Proinsulin Processing by the Subtilisin-Related Proprotein Convertases Furin, PC2, and PC3 (Prohormone/Kex2 Protease/Vaccinia Vectors/Islets of Langerhans) STEVEN P

Total Page:16

File Type:pdf, Size:1020Kb

Proinsulin Processing by the Subtilisin-Related Proprotein Convertases Furin, PC2, and PC3 (Prohormone/Kex2 Protease/Vaccinia Vectors/Islets of Langerhans) STEVEN P Proc. Natl. Acad. Sci. USA Vol. 89, pp. 8822-8826, September 1992 Biochemistry Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3 (prohormone/Kex2 protease/vaccinia vectors/islets of Langerhans) STEVEN P. SMEEKENS*t*, ANTHONY G. MONTAG§, GARY THOMAS1, CORRINE ALBIGES-RIzO*II, RAYMOND CARROLL*, MICHELLE BENIGt, LISA A. PHILLIPS*, SEAN MARTIN*, SHINYA OHAGIt, PAUL GARDNER*, HEWSON H. SWIFT**, AND DONALD F. STEINER*t *The Howard Hughes Medical Institute, The Departments of tBiochemistry and Molecular Biology, and §Pathology and the **Erman Cell Biological Laboratories, The University of Chicago, Chicago, IL 60637; and MThe Vollum Institute, Portland, OR 97201 Contributed by Donald F. Steiner, June 19, 1992 ABSTRACT Experiments using recombinant vaccinia vi- specifically in pancreatic islets, pituitary, and other neuro- ruses expressing rat proinsulin I coinfected into COS-7 cells endocrine cells (12-16) and have been shown by heterologous with recombinant vaccinia virus expressing human furin, gene transfer experiments to be capable of cleaving selec- human PC2, mouse PC3 (subtilisin-related proprotein conver- tively at the Lys-Arg and Arg-Arg processing sites within tases 1-3, respectively), or yeast Kex2 indicate that in this precursors such as proopiomelanocortin and prorenin (17- system both Kex2 and furin produce mature insulin, whereas 20). PC2 selectively cleaves proinsulin at the C-peptide-A-chain A third member of this superfamily, furin** (also called junction. This is a property consistent with its probable identity PACE), has also been shown to correctly process a variety of with the rat insulinoma granule type II proinsulin processing precursors, including the 3-nerve growth factor and von activity as described by Davidson et aL [Davidson, H. W., Willebrand factor precursors, both of which have processing Rhodes, C. J. & Hutton, J. C. (1988) Nature (London) 333, recognition sequences consisting minimally ofArg-Xaa-Xaa- 93-96]. PC3 generates mature insulin but cleaves preferen- Arg (4, 5, 21-23). However, in contrast to PC2 and PC3, tially at the proinsulin B-chain-C-peptide junction. This pat- furin/PACE is expressed in many tissues of the body and tern of cleavage by PC3 is similar, but not identical, to that of appears to be predominantly localized to the Golgi region in the highly B-chain-C-peptide junction-selective type I activity cells (4, 23). Like Kex2, furin has a membrane-spanning as described by Davidson et aL, perhaps due to the presence of sequence near the C terminus that is necessary for its Golgi a P4 arginine residue near the C-peptide-A-chain junction retention (6, 24, 25). Since many of its substrates are moved unique to the rat proinsulins. These results along with data to the cell surface or secreted by small constitutive (or presented on the expression ofboth PC2 and PC3 in islet 13 cells unregulated) vesicles, furin-or enzymes like it, such as the strongly support the conclusion that these proteases are in- recently identified PACE4 (26)-appears to account for the volved in the conversion of proinsulin to insulin in vivo. widespread ability of cells to process growth factor and receptor precursor molecules while lacking the ability to Highly specific proteolysis at sites marked by basic amino efficiently process most prohormones. acids is an important requirement for the maturation ofa large In the experiments reported here, we demonstrate that PC2 number of protein precursors (1, 2). Proinsulin was the first and PC3 are localized in the pancreas to the islets of Langer- of these precursors to be identified and characterized (3). hans and that both proteases selectively process specific Since that time, >150 proteins and peptides have been found cleavage sites in proinsulin when coexpressed with rat pro- to require such processing in eukaryotic organisms as diverse insulin I by means of vaccinia virus vectors. These results as yeast and humans (2). These proproteins include virtually support the conclusion that