility, as well as discovering clues to its indirect causes continue to be a problem (Manipalviratn, et al., 2006), and or direct triggers. Fortunately, the microarray is capable of success rates are greatly limited by the current embryo culture analysing the transcriptome of cells and tissues (He et al., methods (Suh et al., 2003). Fortunately, several technologies are 2006). presently being researched that should aid in the understanding of the various molecular causes of germ cell pathologies, thereby To learn more about the molecular events of spermatogenesis, improving the clinical management of infertility cases. researchers have used the microarray to compare the gene expression of spermatozoa from fertile and infertile men, and Microarray to compare the transcriptomes of germ cells at various stages in spermatogenesis. A number of novel genes associated with Despite detailed knowledge of testicular structure and male fertility have even been identified using the microarray. accompanying cell biology, the current understanding of how As more research is conducted using this technology, it can be 451 © 2007 Published by Reproductive Healthcare Ltd, Duck End Farm, Dry Drayton, Cambridge CB3 8DB, UK Article - Potential of modern technologies in infertility treatment - AC Varghese et al. anticipated that several molecular pathways associated with informed choices regarding the selection of ovarian stimulation sperm physiology and pathology will be uncovered (He et al., protocols in female infertility cases. Such information could 2006). also lead to the selection of higher quality oocytes for IVF, and improve the culture and oocyte manipulation techniques The microarray also has potential for use in clinical diagnosis that are used (Assou et al., 2006). However, one must always of male infertility. One large step in this direction was the keep in mind that even if a specific gene transcript is observed, creation of a spermatogenesis-related gene expression profile not much information can be realistically known regarding the for human spermatozoa. This was paired with a demonstration metabolic events within the cell. If microarray is to be utilized that one could legitimately assess the overall health and quality for studies of cellular activity, it is imperative that proteomics of a sperm cell by analysing its gene expression signature using technology is also incorporated into the studies. the microarray (Wang et al., 2004). To use this non-invasive technology to assess a male’s fertility Proteomics technology status, a semen sample is first collected, followed by isolation of spermatozoa from the ejaculate, and then isolation of mRNA One complement to the field of gene expression analysis is from the spermatozoa. While functionally mature spermatozoa proteomics (Figure 1). This is the study of protein abundance in do not undergo transcription, they have been shown to contain cells or tissues, and involves the discovery of protein functions mRNA, which was synthesized during spermatogenesis, at the biochemical level (Rocken et al., 2004). providing insight of the specific spermatogenic events of an individual. The microarray is used to create an mRNA profile Fundamental proteomic techniques include protein separation that can be compared with a physiologically normal gene and the identification of proteins in biological samples. These expression profile for sperm. This would help to identify if can then be coupled to computational algorithms that allow the cause of infertility for a male is of spermatogenic origin. the extraction of relevant information from the totality of Utilizing the microarray to analyse a male’s fertility status is data. Fortunately, several advances in proteomics, including sure to reveal much more information when compared with the the association of mass spectrometry with techniques of techniques currently employed in clinics (Moldenhauer et al., electrospray ionization (ESI) and matrix-associated laser 2003). desorption/ionization (MALDI), have greatly facilitated the ability to sequence and characterize peptides and proteins There would be many advantages to creating microarray-based (Shankar et al., 2005). Additionally, proteomics researchers transcription profiles of oocytes