Concrete Is the Single Most Widely Used Material in the World – and It Has a Carbon Footprint to Match

Total Page:16

File Type:pdf, Size:1020Kb

Concrete Is the Single Most Widely Used Material in the World – and It Has a Carbon Footprint to Match Construction ACITORE | DREAMSTIME.COM | ACITORE The concrete conundrum Concrete is the single most widely used material in the world – and it has a carbon footprint to match. James Mitchell Crow looks at some of the approaches being used to ease the material’s environmental impact 62 | Chemistry World | March 2008 www.chemistryworld.org CW.03.08.Concrete.indd 62 19/02/2008 10:42:24 but also for rather more glamorous In short projects. The Burj Dubai skyscraper, Concrete production still under construction but already contributes 5 per cent well over half a kilometre high – the of annual anthropogenic final height remains secret, but the global CO2 production, building is set to dwarf all other mainly because such vast man-made structures – relies on a quantities are used highly flowable concrete mixture Humans have used that doesn’t harden before it can concrete for millennia – be pumped to the top of the tower, its basic ingredients date yet forms a strong and robust final back to ancient Egypt product. And Japan’s construction CO2 is a product of the industry has pioneered ultra- main reaction that makes strength varieties from which to cement – concrete’s key build its earthquake-proof bridges, ingredient and the Tokyo apartment blocks that Development of new form some of the most expensive concrete additives could real estate in the world. produce a stronger, more Humans have been using concrete workable material whilst in their pioneering architectural reducing the amount of feats for millennia. The basic cement required and the ingredients – sand and gravel resulting CO2 emissions (aggregate), a cement-like binder, and water – were being mixed at least as far back as Egyptian times. The Romans are well-documented masters of the material, using it to create such wonders as the Pantheon in Rome, topped with its gravity- defying 43.3-metre-diameter concrete dome: now over 2000 years old but still the world’s largest non- reinforced concrete dome. With the loss of Roman concrete expertise as the Empire fell into decline, concrete’s secrets didn’t re-emerge until just 200 years ago. Modern concrete was born in the early nineteenth century, with the discovery of Portland cement, the key ingredient used in concretes today. The process of roasting, and then grinding to a powder, limestone and clay to make ‘artificial stone’ was patented in 1824 by Joseph Aspidin of Leeds, UK, and later refined by Already 605 metres high, his son William into a material very the Burj skyscraper in close to the cement used today. Dubai will be the world’s The main reaction occurring in tallest building Aspidin’s kiln was the formation of calcium silicates, from calcium Concrete has a problem. Already concrete is because it is in fact a very carbonate (limestone) and silicates pilloried through its use in countless low impact material,’ says Karen that make up clay. At temperatures architectural eyesores, from tower Scrivener, head of the construction approaching 1000oC, the two raw blocks to carparks, concrete’s laboratory at the Swiss Federal materials break down into their environmental credentials are also Institute of Technology, Lausanne. component oxides – and as the now coming under scrutiny. The ‘If you replace concrete with any temperature rises further, then material is used so widely that world other material, it would have a bigger combine into di- and tri-calcium cement production now contributes carbon footprint. Many people have ‘The reason silicate. The lesser quantities of 5 per cent of annual anthropogenic the idea that if you built in steel concrete iron and aluminium in the clay also global CO2 production, with China’s you’d make things better – but in fact react with calcium, giving the minor booming construction industry you’d make things worse. The reason has such a components of Portland cement. producing 3 per cent alone. And concrete has a big carbon footprint big carbon Finally, this mixture, called clinker, the problem looks set to get worse: as a whole is that there are just such is ground to a powder, and gypsum already produced in over 2 billion huge quantities used.’ footprint is is added. tonne quantities per year, by 2050, Concrete is used in such large because such To convert this powdery mixture concrete use is predicted to reach amounts because it is, simply, a into a concrete, which Aspidin four times the 1990 level. remarkably good building material: huge quantities senior claimed was as beautiful as ‘The reason there’s so much not just for basic road construction, are used’ Portland stone (hence its name), www.chemistryworld.org Chemistry World | March 2008 | 63 CW.03.08.Concrete.indd 63 19/02/2008 10:42:49 Construction be lowered using additives called plasticisers. The concrete lorries that rumble along our roads today are likely to be carrying a complex