CD14 Dependence of TLR4 Endocytosis and TRIF Signaling Displays Ligand Specificity and Is Dissociable in Endotoxin Tolerance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TLR3-Dependent Activation of TLR2 Endogenous Ligands Via the Myd88 Signaling Pathway Augments the Innate Immune Response
cells Article TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response 1 2, 1 3 Hellen S. Teixeira , Jiawei Zhao y, Ethan Kazmierski , Denis F. Kinane and Manjunatha R. Benakanakere 2,* 1 Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] (H.S.T.); [email protected] (E.K.) 2 Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] 3 Periodontology Department, Bern Dental School, University of Bern, 3012 Bern, Switzerland; [email protected] * Correspondence: [email protected] Present address: Department of Pathology, Wayne State University School of Medicine, y 541 East Canfield Ave., Scott Hall 9215, Detroit, MI 48201, USA. Received: 30 June 2020; Accepted: 12 August 2020; Published: 17 August 2020 Abstract: The role of the adaptor molecule MyD88 is thought to be independent of Toll-like receptor 3 (TLR3) signaling. In this report, we demonstrate a previously unknown role of MyD88 in TLR3 signaling in inducing endogenous ligands of TLR2 to elicit innate immune responses. Of the various TLR ligands examined, the TLR3-specific ligand polyinosinic:polycytidylic acid (poly I:C), significantly induced TNF production and the upregulation of other TLR transcripts, in particular, TLR2. Accordingly, TLR3 stimulation also led to a significant upregulation of endogenous TLR2 ligands mainly, HMGB1 and Hsp60. By contrast, the silencing of TLR3 significantly downregulated MyD88 and TLR2 gene expression and pro-inflammatory IL1β, TNF, and IL8 secretion. The silencing of MyD88 similarly led to the downregulation of TLR2, IL1β, TNF and IL8, thus suggesting MyD88 / to somehow act downstream of TLR3. -
TLR4 and TLR9 Ligands Macrophages Induces Cross
Lymphotoxin β Receptor Activation on Macrophages Induces Cross-Tolerance to TLR4 and TLR9 Ligands This information is current as Nadin Wimmer, Barbara Huber, Nicola Barabas, Johann of September 27, 2021. Röhrl, Klaus Pfeffer and Thomas Hehlgans J Immunol 2012; 188:3426-3433; Prepublished online 22 February 2012; doi: 10.4049/jimmunol.1103324 http://www.jimmunol.org/content/188/7/3426 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/02/23/jimmunol.110332 Material 4.DC1 http://www.jimmunol.org/ References This article cites 42 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/188/7/3426.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Lymphotoxin b Receptor Activation on Macrophages Induces Cross-Tolerance to TLR4 and TLR9 Ligands Nadin Wimmer,* Barbara Huber,* Nicola Barabas,* Johann Ro¨hrl,* Klaus Pfeffer,† and Thomas Hehlgans* Our previous studies indicated that lymphotoxin b receptor (LTbR) activation controls and downregulates inflammatory reac- tions. -
Regulation of Neuronal Morphogenesis and Brain Functions Via Toll-Like Receptors Chiung-Ya Chen*, Yi-Chun Shih, Yun-Fen Hung and Yi-Ping Hsueh*
Chen et al. Journal of Biomedical Science (2019) 26:90 https://doi.org/10.1186/s12929-019-0584-z REVIEW Open Access Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors Chiung-Ya Chen*, Yi-Chun Shih, Yun-Fen Hung and Yi-Ping Hsueh* Abstract Toll-like receptors (TLRs) are well known as critical pattern recognition receptors that trigger innate immune responses. In addition, TLRs are expressed in neurons and may act as the gears in the neuronal detection/alarm system for making good connections. As neuronal differentiation and circuit formation take place along with programmed cell death, neurons face the challenge of connecting with appropriate targets while avoiding dying or dead neurons. Activation of neuronal TLR3, TLR7 and TLR8 with nucleic acids negatively modulates neurite outgrowth and alters synapse formation in a cell-autonomous manner. It consequently influences neural connectivity and brain function and leads to deficits related to neuropsychiatric disorders. Importantly, neuronal TLR activation does not simply duplicate the downstream signal pathways and effectors of classical innate immune responses. The differences in spatial and temporal expression of TLRs and their ligands likely account for the diverse signaling pathways of neuronal TLRs. In conclusion, the accumulated evidence strengthens the idea that the innate immune system of neurons serves as an alarm system that responds to exogenous pathogens as well as intrinsic danger signals and fine-tune developmental processes of neurons. Keywords: Innate immunity, TLR, Neuronal development Introduction innate immune system responds quickly to danger sig- Organisms have host defense systems, namely adaptive nals and lacks antigen specificity. -