at various stages of growth are currently developing a method to compare protein profiles and maturation. It would result in a better understanding of of cells and tissues in varied biological states. With such a the genes expressed during oocyte development, as well as development, it will be easier to learn more about the molecular those expressed at the various checkpoints that regulate the activity and behaviour of cells (Rocken et al., 2004). process. As of now, it is known that in a fully mature oocyte arrested in metaphase II (MII), the mRNA profile is essentially One such development, surface-enhanced laser desorption/ a collection of the mRNA transcripts created during its growth ionization time-of-flight mass spectrometry (SELDI-TOF MS), phase. In addition, disruption of transcription within an oocyte involves affinity-based mass spectrometry whereby proteins or modification of its current transcriptome could negatively are absorbed to a chemically modified surface (e.g. cationic or effect its growth and development, as well as that of the embryo anionic) or to a biochemical molecular surface (e.g. receptors (Wood et al., 2007). or ligands). These different chip surfaces allow the various classes of proteins (hydrophobic, hydrophilic, acidic or basic) Microarray analysis has indicated that the transcriptomes of MII to be captured for analysis (Merchant and Weinberger, 2000). oocytes of high morphological quality from normal women are SELDI-TOF MS has been shown to capture, detect and analyse distinctly different from the morphologically normal oocytes proteins directly from crude biological fluids. Alternatively, of women with polycystic ovaries (PCO). These molecular quadruple TOF (Q-TOF) identifies proteins by searching defects could help to reveal why women with PCO tend to have appropriate sequence databases. The high accuracy of the reduced fertility (Wood et al., 2007). It has also been shown Q-TOF technology makes the hybridization of MALDI and with microarrays that oocyte quality can be estimated based on Q-TOF a superior option for de-novo protein sequencing (Gygi the expression levels of at least 160 different genes (Zhang et and Aebersold, 2000). al., 2005). Many of these have been shown to be involved in pathways
Recommended publications
  • ADVANCE ARTICLE: Endocrine Review S
    Two hormones for one receptor: evolution, biochemistry, actions and pathophysiology of LH and hCG Livio Casarini, Daniele Santi, Giulia Brigante, Manuela Simoni Endocrine Reviews Endocrine Society Submitted: February 23, 2018 Accepted: June 08, 2018 First Online: June 13, 2018 Advance Articles are PDF versions of manuscripts that have been peer reviewed and accepted but Endocrine Reviews not yet copyedited. The manuscripts are published online as soon as possible after acceptance and before the copyedited, typeset articles are published. They are posted "as is" (i.e., as submitted by the authors at the modification stage), and do not reflect editorial changes. No corrections/changes to the PDF manuscripts are accepted. Accordingly, there likely will be differences between the Advance Article manuscripts and the final, typeset articles. The manuscripts remain listed on the Advance Article page until the final, typeset articles are posted. At that point, the manuscripts are removed from the Advance Article page. DISCLAIMER: These manuscripts are provided "as is" without warranty of any kind, either express or particular purpose, or non-infringement. Changes will be made to these manuscripts before publication. Review and/or use or reliance on these materials is at the discretion and risk of the reader/user. In no event shall the Endocrine Society be liable for damages of any kind arising references to, products or publications do not imply endorsement of that product or publication. ADVANCE ARTICLE: Downloaded from https://academic.oup.com/edrv/advance-article-abstract/doi/10.1210/er.2018-00065/5036715 by Ombretta Malavasi user on 19 July 2018 Endocrine Reviews; Copyright 2018 DOI: 10.1210/er.2018-00065 Differences between LH and hCG Two hormones for one receptor: evolution, biochemistry, actions and pathophysiology of LH and hCG Livio Casarini1,2, Daniele Santi1,3, Giulia Brigante1,3, Manuela Simoni1,2,3 1.