mixture of chemical additives, in addition to the basic ingredients of concrete. But like most aspects of concrete chemistry, this is not a new development – the Romans are PASCAL GOETGHELUCK / SCIENCE PHOTO LIBRARY PHOTO SCIENCE / GOETGHELUCK PASCAL known to have included additives such as animal blood to improve concrete performance, and the Chinese added sticky rice to their mixtures when building the Great Wall during the Ming dynasty. ‘People do dispute this, but I would say the water: cement ratio for complete hydration was 0.32,’ said Marios Soutsos. ‘But to get the strength you don’t need to have complete hydration. We are going down to a ratio of 0.16, with admixtures, and that gives higher strength than a completely hydrated system. The only thing preventing us from going below that is the workability of the concrete. More efficient chemical admixtures may allow us to.’ just add water and aggregate. The strong varieties – so less concrete is Electron micrograph of One company hoping to extend resulting calcium silicate hydrates required to do the same job. gypsum crystals (brown) that limit further is BASF. Their form an extended network of bonds Achieving strong concrete is a formed in setting construction chemicals business – which bind together the solid fine balancing act. Too many pores concrete (blue) greatly expanded by the purchase of aggregate. However, the exact role of filled with unreacted water weaken Degussa’s construction business on 1 the lesser components of the cement the final structure, but a certain July 2006 – is one of the main drivers remains vague. amount of water is required to keep Karen Scrivener at the of admixture chemistry, according While the chemistry of concrete the mixture workable. However, Swiss Federal Institute to Soutsos. may still not be entirely understood, this threshold of workability can for Technology, Lausanne While there have been several what has become increasingly clear families of concrete additives used is the material’s environmental by the construction industry since impact. ‘The rule of thumb is that animal blood went out of fashion, the for every tonne of cement you make, most recently developed, and best ALAIN HERZOG ALAIN one tonne of CO2 is produced,’ performing, are the polycarboxylate says Marios Soutsos, who studies ethers (PCEs), says Sven Asmus, concrete at the University of head of technical services and Liverpool, UK. ‘Modern cement development of admixture systems kilns are now more efficient, and at BASF, based in China, where produce about 800kg of CO2 close to half of the world’s cement per tonne – but that is still a big is produced. As a polymer, the emission.’ PCE’s structure and properties can Concrete production is readily be tailored by changing the responsible for so much CO2 monomers used to make it. because making Portland cement ‘Many acrylic acid derivatives not only requires significant [PCE monomers] are manufactured amounts of energy to reach reaction in large scale, and we’ve been temperatures of up to 1500oC, looking at different combinations but also because the key reaction that give good properties,’ says itself is the breakdown of calcium Asmus. ‘Initially this was by trial carbonate into calcium oxide and and error, but we have now built CO2. Of those 800kg of CO2, around up such expertise that we can use a 530kg is released by the limestone directed approach to designing new decomposition reaction itself. mixtures.’ Plasticisers work by preventing A complex mix the cement particles from clumping Several ways of reducing the together. ‘In physical terms, these environmental impact of concrete are dispersants, and they act through are now being investigated – one absorbing onto the surface of the possibility being to produce ultra- particle which they are supposed 64 | Chemistry World | March 2008 www.chemistryworld.org CW.03.08.Concrete.indd 64 19/02/2008 10:43:40 to disperse,’ says BASF’s Christian Hübsch, marketing support, branches and industries, Europe. ‘Polycarboxylates act by a steric repulsion, so in simple terms they act as a spacer between two particles.’ To make ultra-high strength concrete, you need very strong plasticisers. ‘Final strength is achieved by maximum water reduction, which needs ultra-strong dispersant molecules,’ adds Hübsch. ‘These are the molecules with the longest side chains, because they provide the strongest dispersing forces. Due to their sheer size, they provide the longest-range repulsion forces.’ Ultra-high strength concrete was pioneered in Japan, where the added cost of the material was offset by the need for earthquake-resistance, and the fact that property in Tokyo area costs up to ¤160 000 per square metre, encouraging the construction of buildings with the thinnest possible concrete superstructure. ‘But we also see huge potential in Europe, and cost is a major issue here,’ adds Hübsch. ‘The solution is not at hand yet; nevertheless we see higher and higher strength classes coming up with almost normal mix designs, applying specially designed concretes which have a lower cement content.
