Detecting the Unknown Protecting Against DGA-Based Malware

Total Page:16

File Type:pdf, Size:1020Kb

Detecting the Unknown Protecting Against DGA-Based Malware Detecting the Unknown Protecting Against DGA-Based Malware By: Lotem Guy, Head of Security Research Uri Sternfeld, Senior Security Researcher 1 Contents 3 Introduction 4 What is DGA? 5 Current Detection and Protection Techniques 6 Sinkholing 7 Connection Detection 8 Communication Patterns 9 Endpoints 10 About Cybereason 2 Introduction Contemporary malicious attacks usually employ a dedicated Command & Control (C&C) server, which serves a dual purpose – allowing the attacker to enhance and escalate the attack by issuing commands and updating the malicious code, and acting as a data exfiltration channel. In order to find its master after the initial penetration, the malware needs to connect to a specific IP address or – more commonly – a specific domain. In the past, most malware contains a hardcoded list of possible C&C addresses, which could be easily blocked by firewalls. This led to the creation of multiple websites dedicated to maintaining lists of known malicious domains so that any attack leveraging a known malicious domain or IP could be nullified as soon as any instance of the attack was revealed. Never ones to sit idle, hackers responded to this challenge by developing domain generation algorithms. 3 What is DGA? Domain generation algorithm (DGA) is a technique that many malware variants implement in order to coordinate C&C communication between the malware and the attacker, without the need to hardcode a single IP address or a domain. Instead, the malware contains an algorithm that generates multiple domains based on some pseudo- random seed, such as the current date. The attackers may choose any of these generated domains as a rendezvous point and register it in advance. The malware will try to connect to each of the generated domains on its own until it finds the one registered by the attackers. When such a C&C domain is revealed and blocked, the attacker can easily establish a new line of communication by registering another domain. Even if the algorithm itself is known, it often is infeasible to register all possible combinations - which may range in the millions - in advance. There is no lack of examples of DGA used by some of the most notorious malware in recent history – Kraken, CryptoLocker, GameOver Zeus, Conficker, Torpig and many more. 4 Current Detection and Protection Techniques There are two general properties that define each DGA: Its time-dependence (some variants generate new domains every few days or even hours) and its predictability (the ability to correctly predict its results ahead of time). For example, while most recorded DGAs simply use the current date as pseudo-random seed (CryptoLocker, GameOver Zeus, Conficker), one variant (Torpig) uses instead the currently trending Twitter hashtag which makes early registration of generated domain virtually impossible. There are several ways of defending against DGA-based malware. If the algorithm is both known and predictable, it’s sometimes possible to generate all possible domains in advance and statically block them. If the algorithm isn’t predictable, a more dynamic approach is needed. For example, some advanced firewall solutions are able to tell whether a given domain belongs to a known DGA in real time. 5 Sinkholing Another way to disrupt a known DGA-based malware is to register the generated domains, which serves to both prevent the attackers from registering the domains and also detect already-infected machines that communicate with these domains. This technique is called “sinkholing.” Some security companies, such as Damballa, Anubis and Kaspersky, perform sinkholing en-masse, but most organizations cannot register a large number of domains by themselves. Another possibility is for a government agency to take a judicial action and appropriate the suspected domains in advance to prevent their registration. The downsides of sinkholing are clear: It is costly in both time and money, since it involves bidding and paying for registering domains. In addition, when every single domain cannot be registered there might be a way for the malware operators to bypass it, as had happened in Operation Tovar when the FBI attempted to perform a takedown of the GameOver Zeus network. 6 Connection Detection However, the real challenge of protecting against DGAs is to be able to detect the connection attempts of as of yet unknown algorithms. There are two main heuristic methods that may be used in this case – detecting the generated domains themselves, and detecting the communication patterns. Many DGAs create random domain names that can be detected by their high entropy and character histograms (for example, GameOver Zeus domains range between 15-30 characters, all of which are randomly-distributed English characters). While this technique has a good potential to identify malware that use similar algorithms, there are many DGAs that generate domains with very different characteristics. Torpig and Kraken, for example, use conjoined, randomly-chosen English words (Torpig) or English-like words (Kraken) that are much harder to statistically differentiate from legitimate domains. 