Ergonomics in Mobile Computing

Total Page:16

File Type:pdf, Size:1020Kb

Ergonomics in Mobile Computing Mobile Computing Ergonomics By Nicolas Milani, Business Development Manager, Havis, Inc. A properly mounted mobile computing system (at left) allows the computer to be positioned close to the driver, eliminating the need to twist in the seat to reach the keyboard (right). The system can be easily returned to the center position and locked to avoid movement while the squad car is in motion. Advances in wireless communications and work cubicle — environments that have been mobile computing have turned today’s squad shaped by decades of ergonomics research and car into a fully functional office on wheels. development — the mobile office has, until re- Unfortunately, officers manning the squad- cently, been largely neglected as far as ensur- car-turned-office often discover that the ben- ing the comfort of vehicle-bound workers. To efits of mobility come at the expense of com- the great relief of the hundreds of thousands fort and performance — and sometimes even of patrol officers across the United States who health and safety. spend much of their shifts behind the wheel, At the heart of the problem is a disregard the principles of ergonomics are finally begin- for ergonomics. Unlike the typical office or ning to be applied to the mobile workplace. “Mobile Computing Ergonomics” is part two of a three-part series that presents vital information for the proper selection of mobile computer mounts in police vehicles. The final installment, addressing mobile computing mounting system reliability, will appear in an upcoming issue. Mobile Computing Ergonomic Issues Discomfort and Especially Challenging Affect Comfort and Injury Are Not the for Officers Performance Only Consequences Compared to the squad car’s assem- Ergonomic principles are currently Although the pain and discomfort asso- blage of communications, warning, and being employed to address several issues ciated with poor squad car ergonomics are mobile computing equipment, the typical related to working within the confines of a significant problems in and of themselves, civilian office desk is a truly bare environ- squad car. ergonomic deficiencies can result in an- ment. With so much more gear with which Eye Strain – Eye strain is caused by other, equally serious consequence — typ- an officer must interface — often with great poorly lit mobile computing solutions. In ing errors. At first blush, this may seem like speed — the importance of optimizing er- contrast to the well-lit offices most of us a trivial matter. But when you consider the gonomic placement of important equip- are accustomed to, the squad car work en- frequency with which court cases are dis- ment, vital controls, and creature comforts vironment provides multiple illumination missed because of simple clerical errors, the is obvious. challenges. During certain times of the importance of providing an optimized work The typical driver interacts with only day, for example, bright outdoor conditions environment becomes even more obvious. about seven controls (shifter, steering wheel, can make it difficult to see the computer’s Job satisfaction and productivity are three pedals, turn signals, horn). During ag- screen. Eye strain can also result from screen intimately related to how comfortable a gressive driving a police officer is required to vibration caused by an unstable mount. At- worker is when performing his or her duties. interact with three to four times the number tempting to focus on a computer screen that When deploying a mounting solution fleet- of devices, including all of the “traditional” vibrates while the vehicle is in motion can wide, simple things like access to cup holders input devices already mentioned, plus light sometimes trigger migraines. and availability of armrests can influence bar switches, multiple radios, computers, Night Blindness – Darkness can user acceptance of the equipment, and can radar, and video systems. All of this inter- make it difficult to see the keyboard at night. greatly affect the daily productivity of the action occurs under conditions that would Screen brightness, on the other hand, can officers. Too often, thousands of dollars are normally stretch an officer’s abilities, even adversely affect an officer’s natural ability to invested in a vehicle in the form of comput- without the unique in-cabin challenges. see in darkness and can greatly impact his ers, while mounting and usability issues are or her situational awareness. totally ignored. It doesn’t make sense to let a lack of cup holders or difficulty reaching Back Strain – By far, one of the most microphones undermine a high-dollar proj- common complaints related to poor mobile ect when these minor — but important — office ergonomics is user back fatigue. The issues can be addressed so easily. stretching, twisting, and turning associated User evaluations can help you identify with improper placement of the screen and and assess any ergonomic traps before you keyboard can lead to potentially debilitating upfit your entire fleet. Once you have suc- lower back pain. Problems of this nature are cessfully addressed officers’ concerns, it’s not limited solely to the officer driving the important to make EVERY vehicle as con- squad car. Passengers who are forced to twist sistent as possible so that officers can easily their legs to avoid bumping into improperly operate any fleet vehicle without concern positioned equipment can suffer, as well. for locating critical interfaces when called Wrist Strain – Another common er- to action. gonomic hazard associated with both sta- tionary and mobile computing is that of wrist strain. A glance at the pages devoted to supports, pillows, rests, cushions, and other wrist-related devices found in just about any office supply catalog provides convincing evidence of the importance placed on prop- er wrist alignment when using a keyboard. Most of the available wrist aids, however, are not designed to function in the mobile environment. This center-mounted docking station features a