Recommended publications
  • Module 6. Hov Treatments
    Manual TABLE OF CONTENTS Module 6. TABLE OF CONTENTS MODULE 6. HOV TREATMENTS TABLE OF CONTENTS 6.1 INTRODUCTION ............................................ 6-5 TREATMENTS ..................................................... 6-6 MODULE OBJECTIVES ............................................. 6-6 MODULE SCOPE ................................................... 6-7 6.2 DESIGN PROCESS .......................................... 6-7 IDENTIFY PROBLEMS/NEEDS ....................................... 6-7 IDENTIFICATION OF PARTNERS .................................... 6-8 CONSENSUS BUILDING ........................................... 6-10 ESTABLISH GOALS AND OBJECTIVES ............................... 6-10 ESTABLISH PERFORMANCE CRITERIA / MOES ....................... 6-10 DEFINE FUNCTIONAL REQUIREMENTS ............................. 6-11 IDENTIFY AND SCREEN TECHNOLOGY ............................. 6-11 System Planning ................................................. 6-13 IMPLEMENTATION ............................................... 6-15 EVALUATION .................................................... 6-16 6.3 TECHNIQUES AND TECHNOLOGIES .................. 6-18 HOV FACILITIES ................................................. 6-18 Operational Considerations ......................................... 6-18 HOV Roadway Operations ...................................... 6-20 Operating Efficiency .......................................... 6-20 Considerations for 2+ Versus 3+ Occupancy Requirement ............. 6-20 Hours of Operations ..........................................
    [Show full text]
  • Replacement of Davis Avenue Bridge Over Indian Harbor Bridge No
    REPLACEMENT OF DAVIS AVENUE BRIDGE OVER INDIAN HARBOR BRIDGE NO. 05012 November 19, 2019 1 MEETING AGENDA • Project Team • Project Overview • Existing Conditions • Alternatives Considered • Traffic Impacts • Proposed Alternative • Railing Options • Construction Cost / Schedule • Contact Information • Questions 2 PROJECT TEAM Town of Greenwich Owner Alfred Benesch & Company Prime Consultant, Structural, Highway, Hydraulic, Drainage Design GZA GeoEnvironmantal Inc. Environmental Permitting Didona Associates Landscape Architects, LLC Landscaping Services, Planning 3 LOCATION MAP EXIT 4 EXIT 3 BRIDGE LOCATION 4 AERIAL VIEW BRIDGE LOCATION 5 PROJECT TIMELINE CURRENT PROJECT STATUS INVESTIGATION ALTERNATIVES PRELIMINARY FINAL CONSTRUCTION PHASE ASSESSMENT DESIGN DESIGN Spring to Fall 2020 February 2018 to June 2018 to January 2019 to May 2019 to May 2018 January 2019 April 2019 December 2019 6 PROJECT GOALS • Correct Existing Deficiencies of the Bridge (Structural and Functional) • Improve Multimodal Traffic Flow at Bridge Crossing (Vehicles / Bicycles / Pedestrians) • Maintain / Enhance Safety at Bridge Crossing • Meet Local, State, and Federal Requirements 7 EXISTING BRIDGE – BRIDGE PLAN 8 EXISTING BRIDGE – CURRENT PLAN VIEW 9 EXISTING BRIDGE Existing Bridge Data • Construction Year: 1934 • Structure Type: Concrete Slab Supported on Stone Masonry Abutments and Pier • Structure Length: 37’‐3” (17’‐1” Span Lengths) • Bridge Width: 43’+ (Outside to Outside) • Lane Configuration: Two Lanes, Two 4’ Sidewalks • Existing Utilities: Water, Gas (Supported
    [Show full text]
  • CONCRETE Pavingtechnology Concrete Intersections a Guide for Design and Construction
    CONCRETE PAVINGTechnology Concrete Intersections A Guide for Design and Construction Introduction Traffic causes damage to pavement of at-grade street and road intersections perhaps more than any other location. Heavy vehicle stopping and turning can stress the pavement surface severely along the approaches to an intersection. The pavement within the junction (physical area) of an intersection also may receive nearly twice the traffic as the pavement on the approaching roadways. At busy intersections, the added load and stress from heavy vehicles often cause asphalt pavements to deteriorate prematurely. Asphalt surfaces tend to rut and shove under the strain of busses and trucks stopping and turning. These deformed surfaces become a safety concern for drivers and a costly maintenance problem for the roadway agency. Concrete pavements better withstand the loading and turning movements of heavy vehicles. As a result, city, county and state roadway agencies have begun rebuilding deteriorated asphalt intersections with con- crete pavement. These agencies are extending road and street system maintenance funds by eliminating the expense of intersections that require frequent maintenance. At-grade intersections along business, industrial and arterial corridor routes are some of the busiest and most vital pavements in an urban road network. Closing these roads and intersections for pavement repair creates costly traffic delays and disruption to local businesses. Concrete pavements provide a long service life for these major corridors and intersections. Concrete pavements also offer other advantages for As a rule, it is important to evaluate the existing pave- intersections: ment condition before choosing limits for the new concrete pavement. On busy routes, it may be desir- 1.