Galectin-4 Interaction with CD14 Triggers the Differentiation of Monocytes Into Macrophage-Like Cells Via the MAPK Signaling Pathway
Immune Netw. 2019 Jun;19(3):e17 https://doi.org/10.4110/in.2019.19.e17 pISSN 1598-2629·eISSN 2092-6685 Original Article Galectin-4 Interaction with CD14 Triggers the Differentiation of Monocytes into Macrophage-like Cells via the MAPK Signaling Pathway So-Hee Hong 1,2,3,4,5, Jun-Seop Shin 1,2,3,5, Hyunwoo Chung 1,2,4,5, Chung-Gyu Park 1,2,3,4,5,* 1Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 03080, Korea 2Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea 3Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea 4Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea 5Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea Received: Jan 28, 2019 ABSTRACT Revised: May 13, 2019 Accepted: May 19, 2019 Galectin-4 (Gal-4) is a β-galactoside-binding protein mostly expressed in the gastrointestinal *Correspondence to tract of animals. Although intensive functional studies have been done for other galectin Chung-Gyu Park isoforms, the immunoregulatory function of Gal-4 still remains ambiguous. Here, we Department of Microbiology and Immunology, Seoul National University College of Medicine, demonstrated that Gal-4 could bind to CD14 on monocytes and induce their differentiation 103 Daehak-ro, Jongno-gu, Seoul 03080, into macrophage-like cells through the MAPK signaling pathway. Gal-4 induced the phenotypic Korea. changes on monocytes by altering the expression of various surface molecules, and induced E-mail: [email protected] functional changes such as increased cytokine production and matrix metalloproteinase expression and reduced phagocytic capacity. -
MYD88 L265P Is a Marker Highly Characteristic Of, but Not Restricted To, Waldenstro¨M’S Macroglobulinemia
Leukemia (2013) 27, 1722–1728 & 2013 Macmillan Publishers Limited All rights reserved 0887-6924/13 www.nature.com/leu ORIGINAL ARTICLE MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstro¨m’s macroglobulinemia C Jime´ nez1, E Sebastia´n1, MC Chillo´n1,2, P Giraldo3, J Mariano Herna´ndez4, F Escalante5, TJ Gonza´lez-Lo´ pez6, C Aguilera7, AG de Coca8, I Murillo3, M Alcoceba1, A Balanzategui1, ME Sarasquete1,2, R Corral1, LA Marı´n1, B Paiva1,2, EM Ocio1,2, NC Gutie´ rrez1,2, M Gonza´lez1,2, JF San Miguel1,2 and R Garcı´a-Sanz1,2 We evaluated the MYD88 L265P mutation in Waldenstro¨m’s macroglobulinemia (WM) and B-cell lymphoproliferative disorders by specific polymerase chain reaction (PCR) (sensitivity B10 À 3). No mutation was seen in normal donors, while it was present in 101/117 (86%) WM patients, 27/31 (87%) IgM monoclonal gammapathies of uncertain significance (MGUS), 3/14 (21%) splenic marginal zone lymphomas and 9/48 (19%) non-germinal center (GC) diffuse large B-cell lymphomas (DLBCLs). The mutation was absent in all 28 GC-DLBCLs, 13 DLBCLs not subclassified, 35 hairy cell leukemias, 39 chronic lymphocyticleukemias(16withM-component), 25 IgA or IgG-MGUS, 24 multiple myeloma (3 with an IgM isotype), 6 amyloidosis, 9 lymphoplasmacytic lymphomas and 1 IgM-related neuropathy. Among WM and IgM- MGUS, MYD88 L265P mutation was associated with some differences in clinical and biological characteristics, although usually minor; wild-type MYD88 cases had smaller M-component (1.77 vs 2.72 g/dl, P ¼ 0.022), more lymphocytosis (24 vs 5%, P ¼ 0.006), higher lactate dehydrogenase level (371 vs 265 UI/L, P ¼ 0.002), atypical immunophenotype (CD23 À CD27 þþFMC7 þþ), less Immunoglobulin Heavy Chain Variable gene (IGHV) somatic hypermutation (57 vs 97%, P ¼ 0.012) and less IGHV3–23 gene selection (9 vs 27%, P ¼ 0.014). -