7 Communication Patterns It is also possible to detect a DGA-like communication pattern. As mentioned before, the basic concept of DGA involves creating multiple domains and only registering a small subset. Since the malware cannot know which domains were actually registered in each batch, it must continue trying until it succeeds. The malware sends DNS queries one-by- one in order to resolve the generated domains. If the domain is not registered the malware receives a non-existing domain response (NXDOMAIN) and tries to resolve the next generated domain. This often results in a sequence of NXDOMAIN responses, which can sometimes be detected by analyzing the network activity. This is harder than it sounds, however, as these patterns are often lost in the general noise of modern networks and are prone to false positives resulting from any number of legitimate reasons, from browsing typos to DNS server failures. As a result of learning the advantages and pitfalls of the methods listed above, the best way to identify DGA communication patterns is by monitoring the communications for each separate process - and this can only be done on the endpoints themselves. 8 Endpoints Endpoint monitoring on the process level allows analysis of process behavior across the organization and applies this accumulated information to improve detection accuracy. For example, a process that is common in the organization and signed by a legitimate vendor creates a regular pattern and is less suspicious than an unsigned process that is rare in the organization but creates the same pattern. An effective cyber defense system continuously collects data from your endpoints and correlates it intelligently to provide an accurate low-noise analysis of your current environment. Endpoint monitoring provides the visibility needed to match a sequence of unresolved DNS queries with a single suspicious process. Cyber attacks will continue to evolve, employing techniques like DGA to stay ahead of defenders. Keep one step ahead yourself and broaden your approach by adopting dynamic techniques like behavioral analysis to your cyber strategy. 9 About Cybereason Cybereason was founded in 2012 by a team of ex-military cybersecurity experts to revolutionize detection and response to cyber attacks. The Cybereason Detection and Response platform uniquely identifies both known and unknown threats in real time using big data, behavioral analytics and machine learning, and puts them in context to form a complete attack story. The console presents the TRACE elements of every malicious operation: Timeline, Root cause, Attacker activity, Communication, and affected Endpoints and users, eliminating the need for manual investigation and radically reducing response time. The platform is available as an on premise solution or a cloud-based service. Schedule a demo to see how Cybereason can help detect DGA-based threats: http://bit.ly/1KLxKJ2 10.
Recommended publications
  • Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere, and Michel J.G
    Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere, and Michel J.G. van Eeten, Delft University of Technology https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/asghari This paper is included in the Proceedings of the 24th USENIX Security Symposium August 12–14, 2015 • Washington, D.C. ISBN 978-1-939133-11-3 Open access to the Proceedings of the 24th USENIX Security Symposium is sponsored by USENIX Post-Mortem of a Zombie: Conficker Cleanup After Six Years Hadi Asghari, Michael Ciere and Michel J.G. van Eeten Delft University of Technology Abstract more sophisticated C&C mechanisms that are increas- ingly resilient against takeover attempts [30]. Research on botnet mitigation has focused predomi- In pale contrast to this wealth of work stands the lim- nantly on methods to technically disrupt the command- ited research into the other side of botnet mitigation: and-control infrastructure. Much less is known about the cleanup of the infected machines of end users. Af- effectiveness of large-scale efforts to clean up infected ter a botnet is successfully sinkholed, the bots or zom- machines. We analyze longitudinal data from the sink- bies basically remain waiting for the attackers to find hole of Conficker, one the largest botnets ever seen, to as- a way to reconnect to them, update their binaries and sess the impact of what has been emerging as a best prac- move the machines out of the sinkhole. This happens tice: national anti-botnet initiatives that support large- with some regularity. The recent sinkholing attempt of scale cleanup of end user machines.