    [Show full text]
  • Concrete Sidewalk Specifications
    CONCRETE SIDEWALK SPECIFICATIONS GENERAL Concrete sidewalks shall be constructed in accordance with these specifications and the requirements of the State of Wisconsin, Department of Transportation, Standard Specifications for Road and Bridge Construction, Current Edition (hereafter “Standard Specifications”). Concrete sidewalks shall conform to the lines and grades established by the City Engineer. All removal and replacements will be made as ordered by the City Engineer. The Contractor shall construct one-course sidewalks of a minimum thickness of four (4) inches in accordance with the plans and specifications. Sidewalk through a driveway section shall be a minimum thickness of six (6) inches. Concrete driveway approaches shall be a minimum thickness of six (6) inches. SUBGRADE A new sub-base may be required by the Engineer if, in his opinion, the soil in the subgrade is soft or spongy in places and will swell or shrink with changes in its moisture content. If a new sub- base is required, it shall consist of granular material and shall be spread to a depth of at least three (3) inches and thoroughly compacted. While compacting the sub-base the material shall be thoroughly wet and shall be wet when the concrete is deposited but shall not show any pools of water. If the Contractor undercuts the subgrade two (2) inches or more, he shall, at his expense, bring the subgrade to grade by using gravel fill and it shall be thoroughly compacted. Where sidewalk is placed over excavations such as tree roots or sewer laterals, four (4) one-half (1/2) inch reinforcing bars shall be placed to prevent settling or cracking of the sidewalk.
    [Show full text]
  • Building Materials & Construction
    INTERMEDIATE VOCATIONAL COURSE SECOND YEAR BUILDING MATERIALS & CONSTRUCTION FOR THE COURSE OF WATER SUPPLY AND SANITARY ENGINEERING STATE INSTITUTE OF VOCATIONAL EDUCATION DIRECTOR OF INTERMEDIATE EDUCATION GOVT. OF ANDHRA PRADESH 2006 Intermediate Vocational Course, 2nd Year : Building Materials and Construction (For the Course of Water Supply and Sanitary Engineering) Author : Sri P. Venkateswara Rao & M.Vishnukanth, Editor : Sri L. Murali Krishna. © State Institute of Vocational Education Andhra Pradesh, Hyderabad. Printed and Published by the Telugu Akademi, Hyderabad on behalf of State Institute of Vocational Education Govt. of Andhra Pradesh, Hyderabad. First Edition : 2006 Copies : All rights whatsoever in this book are strictly reserved and no portion of it may be reproduced any process for any purpose without the written permission of the copyright owners. Price Rs: /- Text Printed at …………………… Andhra Pradesh. AUTHOR Puli Venkateshwara Rao, M.E. (STRUCT. ENGG.) Junior Lecturer in Vocational, WS & SE Govt. Junior College, Malkajgiri, Secunderabad. & M. VISHNUKANTH, B.TECH.(Civil) Junior Lecturer in Vocational, WS & SE Govt. Junior College, Huzurabad, Karimnagar Dist. EDITOR L. MURALI KRISHNA, M.TECH.(T.E.) Junior Lecturer in Vocational, CT Govt. Junior College, Ibrahimpatnam, Ranga Reddy Dist. IVC SECOND YEAR BUILDING MATERIALS & CONSTRUCTION STATE INSTITUTE OF VOCATIONAL EDUCATION WATER SUPPLY AND SANITARY ENGINEERING DIRECTOR OF INTERMEDIATE EDUCATION GOVT. OF ANDHRAPRADESH REFERENCE BOOKS 1. BUILDING MATERIAL - RANGAWALA 2. BUILDING MATERIAL - SUSHIL KUMAR 3. BUILDING MATERIALS & CONSTRUCTION - B.P.BINDRA 4. BUILDING CONSTRUCTION - B.C.RANGAWALA 5. BUILDING MATERIALS - A.KAMALA MODEL PAPER BUILDING MATERIALS AND CONSTRUCTION Time : 3 hrs Max Marks : 50 SECTION – A Note: 1) Attempt all questions 2) Each question carries 2 marks 10x2=20 1.
