Salamander Taxonomy

Total Page:16

File Type:pdf, Size:1020Kb

Salamander Taxonomy Ecological Monitoring 2013 rare Charitable Research Reserve Photo Credit (clockwise from top left): Amy Reinert, Jenna Quinn, Peter Kelly, Jenna Quinn Prepared by: Funded by: Jenna Quinn rare Charitable Research Reserve Amy Reinert Science Horizons Carleigh Pope Natural Resources Canada Science & Technology Internship Program HIVA Foundation Table of Contents 1.0 INTRODUCTION-------------------------------------------------------------------------------------------------------------10 1.1 Ecological Monitoring------------------------------------------------------------------------------------------------10 1.2 Ecological Monitoring Assessment Network (EMAN)--------------------------------------------------------10 1.3 Ecological Monitoring at rare Charitable Research Reserve-----------------------------------------------10 1.4 Literature Cited--------------------------------------------------------------------------------------------------------12 2.0 BUTTERFLY MONITORING------------------------------------------------------------------------------------------------13 2.1 Introduction------------------------------------------------------------------------------------------------------------13 2.1.1 Lepidoptera Taxonomy---------------------------------------------------------------------------------------13 2.1.2 Why Monitor Butterflies?------------------------------------------------------------------------------------13 2.1.3 Butterfly Monitoring at rare Charitable Research Reserve-----------------------------------------13 2.2 Methods-----------------------------------------------------------------------------------------------------------------14 2.2.1 Transect Descriptions-----------------------------------------------------------------------------------------14 2.2.2 Monitoring Protocol------------------------------------------------------------------------------------------14 2.2.3 Data Analysis---------------------------------------------------------------------------------------------------15 2.3 Results-------------------------------------------------------------------------------------------------------------------16 2.3.1 Overall Abundance and Diversity--------------------------------------------------------------------------16 2.3.2 Transect One: Cliffs and Alvars-----------------------------------------------------------------------------18 2.3.3 Transect Two: South Field/Sparrow Field----------------------------------------------------------------20 2.3.4 Transect Three: Thompson Tract--------------------------------------------------------------------------23 2.3.5 Transect Four: Blair Flats------------------------------------------------------------------------------------26 2.3.6 Weather Conditions-------------------------------------------------------------------------------------------29 2.3.7 Annual Butterfly Count---------------------------------------------------------------------------------------30 2.4 Discussion---------------------------------------------------------------------------------------------------------------30 2.4.1 Overall Abundance and Diversity--------------------------------------------------------------------------30 2.4.2 Transect One: Cliffs and Alvars-----------------------------------------------------------------------------31 2.4.3 Transect Two: South Field/Sparrow Field----------------------------------------------------------------31 2.4.4 Transect Three: Thompson Tract--------------------------------------------------------------------------32 2.4.5 Transect Four: Blair Flats------------------------------------------------------------------------------------33 2.4.6 Noteworthy Observations for the 2013 Monitoring Season-----------------------------------------33 2.4.7 Species Population Trends for the 2013 Monitoring Season----------------------------------------34 2.4.8 Overall Trends for the 5 Year Monitoring Program---------------------------------------------------35 2.5 Conclusions and Recommendations------------------------------------------------------------------------------36 2.6 Literature Cited--------------------------------------------------------------------------------------------------------38 3.0 PLETHODONTID MONITORING------------------------------------------------------------------------------------------40 3.1 Introduction------------------------------------------------------------------------------------------------------------40 3.1.1 Salamander Taxonomy---------------------------------------------------------------------------------------40 3.1.2 Global Amphibian Decline-----------------------------------------------------------------------------------40 3.1.3 Plethodontid Salamanders as Indicator Species--------------------------------------------------------41 3.1.4 Plethodontid Salamander Monitoring at rare----------------------------------------------------------41 3.2 