    [Show full text]
  • The Botnet Chronicles a Journey to Infamy
    The Botnet Chronicles A Journey to Infamy Trend Micro, Incorporated Rik Ferguson Senior Security Advisor A Trend Micro White Paper I November 2010 The Botnet Chronicles A Journey to Infamy CONTENTS A Prelude to Evolution ....................................................................................................................4 The Botnet Saga Begins .................................................................................................................5 The Birth of Organized Crime .........................................................................................................7 The Security War Rages On ........................................................................................................... 8 Lost in the White Noise................................................................................................................. 10 Where Do We Go from Here? .......................................................................................................... 11 References ...................................................................................................................................... 12 2 WHITE PAPER I THE BOTNET CHRONICLES: A JOURNEY TO INFAMY The Botnet Chronicles A Journey to Infamy The botnet time line below shows a rundown of the botnets discussed in this white paper. Clicking each botnet’s name in blue will bring you to the page where it is described in more detail. To go back to the time line below from each page, click the ~ at the end of the section. 3 WHITE
    [Show full text]
  • The Customer As a Target Risks of Phishing and Trojans
    The Customer as a Target Risks of Phishing and Trojans Gijs Hollestelle | Deloitte Netherlands January 31, 2012 © 2012 Deloitte Touche Tohmatsu History of Computer Crime (1/2) •1980‟s • First worm: Morris Worm • Phone Phreaking • BBS Hacking boards • Movie: Wargames • Computer hacking was primarily done by people in universities to find out how things worked •1990‟s: • Real start of computer crime, targeting financial institutions • Succesful hacks of various banks, phone companies, etc • Kevin Mitnick convicted • 2000‟s / Today • Early 2000‟s examples of „Hobby‟ projects, everyone can be a hacker. I love You/Kournikova Virus • Late 2000‟s Professionalization of computer crime • Internet banking and online shopping become popular, leading to increased incentive to use computer crime for financial gain • Avanced trojans • Shift of hacking companies to hacking consumers • Sophisticated trojans/virusses such as Zeus and Stuxnet 2 © 2012 Deloitte Touche Tohmatsu History of Computer Crime (2/2) 3 © 2012 Deloitte Touche Tohmatsu The Underground Economy (1/2) Some recent figures • Dutch Association of Banks (NVB) released information that in 2012 Internet banking fraud was 9.8 mln euro. • In first half of 2011 alone, this has increased to 11.2 mln euro. • In Germany Internet banking fraud is estimated at 17mln euro in 2012 • In the UK 60mln pounds in Internet Crime in 2009 4 © 2012 Deloitte Touche Tohmatsu The Underground Economy (2/2) Where are these identities sold? Source: krebsonsecurity.com 5 © 2012 Deloitte Touche Tohmatsu The Logic of the Cyber Criminal • Stricter regulations such as PCI have forced companies have forced companies to further increase their security measures.
    [Show full text]
  • Understanding and Analyzing Malicious Domain Take-Downs
    Cracking the Wall of Confinement: Understanding and Analyzing Malicious Domain Take-downs Eihal Alowaisheq1,2, Peng Wang1, Sumayah Alrwais2, Xiaojing Liao1, XiaoFeng Wang1, Tasneem Alowaisheq1,2, Xianghang Mi1, Siyuan Tang1, and Baojun Liu3 1Indiana University, Bloomington. fealowais, pw7, xliao, xw7, talowais, xm, [email protected] 2King Saud University, Riyadh, Saudi Arabia. [email protected] 3Tsinghua University, [email protected] Abstract—Take-down operations aim to disrupt cybercrime “clean”, i.e., no longer involved in any malicious activities. involving malicious domains. In the past decade, many successful Challenges in understanding domain take-downs. Although take-down operations have been reported, including those against the Conficker worm, and most recently, against VPNFilter. domain seizures are addressed in ICANN guidelines [55] Although it plays an important role in fighting cybercrime, the and in other public articles [14, 31, 38], there is a lack of domain take-down procedure is still surprisingly opaque. There prominent and comprehensive understanding of the process. seems to be no in-depth understanding about how the take-down In-depth exploration is of critical importance for combating operation works and whether there is due diligence to ensure its cybercrime but is by no means trivial. The domain take-down security and reliability. process is rather opaque and quite complicated. In particular, In this paper, we report the first systematic study on domain it involves several steps (complaint submission, take-down takedown. Our study was made possible via a large collection execution, and release, see SectionII). It also involves multiple of data, including various sinkhole feeds and blacklists, passive parties (authorities, registries, and registrars), and multiple DNS data spanning six years, and historical WHOIS informa- domain management elements (DNS, WHOIS, and registry tion.
