Learning for Efficient Supervised Query Expansion via Two-stage Feature Selection Zhiwei Zhang1,∗ Qifan Wang2, Luo Si13 , Jianfeng Gao4 1Dept of CS, Purdue University, IN, USA 2Google Inc, Mountain View, USA 3Alibaba Group Inc, USA 4Microsoft Research, Redmond, WA, USA {zhan1187,lsi}@purdue.edu,
[email protected],
[email protected] ABSTRACT predicted to be relevant [26]. It is hoped that these expanded Query expansion (QE) is a well known technique to im- terms can capture user's true intent that is missed in orig- prove retrieval effectiveness, which expands original queries inal query, thus improving the final retrieval effectiveness. with extra terms that are predicted to be relevant. A re- In the past decades, various applications [26, 6] have proved cent trend in the literature is Supervised Query Expansion its value. (SQE), where supervised learning is introduced to better se- Unsupervised QE (UQE) algorithms used to be the main- lect expansion terms. However, an important but neglected stream in the QE literature. Many famous algorithms, such issue for SQE is its efficiency, as applying SQE in retrieval as relevance model (RM) [21] and thesaurus based methods can be much more time-consuming than applying Unsuper- [29], have been widely applied. However, recent studies [5, vised Query Expansion (UQE) algorithms. In this paper, 22] showed that a large portion of expansion terms selected we point out that the cost of SQE mainly comes from term by UQE algorithms are noisy or even harmful, which limits feature extraction, and propose a Two-stage Feature Selec- their performance. Supervised Query Expansion (SQE) is tion framework (TFS) to address this problem.