Methods-----------------------------------------------------------------------------------------------------------------42 3.2.1 Monitoring Locations-----------------------------------------------------------------------------------------42 3.2.2 Monitoring Protocol------------------------------------------------------------------------------------------43 3.2.3 Data Analysis---------------------------------------------------------------------------------------------------45 3.3 Results-------------------------------------------------------------------------------------------------------------------46 3.3.1 Total Abundance-----------------------------------------------------------------------------------------------46 3.3.2 Eastern Red-backed Salamander Abundance-----------------------------------------------------------46 3.3.3 Salamander Species Composition--------------------------------------------------------------------------49 3.3.4 Eastern Red-backed Salamander Size Class Distribution---------------------------------------------50 3.3.5 Environmental Parameters----------------------------------------------------------------------------------51 3.4 Discussion---------------------------------------------------------------------------------------------------------------55 3.4.1 Eastern Red-backed Salamander Abundance-----------------------------------------------------------55 3.4.2 Salamander Species Composition--------------------------------------------------------------------------56 3.4.3 Eastern Red-backed Salamander Size Class Distribution---------------------------------------------57 3.4.4 Environmental Parameters----------------------------------------------------------------------------------59 3.5 Conclusions and Recommendations------------------------------------------------------------------------------60 3.6 Literature Cited--------------------------------------------------------------------------------------------------------61 4.0 FORESTCANOPY AND TREE BIODIVERSITY MONITORING--------------------------------------------------------66 4.1 Introduction------------------------------------------------------------------------------------------------------------66 4.1.1 Forest Monitoring---------------------------------------------------------------------------------------------66 4.1.2 EMAN Forest Monitoring at rare--------------------------------------------------------------------------66 4.2 Methods-----------------------------------------------------------------------------------------------------------------68 4.2.1 Forest Plot Locations------------------------------------------------------------------------------------------68 4.2.2 Monitoring Protocol: Plot Establishment----------------------------------------------------------------68 4.2.3 Monitoring Protocol: Procedure---------------------------------------------------------------------------72 4.2.4 Monitoring Protocol: Procedure: Shrub and Small Tree----------------------------------------------73 4.2.5 Data Analysis---------------------------------------------------------------------------------------------------74 4.3 Results-------------------------------------------------------------------------------------------------------------------76 4.3.1 Tree Species Diversity-----------------------------------------------------------------------------------------76 4.3.2 Stand Characteristics and Size Class----------------------------------------------------------------------81 4.4 Discussion---------------------------------------------------------------------------------------------------------------84 4.4.1 Tree Species Diversity-----------------------------------------------------------------------------------------84 4.4.2 Stand Characteristics and Size Class----------------------------------------------------------------------86 4.5 Conclusions and Recommendations------------------------------------------------------------------------------88 4.6 Literature Cited--------------------------------------------------------------------------------------------------------91 5.0 SOIL HUMUS DECAY RATE MONITORING----------------------------------------------------------------------------94 5.1 Introduction------------------------------------------------------------------------------------------------------------94 5.1.1 Soil Characteristics and Functions-------------------------------------------------------------------------94 5.1.2 Soil Humus Decay Rate Monitoring at rare-------------------------------------------------------------94 5.2 Methods-----------------------------------------------------------------------------------------------------------------95
Recommended publications
  • Biodiversity Work Group Report: Appendices