these proteases are involved in all neuropeptides and peptide hormones, as well as a large the conversion of proinsulin to insulin in the maturing secre- and diverse family of membrane and viral glycoproteins, tory granules and lend further support to our claim that PC2 growth factors, and plasma proteins (4-6). and PC3 represent a core of endoproteases responsible for Despite intensive efforts, it is only recently that several prohormone maturation at paired basic residue sites in a endoproteases that carry out some of these cleavages have number of neuroendocrine cells (17). been identified and characterized. Progress in this field was stimulated by the identification in yeast ofthe Kex2 protease, MATERIALS AND METHODS a membrane-bound dibasic amino acid-specific endoprotease required for maturation of the pro-a-factor and killer toxin Antisera. Antisera were raised to peptides corresponding peptides (7, 8). More recently, a superfamily of mammalian to amino acids 65-77 and 108-120 of preproPC2 and amino serine proteases has been identified in animal cells, all acids 95-108 and 110-122 of preproPC3. The two PC2 or the members of which have structural similarity to the Kex2 two PC3 peptides were both conjugated as a mixture to endoprotease (9). Interestingly, both the yeast and mamma- keyhole limpet hemocyanin via added C- or N-terminal lian proteases contain catalytic domains that are organized cysteine residues and were then injected with adjuvants for similarly to those of the bacterial subtilisins, i.e., having the immunization into rabbits, essentially as described (27). Sera characteristic order and spacing ofthe catalytically important collected 10 days after each booster injection were assessed aspartate, histidine, and serine residues of this special class of serine proteases (10, 11). Two of these mammalian en- *Present address: Chiron Corporation, Emeryville, CA 94608. zymes, PC2** and PC3** (also called PC1), are expressed IIPresent address: Laboratoire D-Etude des Systems Adhesifs Cel- lulares, Universite J. Fourier, Grenoble, France. **To avoid confusion due to wide usage ofthe designation "PC," we The publication costs of this article were defrayed in part by page charge have recently proposed that these proteinases be designated payment. This article must therefore be hereby marked "advertisement" substilisin-related proprotein convertases (SPCs): i.e., SPC1, fu- in accordance with 18 U.S.C. §1734 solely to indicate this fact. rin; SPC2, PC2; SPC3, PC3; SPC4, PACE 4 (51). 8822 Downloaded by guest on October 1, 2021 Biochemistry: Smeekens et al. Proc. Natl. Acad. Sci. USA 89 (1992) 8823 for binding activity either to the original peptides immobilized oped over 75 min at a flow rate of1.0 ml/min; 1.0-ml fractions in 96-well titer plates by ELISA (28) or to PC2 or PC3 were collected. Low pressure chromatography was used to preparations derived from a human insulinoma or cultured verify the composition of peptides resolved by HPLC, as AtT20 cells, respectively, by Western blot analysis (29). follows. Mature insulin was separated from proinsulin and Immunoreactivity was detected using the ECL chemilumi- the des-(31-32)- and des-(64-65)-proinsulin processing inter- nescence reaction (Amersham). mediates by P-30 gel chromatography in 3 M acetic acid/ Vaccinia Viruses. The Rat I preproinsulin cDNA (30) was bovine serum albumin (50 pg/ml) as described (33). Cleavage cloned into the vector pVZneo (31) and the resulting pVZ- at one or both processing sites within proinsulin was assessed neo:rInsI construct was used to introduce the Rat I prepro- by the presence of the normal or modified B- or A-chains of insulin sequence into the vaccinia virus genome (strain WR) insulin determined after oxidative sulfitolysis of the samples by homologous recombination as described (32). Recombi- and chromatography on Sephadex G-75 in 50o acetic acid as nant vaccinia viruses encoding human PC2, mouse PC3, described (34). Human insulin, proinsulin, and the des-(31- human furin, and Kex2 have been described (17). 32)- and des-(64-65)-proinsulin intermediates were used as Cell Culture and Expression. COS-7 cells were maintained standards (kindly provided by Bruce Frank and Ronald in Dulbecco's modified Eagle's medium (DMEM) containing Chance, Eli Lilly). 