pos- itive-locking swing arm that rotates and extends to position the computer close to the driver or passenger. The most critical switches are placed highest in the cab, and all controls are easily accessible. A pad- The low profile of this mobile ded armrest between the driver and passenger seats computing mounting solution doesn’t incorporates a printer. interfere with passenger legroom. A Systems Approach out obstruction. Also ensure that all members tion it at an ideal angle. If a separate keyboard of the department (both short and tall) can see is used, it, too, should utilize a tilt mechanism. to Mobile Computing the channel indicator. Never allow an external keyboard to be loosely stowed in the cab, as it could become a projec- Ergonomics Screens – Screens must be positioned as close to the horizon as possible to improve situ- tile during an accident. Since the mid-1990s, when the issue of ational awareness, reduce neck strain, and im- Microphones – These devices should workplace-related musculoskeletal disorders prove daytime visibility. The brighter the better, be mounted within easy reach of the officer. (MSD) first gained widespread attention, em- but be sure to educate your officers on how to Once again, priority should be given to the ployers nationwide have invested billions of dol- dim the screen for nighttime use. Most laptops microphone that is most frequently used. Keep lars to ensure the health of their workers. For offer shortcut commands to decrease screen in mind that the reach path to the microphone office workers, this has meant investments in brightness and improve the officer’s night vision. should be unobstructed as this is a critical move- furniture and computer peripherals ment during times of duress and that are ergonomically designed to call-to-action. prevent workplace-related injuries. Lightbar Switches – Light- For the mobile worker, ergo- bar switches and controls for sirens, nomic solutions primarily take the alarms, and other critical compo- form of devices designed to properly nents should also be positioned to position computers, peripherals, and allow officers to activate them easily other equipment to avoid the types and comfortably during a pursuit. of problems described previously. Printer Mounts – Printer From a patrol officer’s perspective, mounts should hold the peripheral an ergonomic mobile computing so- securely and allow the officer to easily lution should contain the following access printouts. Just as with laptops, elements: the printer should be as close as possi- Tubes/Poles – Tubes should ble to the centerline of the vehicle to be adjustable, allowing the solution avoid airbags, or it should be mount- to be set to an ideal height. Ideally, ed in the passenger footwell area. A the solution must clear the center number of companies offer armrest console and provide enough clear- printer mounts which not only pro- ance for the officer to easily access vide a great mounting location, but the shift lever, radios, or light switch- also enhance officer comfort es that are located under the dock- Storage and Miscellaneous ing station. The tube should also – Traditional office workers don’t be as thick as possible to minimize worry about where to store their vibration, reducing the likelihood of pens or where to place their morning eye strain. coffee. Too often, creature comforts Swing Arms – These devices are forgotten in the mobile world. A allow an officer to position the com- good storage console will offer cup puter in several locations throughout holders and a place to store tissue, the cab. While driving, the laptop pencils, and paper. Don’t underesti- should be positioned as close to the mate the impacts these items have on centerline of the vehicle as possible worker comfort and job satisfaction. to avoid possible injury. During a Passenger Comfort – stop or while completing a report, Ergonomics in the mobile office do the laptop should be positioned as not apply only to the driver.
Recommended publications
  • Mobile Phones and Cloud Computing
    Mobile phones and cloud computing A quantitative research paper on mobile phone application offloading by cloud computing utilization Oskar Hamrén Department of informatics Human Computer Interaction Master’s programme Master thesis 2-year level, 30 credits SPM 2012.07 Abstract The development of the mobile phone has been rapid. From being a device mainly used for phone calls and writing text messages the mobile phone of today, or commonly referred to as the smartphone, has become a multi-purpose device. Because of its size and thermal constraints there are certain limitations in areas of battery life and computational capabilities. Some say that cloud computing is just another buzzword, a way to sell already existing technology. Others claim that it has the potential to transform the whole IT-industry. This thesis is covering the intersection of these two fields by investigating if it is possible to increase the speed of mobile phones by offloading computational heavy mobile phone application functions by using cloud computing. A mobile phone application was developed that conducts three computational heavy tests. The tests were run twice, by not using cloud computing offloading and by using it. The time taken to carry out the tests were saved and later compared to see if it is faster to use cloud computing in comparison to not use it. The results showed that it is not beneficial to use cloud computing to carry out these types of tasks; it is faster to use the mobile phone. 1 Table of Contents Abstract ..................................................................................................................................... 1 Table of Contents ..................................................................................................................... 2 1. Introduction .......................................................................................................................... 5 1.1 Previous research ........................................................................................................................