    Biodiversity Work Group Report: Appendices A: Initial List of Important Sites..................................................................................................... 2 B: An Annotated List of the Mammals of Albemarle County........................................................ 5 C: Birds ......................................................................................................................................... 18 An Annotated List of the Birds of Albemarle County.............................................................. 18 Bird Species Status Tables and Charts...................................................................................... 28 Species of Concern in Albemarle County............................................................................ 28 Trends in Observations of Species of Concern..................................................................... 30 D. Fish of Albemarle County........................................................................................................ 37 E. An Annotated Checklist of the Amphibians of Albemarle County.......................................... 41 F. An Annotated Checklist of the Reptiles of Albemarle County, Virginia................................. 45 G. Invertebrate Lists...................................................................................................................... 51 H. Flora of Albemarle County ...................................................................................................... 69 I. Rare
    [Show full text]
  • Uncus Shaped Akin to Elephant Tusks Defines a New Genus for Two Very Different-In-Appearance Neotropical Skippers (Hesperiidae: Pyrginae)
    The Journal Volume 45: 101-112 of Research on the Lepidoptera ISSN 0022-4324 (PR in T ) THE LEPIDOPTERA RESEARCH FOUNDATION, 29 DE C EMBER 2012 ISSN 2156-5457 (O N L in E ) Uncus shaped akin to elephant tusks defines a new genus for two very different-in-appearance Neotropical skippers (Hesperiidae: Pyrginae) Nic K V. GR ishin Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA 75390-9050 [email protected] Abstract. Analyses of male genitalia, other aspects of adult, larval and pupal morphology, and DNA COI barcode sequences suggest that Potamanaxas unifasciata (C. Felder & R. Felder, 1867) does not belong to Potamanaxas Lindsey, 1925 and not even to the Erynnini tribe, but instead is more closely related to Milanion Godman & Salvin, 1895 and Atarnes Godman & Salvin, 1897, (Achlyodini). Unexpected and striking similarities are revealed in the male genitalia of P. unifasciata and Atarnes hierax (Hopffer, 1874). Their genitalia are so similar and distinct from the others that one might casually mistake them for the same species. Capturing this uniqueness, a new genus Eburuncus is erected to include: E. unifasciata, new combination (type species) and E. hierax, new combination. Key words: phylogenetic classification, monophyletic taxa, immature stages, DNA barcodes,Atarnes sallei, Central America, Peru. INTRODUCT I ON 1982-1999). Most of Burns’ work derives from careful analysis of genitalia, recently assisted by morphology Comprehensive work by Evans (e.g. Evans, 1937; of immature stages and molecular evidence (e.g. 1952; 1953) still remains the primary source of Burns & Janzen, 2005; Burns et al., 2009; 2010).
    [Show full text]
  • Impact of Non-Lethal Genetic Sampling on the Survival, Longevity and Behaviour of the Hermes Copper (Lycaena Hermes) Butterfly
    Insect Conservation and Diversity (2013) doi: 10.1111/icad.12024 Impact of non-lethal genetic sampling on the survival, longevity and behaviour of the Hermes copper (Lycaena hermes) butterfly 1 2 3 DANIEL A. MARSCHALEK, JULIA A. JESU and MARK E. BERRES 1Department of Entomology, University of Wisconsin, Madison, WI, USA, 2Biology Department, San Diego State University, San Diego, CA, USA and 3Department of Animal Sciences, University of Wisconsin, Madison, WI, USA Abstract. 1. Genetic techniques are important tools for conservation, but tissue sampling for DNA analysis can be particularly detrimental to small study organisms. Historically, obtaining DNA samples from small insects and butter- flies has involved destructive (lethal) methods. 2. Recent improvements to DNA purification technologies have increased the likelihood that non-lethal sampling will be successful. In spite of this, only a few studies have evaluated the impacts of sampling on survival and behaviour. 3. The Hermes copper, Lycaena hermes (Edwards), butterfly has a restricted distribution and generally less than 10 individuals are encountered at any one location. Non-lethal DNA sampling would allow for genetic studies that have the potential to augment conservation decisions without causing local extirpations. 4. We demonstrate that removing a leg from an adult male Hermes copper does not have a measureable effect on their survival, longevity or behaviour. In addition, a single leg provides a sufficient DNA sample for amplified fragment length polymorphism studies. 5. The Hermes copper butterfly represents the smallest butterfly species for which the survival and behaviour has been assessed in relation to non-lethal tis- sue sampling. This suggests that research involving smaller and more delicate species could utilise leg removal as a non-lethal genetic sampling technique.