    [Show full text]
  • Female Infertility and Assisted Reproduction: Impact of Oxidative Stress-- an Update
    Send Orders of Reprints at [email protected] Current Women’s Health Reviews, 2012, 8, 183-207 183 Female Infertility and Assisted Reproduction: Impact of Oxidative Stress-- An Update Beena J. Premkumar and Ashok Agarwal* Center for Reproductive Medicine, Cleveland Clinic, Cleveland, USA Abstract: Augmented levels of reactive oxygen species (ROS) that overpower the body’s antioxidant defenses result in oxidative stress (OS). Physiologically balanced levels of ROS and antioxidants maintain homeostasis in the body and allow for normal physiological processes to proceed. Physiological processes that involve oxygen consumption inevitably produce ROS. However, an overabundance of ROS leads to widespread injury to cells, and can damage DNA, lipid membranes, and proteins. An unfavorable reproductive environment hinders normal physiology secondary to this disruption of homeostasis. Infertility may be attributed to reproductive pathologies, leading to OS. Infertile couples often turn to assisted reproductive techniques (ART) to improve their chances for a successful pregnancy. In vitro techniques create an unfavorable environment for gametes and embryos by exposing them to a surplus of ROS in the absence of enzymatic antioxidant protection that normally exists in vivo. This article will review the currently available literature on the effects of ROS and OS on ART outcomes. The role of antioxidant supplementation of ART culture media continues to be a subject of interest to increase the likelihood for ART success. Keywords: Antioxidants, assisted reproduction, female infertility, oxidative stress. BACKGROUND INFORMATION the role of OS in female infertility and its impact on gametes and embryos in the ART setting. Close to 10% of reproductive aged couples fail to conceive through natural means.
    [Show full text]
  • Monoamine Oxidase a Is Highly Expressed by the Human Corpus Luteum of Pregnancy
    REPRODUCTIONRESEARCH Identification and characterization of an oocyte factor required for sperm decondensation in pig Jingyu Li*, Yanjun Huan1,*, Bingteng Xie, Jiaqiang Wang, Yanhua Zhao, Mingxia Jiao, Tianqing Huang, Qingran Kong and Zhonghua Liu Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China and 1Shandong Academy of Agricultural Sciences, Dairy Cattle Research Center, Jinan, Shandong Province 250100, China Correspondence should be addressed to Z Liu; Email: [email protected] or to Q Kong; Email: [email protected] *(J Li and Y Huan contributed equally to this work) Abstract Mammalian oocytes possess factors to support fertilization and embryonic development, but knowledge on these oocyte-specific factors is limited. In the current study, we demonstrated that porcine oocytes with the first polar body collected at 33 h of in vitro maturation sustain IVF with higher sperm decondensation and pronuclear formation rates and support in vitro development with higher cleavage and blastocyst rates, compared with those collected at 42 h (P!0.05). Proteomic analysis performed to clarify the mechanisms underlying the differences in developmental competence between oocytes collected at 33 and 42 h led to the identification of 18 differentially expressed proteins, among which protein disulfide isomerase associated 3 (PDIA3) was selected for further study. Inhibition of maternal PDIA3 via antibody injection disrupted sperm decondensation; conversely, overexpression of PDIA3 in oocytes improved sperm decondensation. In addition, sperm decondensation failure in PDIA3 antibody-injected oocytes was rescued by dithiothreitol, a commonly used disulfide bond reducer. Our results collectively report that maternal PDIA3 plays a crucial role in sperm decondensation by reducing protamine disulfide bonds in porcine oocytes, supporting its utility as a potential tool for oocyte selection in assisted reproduction techniques.
    [Show full text]
  • Oocyte Selection for in Vitro Embryo Production in Livestock Species: Non-Invasive Approaches for the New Challenges of Oocyte Competence
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 October 2020 doi:10.20944/preprints202010.0453.v1 Review Oocyte selection for in vitro embryo production in livestock species: non-invasive approaches for the new challenges of oocyte competence Luis Aguila1*, Favian Treulen2, Jacinthe Therrien3, Ricardo Felmer4, Martha Valdivia5 and Smith Lawrence C6 1 Centre de Recherche en Reproduction et Fértilité (CRRF), Université de Montréal, St-Hyacinthe, QC, Canada; [email protected] 2 School of Medical Technology, Faculty of Science, Universidad Mayor, Temuco, Chile; [email protected] 3 Centre de Recherche en Reproduction et Fértilité (CRRF), Université de Montréal, St-Hyacinthe, QC, Canada; [email protected] 4 Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; [email protected]. 5 Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Peru; [email protected] 6 Centre de Recherche en Reproduction et Fértilité (CRRF), Université de Montréal, St-Hyacinthe, QC, Canada; [email protected] * Correspondence: [email protected] Simple Summary: The efficiency of producing embryos using in vitro technologies in livestock species remains lower when compared to mice, indicating that the proportion of female gametes that fail to develop after in vitro manipulation is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting embryo production, the precise identification of non-invasive markers that predict oocyte competence is of major interest. The aim of this review was to explore the current literature on different non-invasive markers associated with oocyte quality in mammalian species, with an emphasis on the bovine model.