10%o (vol/vol) fetal calf serum and incubated in a humidified incubator at 370C and 5% C02/95% air. For expression studies, COS-7 cells were plated at 1 x 106 cells per 100-mm RESULTS plate and infected with recombinant vaccinia virus at a The original identification and isolation ofPC2 from a human multiplicity of infection of 5 as described (17). After incuba- insulinoma (12) and the finding by Northern blot analysis that tion for 6 hr, medium was removed and replaced with DMEM PC2 and PC3 are expressed in both insulinoma tissue and minus cysteine but supplemented with 100 pACi of [35S]cys- isolated islets ofLangerhans (13) led us to investigate the role teine (1 Ci = 37 GBq), and the cells were incubated further of these enzymes in the proteolytic maturation of proinsulin. for 18 hr. The medium was then collected, any remaining cells Immunohistochemical analysis of rat pancreas sections and debris were removed by centrifugation, and the insulin- showed that both the PC2 and PC3 antisera react specifically related material was immunopurified using guinea pig anti- with the majority of cells within islets of Langerhans, the site insulin antiserum coupled to Affi-Gel 10 agarose beads (Bio- of synthesis and proteolytic processing of a number of Rad). Briefly, 10 ml of labeled medium from each 100-mm peptide hormones including proinsulin, proglucagon, and plate was mixed with 0.2 ml of a 50%o slurry of antiserum- prosomatostatin (Fig. 1 A and B). No immunostaining was coupled beads in phosphate-buffered saline (PBS) in a sealed observed within the exocrine pancreas. The diffuse islet Econo column (Bio-Rad) and gently rocked overnight at 4°C.
Recommended publications
  • Type 1 Diabetes Autoantigen Epitope in the Pathogenesis of Junction of Proinsulin Is an Early Evidence That a Peptide Spanning T
    Evidence That a Peptide Spanning the B-C Junction of Proinsulin Is an Early Autoantigen Epitope in the Pathogenesis of Type 1 Diabetes This information is current as of September 24, 2021. Wei Chen, Isabelle Bergerot, John F. Elliott, Leonard C. Harrison, Norio Abiru, George S. Eisenbarth and Terry L. Delovitch J Immunol 2001; 167:4926-4935; ; doi: 10.4049/jimmunol.167.9.4926 Downloaded from http://www.jimmunol.org/content/167/9/4926 References This article cites 50 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/167/9/4926.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 24, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Evidence That a Peptide Spanning the B-C Junction of Proinsulin Is an Early Autoantigen Epitope in the Pathogenesis of Type 1 Diabetes1 Wei Chen,2* Isabelle Bergerot,2* John F.
    [Show full text]
  • Sulfatide Preserves Insulin Crystals Not by Being Integrated in the Lattice but by Stabilizing Their Surface
    Hindawi Publishing Corporation Journal of Diabetes Research Volume 2016, Article ID 6179635, 4 pages http://dx.doi.org/10.1155/2016/6179635 Research Article Sulfatide Preserves Insulin Crystals Not by Being Integrated in the Lattice but by Stabilizing Their Surface Karsten Buschard,1 Austin W. Bracey,2 Daniel L. McElroy,2 Andrew T. Magis,2 Thomas Osterbye,1 Mark A. Atkinson,2 Kate M. Bailey,2 Amanda L. Posgai,2 and David A. Ostrov2 1 Bartholin Instituttet, Rigshospitalet, 2100 Copenhagen, Denmark 2Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA Correspondence should be addressed to Karsten Buschard; [email protected] Received 30 October 2015; Revised 14 January 2016; Accepted 14 January 2016 Academic Editor: Fabrizio Barbetti Copyright © 2016 Karsten Buschard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Sulfatide is known to chaperone insulin crystallization within the pancreatic beta cell, but it is not known if this results from sulfatide being integrated inside the crystal structure or by binding the surface of the crystal. With this study, we aimed to characterize the molecular mechanisms underlying the integral role for sulfatide in stabilizing insulin crystals prior to exocytosis. Methods. We cocrystallized human insulin in the presence of sulfatide and solved the structure by molecular replacement. Results. The crystal structure of insulin crystallized in the presence of sulfatide does not reveal ordered occupancy representing sulfatide in the crystal lattice, suggesting that sulfatide does not permeate the crystal lattice but exerts its stabilizing effect by alternative interactions such as on the external surface of insulin crystals.