    [Show full text]
  • Orange Sulphur, Colias Eurytheme, on Boneset
    Orange Sulphur, Colias eurytheme, on Boneset, Eupatorium perfoliatum, In OMC flitrh Insect Survey of Waukegan Dunes, Summer 2002 Including Butterflies, Dragonflies & Beetles Prepared for the Waukegan Harbor Citizens' Advisory Group Jean B . Schreiber (Susie), Chair Principal Investigator : John A. Wagner, Ph . D . Associate, Department of Zoology - Insects Field Museum of Natural History 1400 South Lake Shore Drive Chicago, Illinois 60605 Telephone (708) 485 7358 home (312) 665 7016 museum Email jwdw440(q-), m indsprinq .co m > home wagner@,fmnh .orq> museum Abstract: From May 10, 2002 through September 13, 2002, eight field trips were made to the Harbor at Waukegan, Illinois to survey the beach - dunes and swales for Odonata [dragonfly], Lepidoptera [butterfly] and Coleoptera [beetles] faunas between Midwest Generation Plant on the North and the Outboard Marine Corporation ditch at the South . Eight species of Dragonflies, fourteen species of Butterflies, and eighteen species of beetles are identified . No threatened or endangered species were found in this survey during twenty-four hours of field observations . The area is undoubtedly home to many more species than those listed in this report. Of note, the endangered Karner Blue butterfly, Lycaeides melissa samuelis Nabakov was not seen even though it has been reported from Illinois Beach State Park, Lake County . The larval food plant, Lupinus perennis, for the blue was not observed at Waukegan. The limestone seeps habitat of the endangered Hines Emerald dragonfly, Somatochlora hineana, is not part of the ecology here . One surprise is the. breeding population of Buckeye butterflies, Junonia coenid (Hubner) which may be feeding on Purple Loosestrife . The specimens collected in this study are deposited in the insect collection at the Field Museum .
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Butterfly Migrations in Florida: Seasonal Patterns and Long-Term
    POPULATION ECOLOGY Butterfly Migrations in Florida: Seasonal Patterns and Long-Term Changes THOMAS J. WALKER1 Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611Ð0620 Environ. Entomol. 30(6): 1052Ð1060 (2001) ABSTRACT Flight traps at Gainesville, in north-central Florida, operating from 1984 to spring 2000, separated butterßies migrating into the Florida peninsula (SSE Ϯ 90Њ) from those migrating out of the Florida peninsula (NNW Ϯ 90Њ). Five species ßew southward in the fall and northward in the spring: Phoebis sennae (L.), Agraulis vanillae (L.), Junonia coenia (Hu¨ bner), Urbanus proteus (L.), and Eurema lisa (Boisduval & LeConte). Five species had signiÞcant northward ßights in spring but no signiÞcant migration in fall: Pieris rapae (L.), Vanessa virginiensis (Drury), Vanessa atalanta (L.), Eurytides marcellus (Cramer), and Libytheana bachmanii (Kirtland). Danaus plexippus (L.) had a southward ßight in fall but no signiÞcant migration in spring. Eurema daira (Godart) switched from a net movement northward in early fall to a net movement southward in late fall, whereas Eurema nicippe (Cramer) maintained a net movement northward throughout the fall. The major migrants differed signiÞcantly in the seasonal timing and duration of peak migration. When the numbers trapped were greatest, the proportion of those ßying in the migratory direction was greatest. The numbers of spring migrants of A. vanillae increased during the course of the study, whereas both the spring and fall migrations of J. coenia declined. The fall migrations of P. sennae and U. proteus declined sharply. In 1990Ð1999, the fall migrations of P. sennae and U. proteus averaged only 37 and 15% of what they had averaged in 1984Ð1989.
    [Show full text]
  • Michigan Butterfly Network Handbook
    Michigan Butterfly Network Handbook Kalamazoo Nature Center 2018 Introduction Habitat loss and fragmentation have widespread effects on their respective plant and animal communities. Land managers and stewards must decide how to best approach site restoration, management, and conservation in this new and changing world. Specifically, population decline and species loss are critical components when developing a conservation plan. In Michigan, agricultural land usage has reduced the size of native prairie lands and drained wetlands, both of which are important habitats of plant and animal species, such as native butterflies. Butterflies are charismatic biological indicators that we can use to assess the effects of habitat augmentation and the general health of an ecosystem. Butterflies have unique life histories and specific habitat requirements. Long-term monitoring can be used to assess butterfly status and trends. Abundances can fluctuate from year to year due to sensitivities to climate and habitat structure and a multiple-year approach is necessary to assess how different species of native butterflies are responding to changes occurring in their natural environment over time. We can then use relative population densities of species in the field to assess land management programs and develop butterfly conservation programs. These methods will allow us to uncover population declines before it is too late. How can we monitor and assess butterfly population sizes and trends at a large, statewide scale? We can do this with the help of citizen scientists! We can collect data on butterfly species and populations in a region to gather information on long-term, large-scale trends with our standard monitoring protocol (methodology).