Osteoarthritis and Toll-Like Receptors: When Innate Immunity Meets Chondrocyte Apoptosis
biology Review Osteoarthritis and Toll-Like Receptors: When Innate Immunity Meets Chondrocyte Apoptosis Goncalo Barreto 1,2,* , Mikko Manninen 3 and Kari K. Eklund 1,2,3 1 Department of Rheumatology, Helsinki University and Helsinki University Hospital, 00014 Helsinki, Finland; kari.eklund@hus.fi 2 Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland 3 Orton Research Institute, 00280 Helsinki, Finland; mikko.manninen@orton.fi * Correspondence: goncalo.barreto@helsinki.fi; Tel.: +358-4585-381-10 Received: 24 February 2020; Accepted: 28 March 2020; Published: 30 March 2020 Abstract: Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. In particular, chondrocyte-mediated inflammatory responses triggered by the activation of innate immune receptors by alarmins (also known as danger signals) are thought to be involved. Thus, toll-like receptors (TLRs) and their signaling pathways are of particular interest. Recent reports suggest that among the TLR-induced innate immune responses, apoptosis is one of the critical events. Apoptosis is of particular importance, given that chondrocyte death is a dominant feature in OA. This review focuses on the role of TLR signaling in chondrocytes and the role of TLR activation in chondrocyte apoptosis. The functional relevance of TLR and TLR-triggered apoptosis in OA are discussed as well as their relevance as candidates for novel disease-modifying OA drugs (DMOADs). Keywords: osteoarthritis; chondrocytes; toll-like receptors; apoptosis; innate immunity; cartilage 1. Introduction: The Role of Immunity in OA Clinical osteoarthritis (OA) is preceded by a preclinical stage, which, in conjunction with the presence of risk factors and/or other pathological factors, proceeds to the radiographic OA state. -
Dephosphorylating TRAM TRIF-Dependent TLR4 Pathway by Phosphatase PTPN4 Preferentially Inhibits
Phosphatase PTPN4 Preferentially Inhibits TRIF-Dependent TLR4 Pathway by Dephosphorylating TRAM This information is current as Wanwan Huai, Hui Song, Lijuan Wang, Bingqing Li, Jing of September 29, 2021. Zhao, Lihui Han, Chengjiang Gao, Guosheng Jiang, Lining Zhang and Wei Zhao J Immunol published online 30 March 2015 http://www.jimmunol.org/content/early/2015/03/28/jimmun ol.1402183 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published March 30, 2015, doi:10.4049/jimmunol.1402183 The Journal of Immunology Phosphatase PTPN4 Preferentially Inhibits TRIF-Dependent TLR4 Pathway by Dephosphorylating TRAM Wanwan Huai,* Hui Song,* Lijuan Wang,† Bingqing Li,‡ Jing Zhao,* Lihui Han,* Chengjiang Gao,* Guosheng Jiang,‡ Lining Zhang,* and Wei Zhao* TLR4 recruits TRIF-related adaptor molecule (TRAM, also known as TICAM2) as a sorting adaptor to facilitate the interaction between TLR4 and TRIF and then initiate TRIF-dependent IRF3 activation. -
IL21R Expressing CD14+CD16+ Monocytes Expand in Multiple
Plasma Cell Disorders SUPPLEMENTARY APPENDIX IL21R expressing CD14 +CD16 + monocytes expand in multiple myeloma patients leading to increased osteoclasts Marina Bolzoni, 1 Domenica Ronchetti, 2,3 Paola Storti, 1,4 Gaetano Donofrio, 5 Valentina Marchica, 1,4 Federica Costa, 1 Luca Agnelli, 2,3 Denise Toscani, 1 Rosanna Vescovini, 1 Katia Todoerti, 6 Sabrina Bonomini, 7 Gabriella Sammarelli, 1,7 Andrea Vecchi, 8 Daniela Guasco, 1 Fabrizio Accardi, 1,7 Benedetta Dalla Palma, 1,7 Barbara Gamberi, 9 Carlo Ferrari, 8 Antonino Neri, 2,3 Franco Aversa 1,4,7 and Nicola Giuliani 1,4,7 1Myeloma Unit, Dept. of Medicine and Surgery, University of Parma; 2Dept. of Oncology and Hemato-Oncology, University of Milan; 3Hematology Unit, “Fondazione IRCCS Ca’ Granda”, Ospedale Maggiore Policlinico, Milan; 4CoreLab, University Hospital of Parma; 5Dept. of Medical-Veterinary Science, University of Parma; 6Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture; 7Hematology and BMT Center, University Hospital of Parma; 8Infectious Disease Unit, University Hospital of Parma and 9“Dip. Oncologico e Tecnologie Avanzate”, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2016.153841 Received: August 5, 2016. Accepted: December 23, 2016. Pre-published: January 5, 2017. Correspondence: [email protected] SUPPLEMENTAL METHODS Immunophenotype of BM CD14+ in patients with monoclonal gammopathies. Briefly, 100 μl of total BM aspirate was incubated in the dark with anti-human HLA-DR-PE (clone L243; BD), anti-human CD14-PerCP-Cy 5.5, anti-human CD16-PE-Cy7 (clone B73.1; BD) and anti-human CD45-APC-H 7 (clone 2D1; BD) for 20 min. -