    [Show full text]
  • Symantec Intelligence Report: June 2011
    Symantec Intelligence Symantec Intelligence Report: June 2011 Three-quarters of spam send from botnets in June, and three months on, Rustock botnet remains dormant as Cutwail becomes most active; Pharmaceutical spam in decline as new Wiki- pharmacy brand emerges Welcome to the June edition of the Symantec Intelligence report, which for the first time combines the best research and analysis from the Symantec.cloud MessageLabs Intelligence Report and the Symantec State of Spam & Phishing Report. The new integrated report, the Symantec Intelligence Report, provides the latest analysis of cyber security threats, trends and insights from the Symantec Intelligence team concerning malware, spam, and other potentially harmful business risks. The data used to compile the analysis for this combined report includes data from May and June 2011. Report highlights Spam – 72.9% in June (a decrease of 2.9 percentage points since May 2011): page 11 Phishing – One in 330.6 emails identified as phishing (a decrease of 0.05 percentage points since May 2011): page 14 Malware – One in 300.7 emails in June contained malware (a decrease of 0.12 percentage points since May 2011): page 15 Malicious Web sites – 5,415 Web sites blocked per day (an increase of 70.8% since May 2011): page 17 35.1% of all malicious domains blocked were new in June (a decrease of 1.7 percentage points since May 2011): page 17 20.3% of all Web-based malware blocked was new in June (a decrease of 4.3 percentage points since May 2011): page 17 Review of Spam-sending botnets in June 2011: page 3 Clicking to Watch Videos Leads to Pharmacy Spam: page 6 Wiki for Everything, Even for Spam: page 7 Phishers Return for Tax Returns: page 8 Fake Donations Continue to Haunt Japan: page 9 Spam Subject Line Analysis: page 12 Best Practices for Enterprises and Users: page 19 Introduction from the editor Since the shutdown of the Rustock botnet in March1, spam volumes have never quite recovered as the volume of spam in global circulation each day continues to fluctuate, as shown in figure 1, below.
    [Show full text]
  • An Adaptive Multi-Layer Botnet Detection Technique Using Machine Learning Classifiers
    applied sciences Article An Adaptive Multi-Layer Botnet Detection Technique Using Machine Learning Classifiers Riaz Ullah Khan 1,* , Xiaosong Zhang 1, Rajesh Kumar 1 , Abubakar Sharif 1, Noorbakhsh Amiri Golilarz 1 and Mamoun Alazab 2 1 Center of Cyber Security, School of Computer Science & Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; [email protected] (X.Z.); [email protected] (R.K.); [email protected] (A.S.); [email protected] (N.A.G.) 2 College of Engineering, IT and Environment, Charles Darwin University, Casuarina 0810, Australia; [email protected] * Correspondence: [email protected]; Tel.: +86-155-2076-3595 Received: 19 March 2019; Accepted: 24 April 2019; Published: 11 June 2019 Abstract: In recent years, the botnets have been the most common threats to network security since it exploits multiple malicious codes like a worm, Trojans, Rootkit, etc. The botnets have been used to carry phishing links, to perform attacks and provide malicious services on the internet. It is challenging to identify Peer-to-peer (P2P) botnets as compared to Internet Relay Chat (IRC), Hypertext Transfer Protocol (HTTP) and other types of botnets because P2P traffic has typical features of the centralization and distribution. To resolve the issues of P2P botnet identification, we propose an effective multi-layer traffic classification method by applying machine learning classifiers on features of network traffic. Our work presents a framework based on decision trees which effectively detects P2P botnets. A decision tree algorithm is applied for feature selection to extract the most relevant features and ignore the irrelevant features.