    [Show full text]
  • Research Paper the Role of MEMS in In-Vitro-Fertilization
    Adv. Technol. 2021, 1(1), 235-254 Research Paper The Role of MEMS in In-Vitro-Fertilization I. D. Wijegunawardanaa,* and Y. W. R. Amarasingheb,c a Department of Materials and Mechanical Technology, University of Sri Jayewardenepura, Pitipana, Homagama 10200, Sri Lanka b Department of Mechanical Engineering, University of Moratuwa, Katubadda 10400, Sri Lanka c Centre for Advanced Mechatronic Systems (CFAMS), University of Moratuwa, Katubadda 10400, Sri Lanka Email correspondence: [email protected] (I. D. Wijegunawardana) Received: 21 March 2021; Revised: 28 April 2021; Accepted: 23 May 2021; Published: 31 May 2021 Abstract The assisted reproduction has been considered a viable solution for the infertility of humankind for more than four decades. In-Vitro-Fertilization (IVF) is one of the most successful assisted reproduction techniques, where the reproductive cell of the female partner is fertilized outside of her body. Initially, the IVF process has been conducted manually by an experienced embryologist. However, even with a highly experienced individual, the operation had extremely lower success rates due to the limited control in environmental conditions and the requirement of precise movements. Therefore, to address this technological deficit, the feasibility of the mechatronics devices for IVF procedures has been investigated. Among the different mechatronics concepts, micro- electromechanical system (MEMS) technologies have been gradually attracted to the IVF process and improved its capabilities. The purpose of this paper is to present a brief overview of the role of MEMS technologies in IVF. The article classifies the MEMS technologies in IVF based on their application in order to emphasize its contribution. In addition, the article extensively discusses the state-of-the-art mechatronic techniques utilized in Intracytoplasmic Sperm Injection (ICSI), one of the most popular techniques used in IVF.
    [Show full text]
  • Cell Adhesion Molecules and in Vitro Fertilization
    in vivo 28: 683-690 (2014) Review Cell Adhesion Molecules and In Vitro Fertilization MARIA SIMOPOULOU1, ELENA NIKOLOPOULOU1, ANDREAS DIMAKAKOS1, KONSTANTINOS CHARALABOPOULOS2 and MICHAEL KOUTSILIERIS1 1Department of Physiology, University of Athens Medical School, Athens, Greece; 2Department of Physiology, Democritus University of Thrace Medical School, Alexandroupolis, Greece Abstract. This review addresses issues regarding the need in to enrich the list of non-invasive selection and predictive the in vitro fertilization (IVF) field for further predictive criteria in the IVF setting. We propose that in light of the well- markers enhancing the standing embryo selection criteria. It documented involvement of CAMs in the developmental aims to serve as a source of defining information for an processes of fertilization, embryogenesis, implantation, audience interested in factors related to the wide range of placentation, and embryonic development, further studies multiple roles played by cell adhesion molecules (CAMs) in could contribute significantly to achieving a higher quality of several aspects of IVF ultimately associated with the success treatment and management of infertility. of an IVF cycle. We begin by stressing the importance of enriching the standing embryo selection criteria available From enabling fatherhood for azoospermic men through the aiming for the golden standard: “extract as much information innovation of intra-cytoplasmic sperm injection and offering as possible focusing on non-invasive techniques” so as to solutions to infertile couples through gamete and embryo guide us towards selecting the embryo with the highest donation and surrogacy, to providing the basis enabling implantation potential. We briefly describe the latest trends on genetic embryo selection prior to implantation employing how to best select the right embryo, moving closer towards preimplantation genetic diagnosis (1), the world of in vitro elective single embryo transfer.