    [Show full text]
  • Isolation and Proteomics of the Insulin Secretory Granule
    H OH metabolites OH Review Isolation and Proteomics of the Insulin Secretory Granule Nicholas Norris , Belinda Yau * and Melkam Alamerew Kebede Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia; [email protected] (N.N.); [email protected] (M.A.K.) * Correspondence: [email protected] Abstract: Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions. Keywords: insulin secretory granule; beta-cells; granule protein purification 1. Insulin Granule Biogenesis and Function Citation: Norris, N.; Yau, B.; Kebede, The insulin secretory granule (ISG) is the storage vesicle for insulin in pancreatic M.A. Isolation and Proteomics of the beta-cells. It was long treated as an inert carrier for insulin but is now appreciated as a Insulin Secretory Granule.
    [Show full text]
  • Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes
    258 Diabetes Care Volume 42, February 2019 Proinsulin Secretion Is a Emily K. Sims,1,2 Henry T. Bahnson,3 Julius Nyalwidhe,4 Leena Haataja,5 Persistent Feature of Type 1 Asa K. Davis,3 Cate Speake,3 Linda A. DiMeglio,1,2 Janice Blum,6 Diabetes Margaret A. Morris,7 Raghavendra G. Mirmira,1,2,8,9,10 7 10,11 Diabetes Care 2019;42:258–264 | https://doi.org/10.2337/dc17-2625 Jerry Nadler, Teresa L. Mastracci, Santica Marcovina,12 Wei-Jun Qian,13 Lian Yi,13 Adam C. Swensen,13 Michele Yip-Schneider,14 C. Max Schmidt,14 Robert V. Considine,9 Peter Arvan,5 Carla J. Greenbaum,3 Carmella Evans-Molina,2,8,9,10,15 and the T1D Exchange Residual C-peptide Study Group* OBJECTIVE Abnormally elevated proinsulin secretion has been reported in type 2 and early type 1 diabetes when significant C-peptide is present. We questioned whether individuals with long-standing type 1 diabetes and low or absent C-peptide secretory capacity retained the ability to make proinsulin. RESEARCH DESIGN AND METHODS C-peptide and proinsulin were measured in fasting and stimulated sera from 319 subjects with long-standing type 1 diabetes (‡3 years) and 12 control subjects without diabetes. We considered three categories of stimulated C-peptide: 1) 1Department of Pediatrics, Indiana University ‡ 2 School of Medicine, Indianapolis, IN C-peptide positive, with high stimulated values 0.2 nmol/L; ) C-peptide posi- 2 tive, with low stimulated values ‡0.017 but <0.2 nmol/L; and 3)C-peptide Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indian- <0.017 nmol/L.
    [Show full text]
  • Distinct States of Proinsulin Misfolding in MIDY
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.442447; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Distinct states of proinsulin misfolding in MIDY Leena Haataja1, Anoop Arunagiri1, Anis Hassan1, Kaitlin Regan1, Billy Tsai2, Balamurugan Dhayalan3, Michael A. Weiss3, Ming Liu1,4, and Peter Arvan*1 From: 1The Division of Metabolism, Endocrinology & Diabetes and 2Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor MI 48105; 3Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202; 4Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China *To whom correspondence may be addressed: Peter Arvan MD PhD ORCID ID: http://orcid.org/0000-0002-4007-8799 Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Brehm Tower rm 5112 1000 Wall St. Ann Arbor, MI 48105 email: [email protected] FAX: 734-232-8162 Running Title. Proinsulin Disulfide Mispairing Key Words. endoplasmic reticulum, disulfide bonds, protein trafficking, insulin, diabetes Abbreviations. ER, endoplasmic reticulum; MIDY, Mutant INS-gene induced Diabetes of Youth 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.442447; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract A precondition for efficient proinsulin export from the endoplasmic reticulum (ER) is that proinsulin meets ER quality control folding requirements, including formation of the Cys(B19)-Cys(A20) “interchain” disulfide bond, facilitating formation of the Cys(B7)-Cys(A7) bridge.