    [Show full text]
  • Uses and Effects of Mobile Computing Devices in K–8 Classrooms
    Uses and Effects of Mobile Computing Devices in K–8 Classrooms Karen Swan Mark van ‘t Hooft Annette Kratcoski Kent State University Darlene Unger Virginia Commonwealth University Abstract This preliminary study employed mixed methodologies to explore students’ use of mobile comput- ing devices and its effects on their motivation to learn, engagement in learning activities, and support for learning processes. Data collected from students in four elementary and two seventh grade science classes in Northeast Ohio included usage logs, student work samples, student and teacher interviews, and classroom observations. Findings highlight the personalization of learning afforded by such devices both in terms of individuals and individual classroom cultures, as well as their usefulness in extending learning beyond the classroom. They also sug- gest that increased motivation due to mobile device use leads to increases in the quality and quantity of student work. (Keywords: mobile computing, motivation, writing.) BACKGROUND More than a decade ago, Mark Weiser (1991) wrote that we live in a society in which technology is so pervasive that we do not notice it anymore when used for everyday tasks such as information retrieval, communication, and entertainment. Defining this environment as ubiquitous computing, he described it more as a state of mind, as “a new way of thinking about computers in the world . [that] allows the computers themselves to vanish into the background . [and] be- come indistinguishable from everyday life” (p. 94). As a result, the current gener- ation of K–12 students is growing up more technologically literate than children their age were a decade ago, with access to an increasing number of devices and services such as video game consoles, mobile gaming devices, cell phones, the In- ternet, and instant messaging.
    [Show full text]
  • On Energy Consumption of Mobile Cloud Gaming Using Gaminganywhere
    Thesis no.:MSEE-2016-54 On energy consumption of mobile cloud gaming using GamingAnywhere Suren Musinada Faculty of Computing Blekinge Institute of Technology SE–371 79 Karlskrona, Sweden This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Masters in Electrical Engineering with Emphasis on Telecommunication Systems. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Suren Musinada E-mail: [email protected] University advisor: Dr. Yong Yao Department of communication systems E-mail: [email protected] Faculty of Computing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 Abstract In the contemporary world, there has been a great proliferation of using smart-phone devices and broadband wireless networks, the young gener- ation using mobile gaming market is tremendously increasing because of the enormous entertainment features. Mobile cloud gaming is a promising technology that overcome the implicit restrictions such as computational capacity and limited battery life. GamingAnywhere is an open source cloud gaming system which is used in this thesis and calculate the energy con- sumption of mobile device when using GamingAnywhere. The aim of the thesis is to measure the power consumption of the mo- bile device when the game is streamed from the GamingAnywhere server to GamingAnywhere client. Total power consumption is calculated for four resolutions by using the hardware monsoon power monitoring tool and the individual components of mobile device such as CPU, LCD and Audio power are calculated by software PowerTutor.
    [Show full text]
  • Mobile Supercomputers
    EMBEDDED COMPUTING ing. We also anticipate the emergence of relatively simple, disposable devices Mobile that support the pervasive computing infrastructure—for example, sensor network nodes. The requirements of low-end devices Supercomputers are increasing exponentially, and com- puter architectures must adapt to keep Todd Austin, David Blaauw, Scott Mahlke, up. Some elements of high-end devices and Trevor Mudge, University of Michigan are already present in 3G cell phones Chaitali Chakrabarti, Arizona State University from the major manufacturers. High- Wayne Wolf, Princeton University end PDAs also include an amazing range of features, such as networking and cameras. oore’s law has held sway over the past several Current trends in computer decades, with the number architecture and power cannot M of transistors per chip doubling every 18 meet the demands of mobile months. As a result, a fairly inexpen- supercomputing. Significant sive CPU can perform hundreds of millions of operations per second— innovation is required. performance that would have cost mil- lions of dollars two decades ago. We should be proud of our achieve- puters. Rather than worrying solely SUPERCOMPUTING REQUIREMENTS ments and rest on our laurels, right? about performance, with the occa- A mobile supercomputer will employ Unfortunately, no. sional nod to power consumption and natural I/O interfaces to the mobile The human appetite for computation cost, we need to judge computers by user. For example, input could come has grown even faster than the pro- their performance-power-cost product. through a continuous real-time speech- cessing power that Moore’s law pre- This new way of looking at proces- processing component.