    [Show full text]
  • Effects of Ovarian Stimulation on Oocyte Development and Embryo Quality
    EFFECTS OF OVARIAN STIMULATION ON OOCYTE DEVELOPMENT AND EMBRYO QUALITY By Kimberley Marie Swann BSc (Hons), MMedSci Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy May 2014 School of Clinical Sciences Queens Medical Centre Nottingham NG7 2UH DECLARATION I hereby declare that the work in this thesis has been devised, conducted and composed by myself and has not been submitted for any other degree, in Nottingham or elsewhere. The work presented herein is my own, where other sources have been used, the authors have been duly acknowledged. Kimberley Marie Swann Abstract ABSTRACT Ovarian stimulation plays a pivotal role in assisted reproductive therapies, to increase the number of embryos available for treatment; however, there is no clear consensus from meta-analyses in the literature which, if any, of the preparations in use are superior in terms of clinical outcomes. The aim of this thesis was to examine the effect of common human gonadotrophin preparations with different half lives and LH activity (hMG, rFSH and Pergoveris) on embryo quality and resulting offspring, compared to non- stimulated negative controls and positive PMSG treated controls, using the mouse model. The studies in this thesis indicated that an LH ceiling threshold is evident during folliculogenesis, where the use of long acting LH preparations resulted in higher numbers of fragmented oocytes, absent of cumulus cells (P<0.001), reduced expression of the pro and anti-angiogenic factors, MYHII and PEDF in cumulus cells (P<0.05), increased embryonic developmental arrest (P<0.001) and perturbed IGF2 (P<0.05) and VEGFA gene expression in resulting blastocysts (P<0.01), compared to negative controls.
    [Show full text]
  • ASRM 75Th Scientific Congress – POSTERS Tuesday, October 15
    Click on the th PosterPlus ASRM 75 Scientific Congress – POSTERS button in the ASRM meeting Tuesday, October 15, 2019 • 6:30 AM – 7:45 AM app to see bonus content for participating PCC Expo Hall, Poster Area poster presenters. ACCESS TO CARE P-71 EMBRYO EUPLOIDY RATES DIFFER IN SAME-SEX MALE COUPLES UTILIZING A SINGLE OVUM P-136 RELATIONSHIP BETWEEN THE PREGNANCY AND THE SIZE OF ARRESTED BLASTOMERE P-1 DOES AN INSURANCE MANDATE TO COVER INFERTILITY TREATMENT INCREASE ACCESS TO IN DONOR. N. E. Ramos DERIVED FROM ABNORMAL CYTOKINESIS IN BLASTOCYST TRANSFER CYCLES. H. Izumi VITRO FERTILIZATION? K. Payne P-72 ANEUPLOIDY RATE IN BRCA CARRIERS IS SIMILAR TO AGE-MATCHED INFERTILE WOMEN. M. P-137 EMBRYO SELECT ASSAY: A NON-INVASIVE, DIPSTICK ELISA STRIP ASSAY TO IDENTIFY THE MOST P-2 DEFINING INFERTILITY: HOW THE LANGUAGE USED TO DESCRIBE INFERTILITY SHAPES PUBLIC Facadio Antero COMPETENT EMBRYO FROM THE COHORT. E. E. Puscheck PERCEPTION AND POLICY. A. C. Mancuso P-73 SUBOPTIMAL STIMULATION IS PREDICTIVE OF INCREASED ANEUPLOIDY AND REDUCED P-138 SINGLE VITRIFIED-WARMED BLASTOCYST TRANSFER: WHAT ARE THE BEST PREDICTIVE P-3 PATIENT ACCESS AND UNTAPPED POTENTIAL: CAN NEW DATA DRIVE PROGRESS? H. Taske PREGNANCIES PER CYCLE START. J. B. Whitney FACTORS FOR SUCCESS? E. Boulet P-4 GENDER AND FERTILITY STATUS AFFECT PERCEPTIONS OF INFERTILITY AND SUPPORT FOR FERTILITY PRESERVATION P-139 MATURITY OF CUMULUS OOCYTE COMPLEX (COC) PREDICTS THE OUTCOME OF ART. ~ FOCUS ACCESS TO CARE: A CROSS SECTIONAL STUDY. R. K. Chung P-74 ESTIMATES OF INFERTILITY IN AN ERA OF INCREASING STI RATES, 2002-2015.