    [Show full text]
  • Proinsulin Levels in Patients with Pancreatic Diabetes Are Associated
    European Journal of Endocrinology (2010) 163 551–558 ISSN 0804-4643 CLINICAL STUDY Proinsulin levels in patients with pancreatic diabetes are associated with functional changes in insulin secretion rather than pancreatic b-cell area Thomas G K Breuer1, Bjoern A Menge1, Matthias Banasch1, Waldemar Uhl2, Andrea Tannapfel3, Wolfgang E Schmidt1, Michael A Nauck4 and Juris J Meier1 Departments of 1Medicine I and 2Surgery, St Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany, 3Department of Pathology, Ruhr-University Bochum, 44789 Bochum, Germany and 4Diabeteszentrum Bad Lauterberg, 37431 Bad Lauterberg, Germany (Correspondence should be addressed to J J Meier; Email: [email protected]) Abstract Introduction: Hyperproinsulinaemia has been reported in patients with type 2 diabetes. It is unclear whether this is due to an intrinsic defect in b-cell function or secondary to the increased demand on the b-cells. We investigated whether hyperproinsulinaemia is also present in patients with secondary diabetes, and whether proinsulin levels are associated with impaired b-cell area or function. Patients and methods: Thirty-three patients with and without diabetes secondary to pancreatic diseases were studied prior to pancreatic surgery. Intact and total proinsulin levels were compared with the pancreatic b-cell area and measures of insulin secretion and action. Results: Fasting concentrations of total and intact proinsulin were similar in patients with normal, impaired (including two cases of impaired fasting glucose) and diabetic glucose tolerance (PZ0.58 and PZ0.98 respectively). There were no differences in the total proinsulin/insulin or intact proinsulin/insulin ratio between the groups (PZ0.23 and PZ0.71 respectively).
    [Show full text]
  • Exploring Immune Effects of Oral Insulin in Relatives at Risk for Type 1 Diabetes Mellitus
    Exploring Immune Effects of Oral Insulin in Relatives at Risk for Type 1 Diabetes Mellitus (Protocol TN-20) VERSION: January 15, 2016 IND #: 76,419 Sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Allergy and Infectious Diseases (NIAID), the National Center for Research Resources (NCRR), the Juvenile Diabetes Research Foundation International (JDRF), and the American Diabetes Association (ADA) Page 1 of 37 TrialNet Protocol TN20 Protocol Version: 15Jan2016 PREFACE The Type 1 Diabetes TrialNet Protocol TN20, Exploring Immune Effects of Oral Insulin in Relatives at Risk for Type 1 Diabetes Mellitus, describes the background, design, and organization of the study. The protocol will be maintained by the TrialNet Coordinating Center at the University of South Florida over the course of the study through new releases of the entire protocol, or issuance of updates either in the form of revisions of complete chapters or pages thereof, or in the form of supplemental protocol memoranda. Page 2 of 37 TrialNet Protocol TN20 Protocol Version: 15Jan2016 Glossary of Abbreviations AE Adverse event AICD Activation Induced Cell Death APC Antigen presenting cell CBC Complete Blood Count CFR Code of Federal Regulations cGMP Current Good Manufacturing Practice CHO Carbohydrates CRF Case report form DC Dendritic Cell DPT-1 Diabetes Prevention Trial - Type1Diabetes DSMB Data and Safety Monitoring Board ELISPOT Enzyme-Linked ImmunoSpot Assay FACS Fluorescence activated cell sorting FDA US Food
    [Show full text]
  • Recombinant Human Proinsulin Catalog Number: 1336-PN
    Recombinant Human Proinsulin Catalog Number: 1336-PN DESCRIPTION Source E. coli­derived Phe25­Asn110, with an N­terminal Met, 6­His tag and Lys Accession # NP_000198 N­terminal Sequence Met Analysis Predicted Molecular 10.5 kDa Mass SPECIFICATIONS SDS­PAGE 9 kDa, reducing conditions Activity Measured in a serum­free cell proliferation assay using MCF­7 human breast cancer cells. Karey, K.P. et al. (1988) Cancer Research 48:4083. The ED50 for this effect is 0.15­0.75 μg/mL. Endotoxin Level <0.01 EU per 1 μg of the protein by the LAL method. Purity >95%, by SDS­PAGE under reducing conditions and visualized by silver stain. Formulation Lyophilized from a 0.2 μm filtered solution in PBS. See Certificate of Analysis for details. PREPARATION AND STORAGE Reconstitution Reconstitute at 100 μg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. Stability & Storage Use a manual defrost freezer and avoid repeated freeze­thaw cycles. l 12 months from date of receipt, ­20 to ­70 °C as supplied. l 1 month, 2 to 8 °C under sterile conditions after reconstitution. l 3 months, ­20 to ­70 °C under sterile conditions after reconstitution. BACKGROUND Proinsulin is synthesized as a single chain, 110 amino acid (aa) preproprecursor that contains a 24 aa signal sequence and an 86 aa proinsulin propeptide. Following removal of the signal peptide, the proinsulin peptide undergoes further proteolysis to generate mature insulin, a 51 aa disulfide­linked dimer that consists of a 30 aa B chain (aa 25 ­ 54) bound to a 21 aa A chain (aa 90 ­ 110).