    [Show full text]
  • Monthly Report on Online Threats in The
    MONTHLY REPORT ON ONLINE THREATS REPORTING PERIOD: IN THE BANKING SECTOR 19.04–19.05.2014 One of the main events during the reporting period was the leakage of payment credentials belonging to eBay users. Details of the incident and other detected threats can be found in the section ‘Key events in the online banking sphere’ below. Overall statistics During the reporting period, Kaspersky Lab solutions blocked 341,216 attempts on user computers to launch malware capable of stealing money from online banking accounts. This figure represents a 36.6% increase compared to the previous reporting period (249,812). This increase in banking malware activity is most likely related to the onset of the vacation season, when customers actively use their payment data to make all types of purchases online. 24 001 - 78 000 16 001 - 24 000 7101 - 16 000 2101 - 7100 1 - 2100 Number of users targeted by banking malware The number of users attacked using these types of programs during the reporting period is shown in the diagram below (Top 10 rating based on the number of users attacked, in descending order): 77,412 27,071 21,801 22,115 13,876 15,651 17,333 5417 6883 7347 France Vietnam Austria India Germany United USA Russian Italy Brazil Kingdom Federation © 1997-2014 Kaspersky Lab ZAO. All Rights Reserved. The table below shows the programs most commonly used to attack online banking users, based on the number of infection attempts: Total notifications of Verdict* Number of users Number of notifications attempted infections by Trojan-Spy.Win32.Zbot 198
    [Show full text]
  • Financial Malware Analysis-Secrets of Zeus
    IJSART - volume 1 Issue 2–FEBRUARY 2015 ISSN [ONLINE]: 2395-1052 Financial Malware Analysis- Secrets of ZeuS 1 2 Rushita Dave ,Anisetti Anjaneyulu 1 Forensics Analyst eSF Labs Ltd. Abstract- Malware becomes one of the internet’s major security DumpIt threats these days. Malware is the most widespread threat towards Virtual Machine Files (vmem): IT now. Because of the huge quantity of new malware samples, researchers rely on dynamic malware analysis. Malware analysis Virtual machines provide a useful environment for dynamic is an important part of understanding the objectives of the analysis of malware. Acquire RAM from guest machines by just malware and how to defend against this threat. To be able to defend against the threat imposed by malware we need to suspending or pausing the VM, and guest’s RAM will be written understand both how and why the malware exists. to a file on the host’s disk. Then grab the ".vmem" file for analysis. The default location of the vmem file for VMware is I. INTRODUCTION %My Documents%\My Virtual Machines\<VM Name>\*.vmem Malware is a general term for a piece of software inserted into B. Tool to analyze the memory an information system to cause harm to the system. Malware can gain remote access to system, record and send data to a third party Volatility without the user's permission or knowledge. Malware are The Volatility Framework is an open collection of tools for the commonly described as viruses, worms, trojan horses, backdoors, extraction of digital artifacts from volatile memory samples. keystroke loggers, rootkits or spyware.
    [Show full text]
  • Zeus Spyeye Banking Trojan Analysis
    SOFTWARE ASSURANCE Technical White Paper Reversal and Analysis of Zeus and SpyEye Banking Trojans IOActive, Inc. 701 5th Avenue, Suite 6850 Seattle, WA 98104 Toll free: (866) 760-0222 Office: (206) 784-4313 Fax: (206) 784-4367 Copyright ©2012 by IOActive, Incorporated All Rights Reserved. Contents Introduction ................................................................................................................................................... 1 SpyEye Malware Analysis ............................................................................................................................. 1 Initialization ............................................................................................................................................ 1 API Calls ................................................................................................................................................ 4 API Hooking ........................................................................................................................................... 4 Process Injection .................................................................................................................................... 5 Keystroke Logging ................................................................................................................................. 6 Form Grabbing ....................................................................................................................................... 6 Credentials Theft ...................................................................................................................................
    [Show full text]
  • Example of Trojan Horse
    Example Of Trojan Horse Hassan fled his motherliness jumps saliently or next after Gerhardt premises and clabber heroically, unicolor and catenate. Maury usually mangling flirtingly or clamour unmeaningly when genteel Kurtis brutify lest and languishingly. Lex influencing kitty-cornered if xerophilous Lucio hocus or centrifuging. And according to experts, it remains so. As with protecting against most common cybersecurity threats, effective cybersecurity software should be your front line of protection. But what if you need to form an allegiance with this person? Another type of the virus, Mydoom. Wonder Friends to read. When first developed, Gozi used rootkit components to hide its processes. What appearsto have been correctly uninstalled or malware that i get the date, or following paper describes the horse of! Please enter your password! Adware is often known for being an aggressive advertising software that puts unwanted advertising on your computer screen. In as far as events are concerned; the central Intelligence Agency has been conducting searches for people who engage in activities such as drug trafficking and other criminal activities. If someone tries to use your computer, they have to know your password. No matter whether a company favors innovation or not, today innovation is key not only to high productivity and growth, but to the mere survival in the highly competitive environment. The fields may be disguised as added security questions that could give the criminal needed information to gain access to the account later on. It is surprising how far hackers have come to attack people, eh? Run script if the backdoor is found, it will disconnect you from the server, and write to the console the name of the backdoor that you can use later.