    [Show full text]
  • The Application of Personal Digital Assistants As Mobile Computing Device on Construction Site
    The Application of Personal Digital Assistants as Mobile Computing Device on Construction Site Kenji Kimoto, Kazuyoshi Endo, Satoru Iwashita and Mitsuhiro Fujiwara Konoike Construction Co., Ltd., Research Institute of Technology 1-20-1 Sakura, Tsukuba-Science City, IBARAKI 305-0003, Japan. {kimoto_kj, Iwashita_st, fujiwara_mh}@konoike.co.jp . Kogakuin University, Department of Architecture, 1-24-2 Nishishinjuku, Shinjyuku-ku, TOKYO 163-8677, Japan. [email protected] ABSTRACT: Construction managers need to access the real construction site to manage the construction project. They have recently handled various types of digital information such as drawings, specification, checklists and daily reports. They usually use sheets of paper and/or field notes. As a result, a gap in time and space between the outdoor construction site and the office, which leads to the low efficiency, occurs. This paper reports the application of PDA (Personal Digital Assistants) as mobile computing device for construction managers on construction sites. First, this paper describes the aim and the essential element of the mobile systems. This also shows the analysis of necessary functions as mobile computing device through the discussion with construction managers, and the concept of development of this computer-aided engineering system. Secondly, this paper describes the outline of below subsystems with PDA: Progress Monitoring System, Inspection System and Position Check System. Subsystems have two programs: the data input program in PDA and the output program in PC. Finally, this paper indicates the development of more refined process of construction management with the mobile computing device on construction site. • Progress Monitoring System has been built for construction managers to monitor the progress of works.
    [Show full text]
  • Sustainable Principles of Mobile Computing
    Journal of Information Technology & Software Engineering Short communication Sustainable Principles of Mobile Computing Nicholas Furness* Department of Trauma & Orthopaedics, Royal United Hospital Bath NHS Trust, Combe Park, Bath, United Kingdom ABSTRACT Mobile Computing is the advanced and developing computer application that allows voice and video transmission in the form of data through computer or wireless devices without any further linking. Mobile computing has three aspects: mobile communication, mobile hardware, and mobile software. Modern way of mobile computing view as any electronic device that helps you organize your life, communicate with coworkers or friends, or do your job more efficiently is part of mobile computing. Keywords: Mobile computing; Cloud computing; Internet of Things INTRODUCTION • Good battery life. Cloud computing empowered Internet of Things (IoT) • Huge memory capacity. technology has conceptualized the ideology of Industry 4.0. APPLICATIONS Inspired by this, the food industry 4.0 presents a unique concept for determining food quality in real-time. Conspicuously, the current research provides an IoT-based smart framework for Traffic evaluating the food-quality parameters in restaurants and food During traveling in traffic if we require to know road situation, outlets. IoT technology is primarily utilized to gather data that latest news and when if feel more stress in driving then can play can explicitly affect food quality within a food serving music and other important broadcast data are received through environment. This allows us to synthetically generate realistic Digital Audio Broadcasting (DAB). content requests starting from real-world databases of user activities in smart homes [1-3]. Emergencies situation FUTURE OF MOBILE COMPUTING Only Wireless networks work of communication in nature disaster 2 such as earthquakes, tsunami, flood, and fire.
    [Show full text]
  • Eff Dmca Jailbreaking Exemptio
    Before the U.S. COPYRIGHT OFFICE, LIBRARY OF CONGRESS In the matter of Exemption to Prohibition on Circumvention of Copyright Protection Systems for Access Control Technologies Docket No. 2014-07 Petition of Electronic Frontier Foundation Submitted by: Electronic Frontier Foundation Mitchell L. Stoltz Corynne McSherry Kit Walsh 815 Eddy St San Francisco, CA 94109 (415) 436-9333 [email protected] The Electronic Frontier Foundation submits the following petition and respectfully asks the Librarian of Congress to exempt the class of copyrighted works described below from 17 U.S.C. § 1201(a)(1)’s prohibition on the circumvention of access control technologies for 2015-2018: Proposed Class: Computer programs that enable mobile computing devices, such as telephone handsets and tablets, to execute lawfully obtained software, where circumvention is accomplished for the sole purposes of enabling interoperability of such software with computer programs on the device, or removing software from the device.1 I. The Commenting Party The Electronic Frontier Foundation (EFF) is a member-supported, nonprofit public interest organization devoted to maintaining the traditional balance that copyright law strikes between the interests of copyright owners and the interests of the public. Founded in 1990, EFF represents thousands of dues-paying members, including consumers, hobbyists, computer programmers, entrepreneurs, students, teachers, and researchers, who are united in their reliance on a balanced copyright system that ensures adequate protection for copyright owners while facilitating innovation and broad access to information in the digital age. 1 Petitioners expect to further develop the proposed exemption consistent with the principles identified in this petition and the record developed in the course of this proceeding.