    [Show full text]
  • Proinsulin, Proamylin and the Beta Cell Endoplasmic Reticulum: the Key for the Pathogenesis of Different Diabetes Phenotypes
    PROINSULIN, PROAMYLIN AND THE BETA CELL ENDOPLASMIC RETICULUM: THE KEY FOR THE PATHOGENESIS OF DIFFERENT DIABETES PHENOTYPES CONSTANTIN IONESCU-TÎRGOVIŞTE and CRISTIAN GUJA National Institute of Diabetes, Nutrition and Metabolic Diseases “N.Paulescu” Ion Movilă str. 5–7, Bucharest, Romania [email protected] Received October 4, 2007 Based on our clinical and epidemiological data, we have sustained for a long time the unitary character of the various phenotypes of the diabetic syndrome. In this paper, we add several arguments sustaining that the unitary character of diabetes is related to a common primary defect in the function of the beta cell endoplasmic reticulum, leading to an inadequate processing of the two main secretory molecules: pre-proinsulin and pre-proamylin. The post-translational changes of these molecules might explain the main proapoptotic and anti-regenerative pathogenic mechanisms leading to a progressive decrease in the β cell mass/function. In our view, the increased proinsulin levels encountered in various diabetes phenotypes could be not only a marker of beta cell dysfunction but also could indicate the main β cell defect, suggesting also its location. Key words: Proinsulin; Proamylin; Beta cell endoplasmic reticulum. INTRODUCTION – THE FOUNDATIONS diabetes”, irrespective of the diabetes phenotype10. FOR A NEW HYPOTHESIS REGARDING By associating obesity (a very concrete element) THE PATHOGENESIS OF DIABETES with insulin-resistance (a construction mostly theoretical and without precise boundaries) and the One hundred years after the description of the last with a supposed hyperinsulinism (frequently beta cell by Lane1, the main cell of pancreatic islets inexistent if from the routine determination of the comes back in the center of diabetes pathogeny.
    [Show full text]
  • Insulin-Like Growth Factor-I Improves Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus
    Insulin-like growth factor-I improves glucose and lipid metabolism in type 2 diabetes mellitus. P D Zenobi, … , M E Røder, E R Froesch J Clin Invest. 1992;90(6):2234-2241. https://doi.org/10.1172/JCI116109. Research Article Hyperglycemia, hyperinsulinemia, and insulin resistance cause vascular disease in type 2 diabetes mellitus. Dietary treatment alone often fails and oral drugs or insulin enhance hyperinsulinemia. In previous studies, an intravenous bolus of recombinant human insulin-like growth factor-I (rhIGF-I) caused normoglycemia in insulin-resistant diabetics whereas rhIGF-I infusions lowered insulin and lipid levels in healthy humans, suggesting that rhIGF-I is effective in insulin-resistant states. Thus, eight type 2 diabetics on a diet received on five treatment days subcutaneous rhIGF-I (2 x 120 micrograms/kg) after five control days. Fasting and postprandial glucose, insulin, C-peptide, proinsulin, glucagon, triglyceride, insulin-like growth factor-I and -II, and growth hormone levels were determined. RhIGF-I administration increased total IGF-I serum levels 5.3-fold above control. During the control period mean (+/- SD) fasting glucose, insulin, C-peptide, and total triglyceride levels were 11.0 +/- 4.3 mmol/liter, 108 +/- 50 pmol/liter, 793 +/- 250 pmol/liter, and 3.1 +/- 2.7 mmol/liter, respectively, and decreased during treatment to a nadir of 6.6 +/- 2.5 mmol/liter, 47 +/- 18 pmol/liter, 311 +/- 165 pmol/liter, and 1.6 +/- 0.8 mmol/liter (P < 0.01), respectively. Postprandial areas under the glucose, insulin, and C-peptide curve decreased to 77 +/- 13 (P < 0.02), 52 +/- 11, and 60 +/- 9% (P < 0.01) of control, respectively.