    [Show full text]
  • Building Material Reuse Guide
    Sonoma County Waste Management Agency 2300 County Center Drive, Suite B-100 Santa Rosa, California 95403 Building Materials Reuse Guide Look for your Recycling Guide in the AT&T Phone Book under Recycling. Builders’ Guide on-line at www.RecycleNow.org appliances doors cabinets electrical fencing hardware lumber plumbing tile windows updated: 9.29.08 ECO-DESK 565-DESK(3375) www.RecycleNow.org Funding Provided by a Grant from the California Integrated Waste Management Board. Zero Waste—You Make it Happen! IN T E G R A T E D PRINTED ON 100% POST-CONSUMER (PC) FIBER PAPER for Sonoma County W A S T E M A N A G E M E N T B O A R D Appliances Doors Cabinets Electrical Fencing Flooring Hardware Lumber Plumbing, Sheetrock/ Tile Windows Facility newer than (bath & fixtures & & tools fixtures & drywall accepts Reuse Building Materials 5 years kitchen) supplies supplies mixed loads of Free classified ads The following chart lists organizations that construction to help manage promote the salvage or reuse of good building & demolition materials. Some are nonprofits that offer debris for your building charitable receipts for donations. recycling material discards. Beyond Waste Tu-F 9-1 605 West Sierra, Cotati.........................792-2555 & by appt. TT TT T T Materials Exchange Daniel O. Davis, Inc. M-F 7:30-5. 1051 Todd Rd., Santa Rosa...................585-1903 TT TT T T Central Disposal Site (Reuse area) Daily 500 Mecham Rd, Petaluma..................795-3660 7-3:30. TTTTTTTTT TT Browse the SonoMax listings. Post a new ad— Global Material Recovery Services M-Sa 7-5, Search the available available or wanted.
    [Show full text]
  • Concrete Pavementspavements N a a T T I I O O N N a a L L
    N N a a t t i i o o n n a a Technical Services l l , R R o o u u n n d d a a b b o o Vail, Colorado u u t t May 22-25, 2005 Steve Waalkes, P.E. C C o o n n f f e e r r e e Managing Director n n c American Concrete Pavement Association c e e 2 2 0 0 0 0 5 5 TRB National Roundabouts Conference D D Concrete Roundabouts R R Concrete Roundabouts A A F F T T N N a a Flexible Uses liquid asphalt as binder Pro: usually lower cost Con: requires frequent maintenance & rehabilitation t t i i Asphalt o o n n a a l l R R o o u u n n d d a a b b o o u u t t C C Terminology Terminology o o n n f f e e r r e e n n c c e e 2 2 0 0 0 0 5 5 D D R R A A Rigid Uses cement as binder Pro: longer lasting Con: higher cost Concrete F F T T N N a a t t i i o o n n a a l l R R o o u u n n d d a a b b o o u u t t C C o o s n n c f f e i e r r t e e n n e y c c t e h e t 2 2 e 0 0 f s 0 0 aterials onstructability a e conomics 5 erformance (future maintenance) 5 Why Concrete Roundabouts? Why Concrete Roundabouts? D D E C P M R R • • • • •S •A A A F F T T Realize there is a choice N N a a t t i i o o n n a a l l R R o o u u n n d d a a b b o o u u t t C C o o n n f f e e r r e e n n c c e e 2 2 0 0 0 0 What performance characteristics of Where do we typically use concrete pavement? (situations, traffic conditions, applications, etc.) concrete pavement make it the best choice for roundabouts? 5 5 Why Concrete Roundabouts? Why Concrete Roundabouts? D D R R 1.