    [Show full text]
  • Next Generation Mobile Computing
    Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 2, Issue. 9, September 2013, pg.41 – 47 RESEARCH ARTICLE NEXT GENERATION MOBILE COMPUTING N. LAKSHMI PRASANNA1, DR. R. V. KRISHNAIAH2 1RESEARCH SCHOLAR, DRKCET, HYDERABAD, INDIA 2PG CORDINATOR, DRKCET, HYDERABAD, INDIA Abstract— Mobile Computing is human Computer interaction which a computer is expected to be transported during normal usage which includes Mobile communication, Hardware, Software. Many of these systems operate within degraded network, power, or computing environments, such as for first-responders in a catastrophe, mobile phone users in remote regions or in countries where communication infrastructure is degraded. The emergence of inexpensive remote-controlled aircraft in the market place for hobbyists and businesses has created new use cases and challenges in surveillance and security, property surveying, home and car showcasing, search-and-rescue operations, and entertainment. Such remote-controlled aircraft use cases are likely to operate in both urban and rural environments and will face degraded communication infrastructure and power management concerns while maintaining and respecting quality-of-service properties for information, in support of search-and-rescue crews, law enforcement, or other support needs. In each of this scenario’s the desires and needs of the mobile computing customers are likely to outstrip the capacities of the supporting infrastructure, and the result can be degraded performance. Next generation mobile computing should increase the performance of receiving useful services and it should also increase the quality of services. I. INTRODUCTION “The combination of advances in hardware technology aligning with the current trends in web-based computing has led to a reduction in costs, thus increasing the availability of mobile computing paradigms.” Mobile computing is not a new field.
    [Show full text]
  • Artificial and Computational Intelligence for Games on Mobile Platforms
    Artificial and Computational Intelligence for Games on Mobile Platforms Clare Bates Congdon1, Philip Hingston2, and Graham Kendall3 1 Department of Computer Science, The University of Southern Maine, USA [email protected] 2 School of Computer and Security Science, Edith Cowan University, Australia [email protected] 3 School of Computer Science, University of Nottingham, UK and Malaysia [email protected] Abstract In this chapter, we consider the possibilities of creating new and innovative games that are targeted for mobile devices, such as smart phones and tablets, and that showcase AI (Artificial Intelligence) and CI (Computational Intelligence) approaches. Such games might take advantage of the sensors and facilities that are not available on other platforms, or might simply rely on the “app culture” to facilitate getting the games into users’ hands. While these games might be profitable in themselves, our focus is on the benefits and challenges of developing AI and CI games for mobile devices. 1998 ACM Subject Classification I.2.m Artificial Intelligence, miscellaneous Keywords and phrases Games, mobile, artificial intelligence, computational intelligence Digital Object Identifier 10.4230/DFU.Vol6.12191.101 1 Introduction Games are an appealing application to showcase AI (Artificial Intelligence) and CI (Com- putational Intelligence) approaches because they are popular and ubiquitous, attracting a diverse range of users. Mobile games are easier to bring to market than commercial (large scale) video games. This makes them a practical choice for development and study in an academic environment, using relatively small teams of academics and students, who are able to work on relatively low budgets.