    [Show full text]
  • Proinsulin: Crystallization and Preliminary X-Ray Diffraction Studies* W
    Proceedings of the National Academy of Sciences Vol. 66, No. 4, pp. 1213-1219, August 1970 Proinsulin: Crystallization and Preliminary X-Ray Diffraction Studies* W. Wardle Fullerton, Reginald Pottert and Barbara W. Lowt COLLEGE OF PHYSICIANS AND SURGEONS, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK Communicatcd by Erwin Chargaff, Mlay 15, 1970 Abstract. Bovine proinsulin has been crystallized under a variety of condi- tions at both neutral and acid pH. Microtechniques were employed with sample weights of about 200 jig and volumes of 5-20 1AL The crystalline preparations all differ from each other morphologically. X-ray photographs of one form, tetragonal bipyramids grown at pH 3 with added ammonium sulphate solution, established the space group P41212 (or its enlantiomorph P43212). The cell dimensions are a = 50.8 i 0.2 A, c = 148.0 + 0.4 A. The asymmetric unit in this form is a dimer of proinsulin which is also the dominant species in solution at this pH. Introduction. Following the studies of Steiner arid his co-w%-orkersl2 who estab- lished that insulin is synthesized via a single chain precursor protein, proinsulin has been isolated and characterized from bovine,3-6 porcine,' cod,8 anglerfish,9 and human10"1 tissues. The connecting peptide segment of proinsulin which links the carboxyl-terminal group of the insulin B chain to the amino-terminal group of the insulin A chain is cleaved in vivo by proteolysis. The lengths and sequences of the C-peptide vary markedly between species. In bovine pro- insulin, where the connecting peptide is 30 amino acid residues long," the pro- insulin molecule with a single 81 residue chain has a molecular weight of 868.5.
    [Show full text]
  • Molecular Cloning of Preproinsulin Cdnas from Several Osteoglossomorphs and a Cyprinid
    Molecular and Cellular Endocrinology 174 (2001) 51–58 www.elsevier.com/locate/mce Molecular cloning of preproinsulin cDNAs from several osteoglossomorphs and a cyprinid Azza A. Al-Mahrouki a, David M. Irwin b,c, Lane C. Graham d, John H. Youson a,* a Department of Zoology and Di6ision of Life Sciences, Uni6ersity of Toronto at Scarborough, Scarborough, Ont., Canada M1C 1A4 b Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, Uni6ersity of Toronto, 101 College Street, Toronto, Ont., Canada M5G 1L5 c Banting and Best Diabetes Centre, Uni6ersity of Toronto, 101 College Street, Toronto, Ont., Canada M5G 1L5 d Department of Zoology, Uni6ersity of Manitoba, Winnipeg, Man., Canada R3T 2N2 Received 20 September 2000; accepted 13 November 2000 Abstract Several preproinsulin cDNAs were isolated and characterized from four members of the Osteoglossomorpha (an ancient teleost group); Osteoglossum bicirrhosum (arawana), Pantodon buchholzi (butterfly fish), Notopterus chitala (feather fin knife fish), Hiodon alosoides (goldeye) and Gnathonemus petersii (elephantnose). In addition, we isolated and characterized the preproinsulin cDNA from Catostomus commersoni (white sucker, as a representative of a generalized teleost). The comparative analysis of the sequences revealed conservation of the cystine residues known to be involved in the formation of the disulfide bridges, as well as residues involved in the hexamer formation, except for B-17 in the butterfly fish, the arawana and the goldeye. However, the N-terminus of the B-chain was very weakly conserved among the species studied. Residues known to be significant for maintaining receptor-binding conformation and those known to comprise the receptor-binding domain were all conserved, except for a conservative substitution at B13, aspartate substituted glutamate in the arawana, goldeye, butterfly fish and white sucker, and at B16, phenylalanine substituted tyrosine in the elephantnose.
    [Show full text]