    [Show full text]
  • Megastructures: Steel, Brick and Concrete
    Megastructures: Steel, Brick and Concrete 3 x 60’ EPISODIC BREAKDOWN 1. Steel It is one of the strongest materials on earth. It has changed the course of history and altered human civilization. From the soaring skylines in a vast metropolis…to dinner tables across the world and razor sharp tools responsible for medical miracles: Steel has defined life as we know it. MegaStructures: The Science of Steel will bring viewers face to face with this magical material that serves as the strength behind urban infrastructure, epic skyscrapers and everyday objects that shape our world. Our cameras will go inside the mills of U.S. Steel to see how this incredible invention of man is born and also visit such historic steel structures as the Brooklyn Bridge, the Empire State Building, and the Gateway Arch. This program will explore steel, from its grandest achievements to the simplest tools of life. How It’s Built: Steel will display why steel makes the impossible, possible. 2. Brick Brick: baptized in fire to be rock-hard – and prized because it is fire-proof. Brick has become an icon in our culture. You start with a block you can hold in your hand, but when you lay 10 or 20 million, they add up to a soaring structure: MegaStructures: The Science of Brick will take the viewer from the earliest man-made buildings to the 21st Century’s green/eco-friendly building movement, all while highlighting the inspiring buildings and monuments that this remarkable material has made possible. 3. Concrete It is the most-used building material on Earth.
    [Show full text]
  • Building Materials
    JUNE 2019 Building Materials VOLUME 301 A FAR CRY FROM LAST YEAR DOMESTIC DEMAND CAUTION ABOUNDS HARDWOOD TUMULT The optimism persisting on the Wary of further price drops, The domestic hardwood market domestic construction market over the market participants limit purchasing is working to cope with falling past few years is waning, despite the export demand impending building season MONITOR BUILDING MATERIALS VOLUME GREATAMERICAN.COM In This Issue JUNE 2019 800-45-GREAT 301 Building Materials Reference Trend Tracker 03 10 Sheet 05 Overview 11 Monitor Information 06 Softwood Lumber 12 Experience 07 Softwood Panels 13 Appraisal & Valuation Team 08 Hardwood Lumber 14 About Great American Lumber and Woodworking 09 Equipment Deals are a moving target. A constantly shifting mix of people, numbers and timing. We’re here to simplify this process for you. Our experts are dedicated to tracking down and flushing out the values you need even on the most complex deals, so you can leverage our hard-won knowledge to close the deal. © 2019 Great American Group, LLC. All Rights Reserved. Trend Tracker - Inventory Market Prices Lumber Building Materials Three Months Year NOLVs Decreasing Decreasing Sales Trends Decreasing Increasing Softwood Decreasing Decreasing Gross Margin Decreasing Mixed Hardwood Increasing Decreasing Inventory Mixed Increasing NOLVS • Building materials: Gross margins have been mixed, as • Lumber: NOLVs generally declined over the past quarter prices for items such as wallboard and vinyl siding have and versus the prior year as pricing declined from the climbed, in some cases due to tariffs for products such as mid-2018 peak as a result of lower demand and higher steel studs and tracks.
    [Show full text]
  • 1.1 What Is Concrete Masonry?
    1.1 What is Concrete Masonry? Introduction Concrete masonry construction (or as it is more and Specifiers are using Architectural Masonry in commonly called, concrete blockwork) is based on more commercial and residential applications. thousands of years experience in building structures of stone, mud and clay bricks. Blockwork masonry Using the various textures of Fair Face, Honed and units are hollow and are filled with concrete and Splitface is adding a lot more variety to the features allow for the integration of reinforcing steel, a feature of the wall. essential for earthquake resistant design. Concrete blockwork provides a structural and architectural advantage in one material and is recognised worldwide as a major contributor to the construction and building industry. Types of Concrete Blockwork The workhorse of concrete masonry has traditionally been stretcher bond blockwork forming structural, fire and acoustic functions from residential to large commercial buildings as well as the special use in retaining walls. With the introduction of coloured masonry Architects Figure 1: Commercial Stretcher Bond Blockwork Figure 2: Coloured Honed Blockwork Figure 3: Coloured Honed Blockwork Figure 4: Coloured Fairface, Honed and Splitface Blockwork Figure 5: Splitface Blockwork New Zealand Concrete Masonry Association Inc. Figure 6: Honed Half High Blockwork Figure 7: Honed Natural Blockwork There are also masonry blocks that include polystyrene inserts which provide all the structural benefits of a normal masonry block with the added advantage of built-in insulation. Building with these blocks removes the need for additional insulation - providing the added design flexibility of a solid plastered finish both inside and out. The word “Concrete Masonry” also encompasses a wide variety of products such as, brick veneers, retaining walls, paving and kerbs.