    [Show full text]
  • The Challenges of Wearable Computing: Part 2
    THE CHALLENGES OF WEARABLE COMPUTING: PART 2 WEARABLE COMPUTING PURSUES AN INTERFACE IDEAL OF A CONTINUOUSLY WORN, INTELLIGENT ASSISTANT THAT AUGMENTS MEMORY, INTELLECT, CREATIVITY, COMMUNICATION, AND PHYSICAL SENSES AND ABILITIES. MANY CHALLENGES AWAIT WEARABLE DESIGNERS. PART 2 BEGINS WITH THE CHALLENGES OF NETWORK RESOURCES AND PRIVACY CONCERNS. THIS SURVEY DESCRIBES THE POSSIBILITIES OFFERED BY WEARABLE SYSTEMS AND, IN DOING SO, DEMONSTRATES ATTRIBUTES UNIQUE TO THIS CLASS OF COMPUTING. Challenges throughput. Another serious issue is open The most immediately striking challenge standards to enable interoperability between in designing wearable computers is creating different services. For example, only one long- appropriate interfaces. However, the issues of range radio should be necessary to provide power use, heat dissipation, networking, and telephony, text messaging, Global Positioning privacy provide a necessary framework in System (GPS) correction signals, and so on. which to discuss interface. Part 1 of this arti- For wearable computers, networking cle covers the first two of these issues; Part 2 involves communication off body to the fixed begins with the networking discussion. network, on body among devices, and near Thad Starner body with objects near the user. Each of these Networking three network types requires different design Georgia Institute of As with any wireless mobile device, the decisions. Designers must also consider pos- amount of power and the type of services sible interference between the networks. Technology available can constrain networking. Wearable computers could conserve resources through Off-body communications. Wireless commu- improved coordination with the user inter- nication from mobile devices to fixed infra- face. For example, the speed at which a given structure is the most thoroughly researched of information packet is transferred can be bal- these issues.
    [Show full text]
  • Pdas and Smartphones in the Classroom Teaching and Technology Trends Symposium March 30, 2007 Jimmy D
    PDAs and Smartphones in the Classroom Teaching and Technology Trends Symposium March 30, 2007 Jimmy D. Clark, Instructional Design Specialist Introduction Figure 1: Mobile Devices Today’s young learners use mobile devices such as cell phones, PDAs, MP3 players, and GPS devices every day. They enjoy learning as part of a group or team, or even in a “smartmob” or “learning swarm.” They play computer games, interact constantly with each other on websites such as Facebook and MySpace, and wish their college learning experience matched the learning they do in their everyday lives. Mobile learning technologies give them this opportunity. In this workshop we will focus on how PDAs and smartphones facilitate learning in today’s new teaching and learning environment. What You Will Learn in this Workshop In this workshop you will learn what mobile learning is: its history, some of the advantages of mobile learning, and about some of the tools used in mobile learning. You will also learn about the features of a PDA, its history, and the ways they are used in education. We will also talk about the challenges of using PDAs in education, with special emphasis on accessibility issues. In the last part of our discussion of PDAs we will talk about future trends in the use of PDAs in education. In the section on smartphones we will discuss what a smartphone is, its features, operating systems, the history of the smartphone, the reasons they are popular in education, and future trends in smartphones. This will not be a hands-on workshop. Goals and Objectives for this Workshop The goals and objectives for this workshop are: 1.
    [Show full text]
  • Mobile and Ubiquitous Computing Introduction
    Mobile and Ubiquitous Computing Introduction George Roussos [email protected] Session Overview • The mobile computing paradigm • The ubiquitous computing paradigm • Elements of mobile and ubiquitous computing • Enabling technologies • Computer science challenges • Applications and their role 1940s: NACA Computer Room 1950s: LEO Computer 1960s: SABRE on IBM 7090 1970s: Dec PDP-7 1980s: IBM PC (5150) 1990s: Nokia 9000 2000: Berkley Motes and VeriChip 2008: 1mm3 Michigan Micro Mote and Hitachi mu-chip Main ingredients • Possible due to minaturisation of computing and communication devices • Automatic links between physical and digital worlds • Reality embedded with and embedded in information space aka cyber-physical space • Dual existence for – People – Places – Things Device numbers vs. complexity Example • BMW 745i • 2,000,000 LOC • Windows CE • 53 8-bit processors • 11 32-bit processors • 7 16-bit processors • Multiple networks What networks does this car have? What other networks can you think of? Mobile Computing • The application of small, portable, and wireless computing and communication devices • Being able to use a computing device even when being on the move (and thus changing location) • Portability is one aspect of mobile computing – portable vs. mobile • Mobile telephony in particular allows you to make and receive voice calls on the move Mobile Computing Ingredients • Device – laptop, PDA, mobile phone, tablet, smart phone • Network – cellular telephony, data over cellular, wi-fi, Bluetooth, Zigbee, infra-red, 3G, 4G
    [Show full text]