antibiotics Article Antimicrobial and Antivirulence Impacts of Phenolics on Salmonella Enterica Serovar Typhimurium Zabdiel Alvarado-Martinez 1 , Paulina Bravo 2, Nana-Frekua Kennedy 2, Mayur Krishna 3, Syed Hussain 3, Alana C. Young 2 and Debabrata Biswas 1,2,4,* 1 Biological Sciences Program-Molecular and Cellular Biology, University of Maryland-College Park, College Park, MD 20742, USA;
[email protected] 2 Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA;
[email protected] (P.B.);
[email protected] (N.-F.K.);
[email protected] (A.C.Y.) 3 Department of Public Health, University of Maryland, College Park, MD 20742, USA;
[email protected] (M.K.);
[email protected] (S.H.) 4 Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA * Correspondence:
[email protected]; Tel.: +1-30-1405-3791 Received: 11 September 2020; Accepted: 2 October 2020; Published: 3 October 2020 Abstract: Salmonella enterica serovar Typhimurium (ST) remains a major infectious agent in the USA, with an increasing antibiotic resistance pattern, which requires the development of novel antimicrobials capable of controlling ST. Polyphenolic compounds found in plant extracts are strong candidates as alternative antimicrobials, particularly phenolic acids such as gallic acid (GA), protocatechuic acid (PA) and vanillic acid (VA). This study evaluates the effectiveness of these compounds in inhibiting ST growth while determining changes to the outer membrane through fluorescent dye uptake and scanning electron microscopy (SEM), in addition to measuring alterations to virulence genes with qRT-PCR. Results showed antimicrobial potential for all compounds, significantly inhibiting the detectable growth of ST.