    [Show full text]
  • Origins of Six Species of Butterflies Migrating Through Northeastern
    diversity Article Origins of Six Species of Butterflies Migrating through Northeastern Mexico: New Insights from Stable Isotope (δ2H) Analyses and a Call for Documenting Butterfly Migrations Keith A. Hobson 1,2,*, Jackson W. Kusack 2 and Blanca X. Mora-Alvarez 2 1 Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 0H3, Canada 2 Department of Biology, University of Western Ontario, Ontario, ON N6A 5B7, Canada; [email protected] (J.W.K.); [email protected] (B.X.M.-A.) * Correspondence: [email protected] Abstract: Determining migratory connectivity within and among diverse taxa is crucial to their conservation. Insect migrations involve millions of individuals and are often spectacular. However, in general, virtually nothing is known about their structure. With anthropogenically induced global change, we risk losing most of these migrations before they are even described. We used stable hydrogen isotope (δ2H) measurements of wings of seven species of butterflies (Libytheana carinenta, Danaus gilippus, Phoebis sennae, Asterocampa leilia, Euptoieta claudia, Euptoieta hegesia, and Zerene cesonia) salvaged as roadkill when migrating in fall through a narrow bottleneck in northeast Mexico. These data were used to depict the probabilistic origins in North America of six species, excluding the largely local E. hegesia. We determined evidence for long-distance migration in four species (L. carinenta, E. claudia, D. glippus, Z. cesonia) and present evidence for panmixia (Z. cesonia), chain (Libytheana Citation: Hobson, K.A.; Kusack, J.W.; Mora-Alvarez, B.X. Origins of Six carinenta), and leapfrog (Danaus gilippus) migrations in three species. Our investigation underlines Species of Butterflies Migrating the utility of the stable isotope approach to quickly establish migratory origins and connectivity in through Northeastern Mexico: New butterflies and other insect taxa, especially if they can be sampled at migratory bottlenecks.
    [Show full text]
  • Rediscovery of the Threatened Butterfly Nymphalis Vaualbum in Croatia with Remarks on Its Historical Findings
    NAT. CROAT. VOL. 21 No 1 259¿262 ZAGREB June 30, 2012 short communication / kratko priop}enje REDISCOVERY OF THE THREATENED BUTTERFLY NYMPHALIS VAUALBUM IN CROATIA WITH REMARKS ON ITS HISTORICAL FINDINGS IVA MIHOCI1, MARKO KRI[TOVI]2 & MARTINA [A[I]1 1Croatian Natural History Museum, Department of Zoology, Demetrova 1, 10000 Zagreb, Croatia ([email protected]) 2INA National Oil Industry d.d., Department of Logistics – Sustainable Development, Avenija Ve}eslava Holjevca 10, 10 002 Zagreb, Croatia Mihoci, I., Kri{tovi}, M. & [a{i}, M.: Rediscovery of the threatened butterfly Nymphalis vau- album in Croatia with remarks on its historical findings. Nat. Croat., Vol. 21, No. 1., 259–262, 2012, Zagreb. After more than 40 years, the nymphalid butterfly Nymphalis vaualbum was rediscovered in Croa- tia. A single specimen was found on Mt. Papuk in the spring area of the Dubo~anka stream in July 2004. The habitats on Mt. Papuk are suitable for the species' long term survival; therefore the area was proposed as a NATURA 2000 site for this threatened and protected species. As the species has disappeared from many European countries, this recent record is of great importance and empha- sizes the need for further field research efforts to confirm resident populations of the species, its distribution area and population status. Key words: Nymphalis vaualbum, False Comma, distribution, new finding, Croatia Mihoci, I., Kri{tovi}, M. & [a{i}, M.: Novi nalaz ugro`enog leptira Nymphalis vaualbum u Hrvatskoj s osvrtom na povijesne nalaze. Nat. Croat., Vol. 21, No. 1., 259–262, 2012, Zagreb. Nakon vi{e od 40 godina bijela ri|a Nymphalis vaualbum, danji leptir iz porodice {arenaca, po- novno je prona|en u Hrvatskoj.