    [Show full text]
  • Pavement Marking Handbook
    Pavement Marking Handbook August 2004 © 2004 Texas Department of Transportation All rights reserved Pavement Marking Handbook August 2004 Manual Notices Manual Notice 2004-1 To: Recipients of Subject Manual From: Carlos A. Lopez, P.E. Traffic Operations Division Manual: Pavement Marking Handbook Effective Date: August 2004 Purpose and Content This handbook provides information on material selection, installation, and inspection guidelines for pavement markings. It is targeted for two audiences — engineering personnel and field personnel. The portion for engineering personnel provides information on selecting pavement marking materials for various applications. The portion for field personnel provides information on pavement marking installation and inspection. Additional information about TxDOT specifications, procedures, and standards applicable to pavement markings are included in an appendix. The manual may be used by designers to help with pavement marking material selection and inspectors in the field. Instructions This is a new manual, and it does not replace any existing documents. Content Cover Table of Contents Chapters 1 through 3 Appendix A & B Review History This manual is the product of a Texas Department of Transportation (TxDOT) research project. The TxDOT project director is Greg Brinkmeyer of the Traffic Operations Division. The research supervisor is Gene Hawkins of the Texas Transportation Institute (TTI). Tim Gates and Liz Rose of TTI developed most of the material in the handbook. Wade Odell was the research liaison engineer for the TxDOT Research and Technology Implementation Office. (continued...) Review History (continued) This handbook became a reality because numerous individuals were willing to contribute their time, ideas, and comments during the development process. Special credit should be given to a group of TxDOT staff who meet on a regular basis to review drafts and develop material for the handbook.
    [Show full text]
  • Building Products & Materials Industry Update
    BUILDING PRODUCTS & MATERIALS INDUSTRY UPDATE │ AUGUST 2015 www.harriswilliams.com Investment banking services are provided by Harris Williams LLC, a registered broker-dealer and member of FINRA and SIPC, and Harris Williams & Co. Ltd, which is authorised and regulated by the Financial Conduct Authority. Harris Williams & Co. is a trade name under which Harris Williams LLC and Harris Williams & Co. Ltd conduct business. 0 BUILDING PRODUCTS & MATERIALS INDUSTRY UPDATE │ AUGUST 2015 BUILDING PRODUCTS & MATERIALS GROUP OVERVIEW CONTENTS INTRODUCTION . WHAT WE’RE READING Harris Williams & Co. is pleased to present our Building Products and Materials . PUBLIC MARKETS Industry Update for August 2015. This report provides commentary and analysis on . PUBLIC COMPARABLES current capital market trends and merger and acquisition dynamics within the . M&A ACTIVITY global building products and materials industry. We hope you find this edition helpful and encourage you to contact us directly if you would like to discuss our perspective on current industry trends and M&A opportunities or our relevant industry experience. CONTACTS Mike Hogan OUR PRACTICE Managing Director [email protected] Harris Williams & Co. is a leading advisor to the building products and materials +1 (804) 915-0104 industry. Our significant experience covers a broad range of end markets, industries, and business models. Ryan Nelson Managing Director [email protected] Distribution & Construction Building Products +1 (804) 915-0121 Services Materials . Acoustical . Roofing . Architectural and . Aggregates Trey Packard . Cabinets and . Siding . Engineering . Asphalt Vice President . Countertops . Tools and Hardware . Installation and . Aluminum [email protected] . Carpet and Flooring . Windows and Doors . Contracting . Bricks +1 (804) 887-6016 .
    [Show full text]