    [Show full text]
  • Original Investigation Ovarian Stimulation Drugs Alter The
    1 Original Investigation Ovarian stimulation drugs alter the metabolite content of the growing follicle: in-vivo spectroscopic evaluation of follicle fluid Güngör and Güngör. Ovarian stimulation drugs alter the follicle Nur Dokuzeylül Güngör1, Kağan Güngör2 1Clinic of Reproductive Endocrinology and IVF, BAU Medical Park Göztepe Hospital, İstanbul, Turkey 2Clinic of Endocrinology and Metabolism, İstanbul Medeniyet University, Göztepe Training and Research Hospital, İstanbul, Turkey Adress for Correspondence: Nur Dokuzeylül Güngör Phone: +90 532 383 49 65 e-mail: [email protected] ORCID ID: orcid.org/0000- 0002-7234-3876 DOI: 10.4274/jtgga.galenos.2020.2020.0104 Received: 29 June, 2020 Accepted: 09 December, 2020 Proof Abstract Objective: By using magnetic resonance spectroscopy (MRS) to determine metabolite content of growing nfollicle in patients with polycystic ovary syndrome (PCOS) receiving recombinant FSH, clomiphene citrate (CC) or aromatase inhibitor (AI) for ovarian stimulation. Material and Methods: 30 patients diagnosed with PCOS and infertility and scheduled for ovarian stimulation were divided into 3 equal groups according to the drugs they took as follows: rFSH (n: 10), or CC (n: 10), or AI (n = 10). Five fertile cases were determined as the control group. When the follicle diameters reached 16-18 mm in each group, patients were directed to the MRS and the metabolite content of a dominant follicle was analyzed. N- acetylaspartate (NAA), lactate (Lac), creatine (Cr), and choline (Cho) metabolite levels determined in the spectrum were measured in ppm. Results: Approximately 3-fold decrease in dominant follicle Cho content was found in patients receiving CC compared to control subjects. Similarly, the dominant follicle Cho intensities of patients given rFSH and AI were noted to be significantly higher than those who received CC.
    [Show full text]
  • International Journal of Modern Pharmaceutical Research
    IJMPR 2021, 5(2), 105-110 ISSN: 2319-5878 IJMPR Sangeetha. International Journal of Modern Pharmaceutical Research 105 International Journal of Modern Review Article Pharmaceutical Research SJIF Impact Factor: 5.273 www.ijmpronline.com INVITRO FERTILIZATION – ITS ROLE, IMPORTANCE AND RISK FACTORS S. Sangeetha* Lecturer, Department of Anatomy, Saveetha Dental College, Saveetha Institute of Medical sciences And Technology (SIMATS) Saveetha University, Chennai-600077. Received on: 25/02/2021 ABSTRACT Revised on: 15/03/2021 In vitro fertilisation (IVF) is a process of fertilisation where an egg is combined Accepted on: 05/04/2021 with sperm outside the body, in vitro ("in glass"). The process involves monitoring and stimulating a woman's ovulatory process, removing an ovum or ova (egg or eggs) from *Corresponding Author the woman's ovaries and letting sperm fertilise them in a liquid in a laboratory. After S. Sangeetha the fertilised egg (zygote) undergoes embryo culture for 2–6 days, it is implanted in the same or another woman's uterus, with the intention of establishing a successful Lecturer, Department of pregnancy. IVF is a type of assisted reproductive technology used for infertility Anatomy, Saveetha Dental treatment and gestational surrogacy. A fertilised egg may be implanted into a College, Saveetha Institute of surrogate's uterus, and the resulting child is genetically unrelated to the surrogate. Medical sciences And Some countries have banned or otherwise regulate the availability of IVF treatment, Technology (SIMATS) giving rise to fertility tourism. Restrictions on the availability of IVF include costs and age, in order for a woman to carry a healthy pregnancy to term.