    [Show full text]
  • Journal of the Lepidopterists' Society
    J OURNAL OF T HE L EPIDOPTERISTS’ S OCIETY Volume 62 2008 Number 2 Journal of the Lepidopterists’ Society 61(2), 2007, 61–66 COMPARATIVE STUDIES ON THE IMMATURE STAGES AND DEVELOPMENTAL BIOLOGY OF FIVE ARGYNNIS SPP. (SUBGENUS SPEYERIA) (NYMPHALIDAE) FROM WASHINGTON DAVID G. JAMES Department of Entomology, Washington State University, Irrigated Agriculture Research and Extension Center, 24105 North Bunn Road, Prosser, Washington 99350; email: [email protected] ABSTRACT. Comparative illustrations and notes on morphology and biology are provided on the immature stages of five Arg- ynnis spp. (A. cybele leto, A. coronis simaetha, A. zerene picta, A. egleis mcdunnoughi, A. hydaspe rhodope) found in the Pacific Northwest. High quality images allowed separation of the five species in most of their immature stages. Sixth instars of all species possessed a fleshy, eversible osmeterium-like gland located ventrally between the head and first thoracic segment. Dormant first in- star larvae of all species exposed to summer-like conditions (25 ± 0.5º C and continuous illumination), 2.0–2.5 months after hatch- ing, did not feed and died within 6–9 days, indicating the larvae were in diapause. Overwintering of first instars for ~ 80 days in dark- ness at 5 ± 0.5º C, 75 ± 5% r.h. resulted in minimal mortality. Subsequent exposure to summer-like conditions (25 ± 0.5º C and continuous illumination) resulted in breaking of dormancy and commencement of feeding in all species within 2–5 days. Durations of individual instars and complete post-larval feeding development durations were similar for A. coronis, A. zerene, A. egleis and A.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • PHYLOGENY and ZOOGEOGRAPHY of the BIGGER and BETTER GENUS at ALOPEDES (HESPERIIDAE) What Makes Atalopedes Bigger and Better Is T
    Journal of the Lepidopterists' Society 43(1), 1989. 11-32 PHYLOGENY AND ZOOGEOGRAPHY OF THE BIGGER AND BETTER GENUS ATALOPEDES (HESPERIIDAE) JOHN M. BURNS Department of Entomology. NHB 169, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560 ABSTRACT. What makes Atalopedes bigger and better is the addition of two tropical species, A. clarkei, new species and A. bahiensis (Schaus), and the subtraction of another, nabokovi (Bell & Comstock), which belongs in Hesperia. Comparison of genus Atalopedes with its sister Hesperia, using characters of size, antenna, facies, stigma, and, especially, male and female genitalia, precedes comparisons among the species of Atalopedes, using these same characters. The five species form three highly distinct groups, whose phylo­ genetic sequence is (1) A. campestris (Boisduval), which ranges from equator to USA; (2) the mesogramma group-A. mesogramma (Latreille), on most Greater Antilles, Isle of Pines, and some Bahama Islands including New Providence, and A. carteri Evans, New Providence Island; and (3) the clarkei group-A. clarkei, Margarita Island, Vene­ zuela, plus Cartagena, Colombia, and A. bahiensis, coastal central Brazil. The far-out clarkei group has switched its ecologic niche to seashore grass; habitat is very restricted. The older the species of Atalopedes, the wider its geographic range. Additional key words: genitalia (male and female), Hesperia, H. nabokovi, taxonomy, evolution. What makes Atalopedes bigger and better is the addition of two tropical species, an undescribed one plus its misplaced sister, and the subtraction of another, nabokovi (Bell & Comstock), which belongs in Hesperia (Burns 1987). Because the five resulting species form three highly distinct clusters, Atalopedes seems riddled by extinctions-far more than sister genus Hesperia, which, with four times as many species, is still relatively compact.
    [Show full text]