    [Show full text]
  • On Botnet Behaviour Analysis Using GP and C4.5
    On Botnet Behaviour Analysis using GP and C4.5 Fariba Haddadi1, Dylan Runkel1, A. Nur Zincir-Heywood1, and Malcolm I. Heywood1 1Faculty of Computer Science, Dalhousie University, Halifax, NS. Canada Article originally appears at GECCO’14 Companion under ACM copyright 2014 http://dl.acm.org/citation.cfm?doid=2598394.2605435 Abstract Botnets represent a destructive cyber security threat that aim to hide their malicious activities within legitimate Internet traffic. Part of what makes Botnets so affective is that they often upgrade themselves over time, hence reacting to improved detection mechanisms. In addition Internet common communication protocols (i.e. HTTP) are used for the purposes of constructing subversive communication channels. This work employs machine learn- ing algorithms (genetic programming and decision trees) to detect distinct behaviours in various botnets. That is to say, botnets mimic legitimate HTTP traffic while actually serving botnet purposes. Specifically, two different feature sets are employed and analyzed to see how differences between three botnets – Zeus, Conficker and Torpig – can be distinguished. Specific recommendations are then made regarding the utility of different feature sets and machine learning algorithm for detecting each type of bonnet. 1 Introduction Botnets represent a set of compromised hosts under the remote control of a botmaster i.e., a master–slave relation- ship. They epitomize an approach to putting what would normally be considered legitimate users to malicious ends. As researchers propose detection mechanisms to identify botnets behaviours, botmasters upgrade their bots to defeat detection. Given the distributed nature of botnets, there are many avenues by which detection and evasion can take place.
    [Show full text]
  • Malware and Fraudulent Electronic Funds Transfers: Who Bears the Loss?
    MALWARE AND FRAUDULENT ELECTRONIC FUNDS TRANSFERS: WHO BEARS THE LOSS? Robert W. Ludwig, Jr. Salvatore Scanio Joseph S. Szary I. INTRODUCTION After federal banking regulators1 implemented stronger customer authorization controls in the mid-2000s, electronic bank fraud affecting consumers declined significantly.2 By 2009, the criminals adapted, and the rate of electronic bank fraud has been on the rise ever since, with business accounts as the new target.3 According to the FDIC, fraud involving electronic funds transfers4 by businesses resulted in more than 1 The five federal banking agencies: the Board of Governors of the Federal Reserve System, Federal Deposit Insurance Corporation, National Credit Union Administration, Office of the Comptroller of the Currency, and Office of Thrift Supervision, comprise the Federal Financial Institutions Examination Council [hereinafter FFIEC], which issues regulatory guidelines applicable to the five agencies and their respectively regulated financial institutions. 2 FDIC, Spyware: Guidance on Mitigating Risks from Spyware, FDIC Fin’l Institution Letter 66-2005 (July 22, 2005), with Informational Supplement: Best Practices on Spyware Prevention and Detection; FFIEC, Authentication in an Internet Banking Environment (Oct. 12, 2005); FFIEC, Information Security, IT Examination Handbook (July 2006); FFIEC, Frequently Asked Questions on FFIEC Authentication in an Internet Banking Environment (Aug. 15, 2006). 3 Rob Garver, The Cost of Inaction, U.S. BANKER (July 2010). 4 Hereinafter EFTs. Robert W. Ludwig, Jr. and Salvatore Scanio are partners with Ludwig & Robinson, PLLC, in Washington, D.C. Joseph S. Szary is an Assistant Vice President and Senior Home Office Examiner with Chubb & Son, a division of Federal Insurance Company, in Warren, New Jersey.
    [Show full text]