    [Show full text]
  • Oocyte Selection for in Vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence
    animals Review Oocyte Selection for In Vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence Luis Aguila 1,* , Favian Treulen 2, Jacinthe Therrien 1, Ricardo Felmer 3, Martha Valdivia 4 and Lawrence C Smith 1 1 Centre de Recherche en Reproduction et Fértilité (CRRF), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada; [email protected] (J.T.); [email protected] (L.C.S.) 2 School of Medical Technology, Faculty of Science, Universidad Mayor, Temuco 4801043, Chile; [email protected] 3 Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811322, Chile; [email protected] 4 Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima 15088, Peru; [email protected] * Correspondence: [email protected] Received: 20 October 2020; Accepted: 19 November 2020; Published: 24 November 2020 Simple Summary: The efficiency of producing embryos using in vitro technologies in cattle species remains lower when compared to mice, indicating that the proportion of female gametes that fail to develop after in vitro manipulation is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting embryo production, the precise identification of noninvasive markers that predict oocyte competence is of major interest. The aim of this review was to explore the current literature on different noninvasive markers associated with oocyte quality in the bovine model. Apart from some controversial findings, the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, a large slightly expanded investment without dark areas, large oocyte diameter (>120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been associated with better embryonic development.
    [Show full text]
  • IVF, ICSI, and PICSI for Embryo Development to the Blastoc
    Casillas et al. Porcine Health Management (2018) 4:16 https://doi.org/10.1186/s40813-018-0093-6 RESEARCH Open Access An efficiency comparison of different in vitro fertilization methods: IVF, ICSI, and PICSI for embryo development to the blastocyst stage from vitrified porcine immature oocytes Fahiel Casillas1,2*, Miguel Betancourt3, Cristina Cuello4, Yvonne Ducolomb3, Alma López3, Lizbeth Juárez-Rojas1 and Socorro Retana-Márquez1 Abstract Background: Most studies carried out to evaluate recovery and development after porcine oocyte vitrification, reported better rates when cryopreserved in embryonic development stages or zygotes, but not in immature oocytes. For this reason, many studies are performed to improve immature oocyte vitrification protocols testing the use of different cryoprotectant concentrations, cooling devices, incubation times; but only a few of them have evaluated which fertilization procedure enhances blastocyst rates in vitrified oocytes. Therefore, this study was aimed to evaluate: 1) if the sperm selection with hyaluronic acid (HA) or polyvinylpyrrolidone (PVP) before injection could play a key role in increasing fertilization and blastocyst formation and 2) the embryo developmental ability and blastocyst production of porcine immature oocytes retrieved after vitrification-warming and co-cultured with granulosa cells during IVM, using different fertilization techniques: in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and conventional ICSI with hyaluronic acid (HA) sperm selection, known as physiological intracytoplasmic sperm injection (PICSI) and. Results: Sperm selected with HA-PICSI displayed a higher percentage of live/acrosome reacted status compared to those in control and exposed to PVP. Higher dead/acrosome reacted rates were obtained after PVP exposure compared to control and HA.
    [Show full text]