Identification of 18 Immune Cell Subsets Using 13-Color Panel
Immunophenotyping Identification of 18 immune cell subsets in human blood using a 13-color panel Background Cell type Function Phenotype Flow cytometry has become the method of choice for Eosinophils Parasitic immunity CD45+, SSCmid/hi, CD14 –, CD16 –, CD19– immunophenotyping and identifying specific cellular + mid/hi subsets. Within seconds, it provides a thorough overview of Neutrophils Innate Immunity CD45 , SSC , CD14 –, CD16+, CD19– the major cell types that constitute a sample. Using multiple + mid markers simultaneously increases the number of parameters Classical Phagocytosis of CD45 , SSC , monocytes pathogens and CD14+, CD16– that can be analyzed per run and decreases the amount of antigen presentation starting material required to perform an assay. This can be Intermediate Phagocytosis of CD45+, SSCmid, critical for precious sample material and long-term immune- monocytes pathogens and CD14+, CD16mid monitoring studies. In this application note, we demonstrate antigen presentation 13-color immunophenotyping of human peripheral blood Non-classical Phagocytosis of CD45+, SSCmid, + + mononuclear cells (PBMCs) using the MACSQuant® Analyzer 16, monocytes pathogens and CD14 , CD16 antigen presentation a compact and reliable benchtop flow cytometer equipped + low + with three lasers. The markers selected allow for the Class-switched Adaptive immunity CD45 , SSC , CD19 , memory B cells CD27+, IgD–, CD14– simultaneous identification and analysis of 18 different cell Non-switched Adaptive immunity CD45+, SSClow, CD19+, populations, thus maximizing the amount of information that memory B cells CD27+, IgD+, CD14– can be retrieved from the sample material analyzed. This is Naive B cells Adaptive immunity – CD45+, SSClow, CD19+, critical when input material is limited, as is often the case for non-antigen CD27–, IgD+, CD14– pediatric or disease studies. -
MYD88 and Beyond: Novel Opportunities for Diagnosis, Prognosis and Treatment in Waldenstro¨M’S Macroglobulinemia
Leukemia (2014) 28, 1799–1803 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu CONCISE REVIEW MYD88 and beyond: novel opportunities for diagnosis, prognosis and treatment in Waldenstro¨m’s Macroglobulinemia O Landgren and N Tageja Waldenstro¨m’s Macroglobulinemia (WM) is a rare disease of the elderly with a median age of 63–68 years at diagnosis. Despite recent progress in biological insights and therapeutics, WM remains clinically challenging to diagnose and is difficult to manage with significant morbidity and lack of established curative therapies. Recently, the use of whole-genome sequencing has helped to identify a highly recurrent somatic mutation, myeloid differentiation factor 88 [MYD88] L265P in WM. This has fueled major interest in the field and as newer evidence accumulates, it is clear that that discovery of MYD88 L265P mutation may represent an important breakthrough in understanding the pathogenesis of WM and lymphoproliferative disorders. Recent scientific work in this field has also guided the identification of new targets such as CXCR4 and PI3K-delta that may have major implications in the future treatment of WM. This review discusses the role of MYD88 L265P mutations as well as targets beyond MYD88 in the setting of pathogenesis and development of future rational therapeutic trials focusing on patients diagnosed with WM. Leukemia (2014) 28, 1799–1803; doi:10.1038/leu.2014.88 INTRODUCTION transduces signals to the NF-kB transcription factors in response to Waldenstro¨m’s Macroglobulinemia (WM) is a rare hematological IL-1R1 signaling. MYD88 has a modular structure with a Toll/IL-1R malignancy with a reported age-adjusted incidence rate of 3.4 per (TIR) domain at its COOH terminus and a death domain at its 12 11 million among men and 1.7 per million among women in the NH2 terminus. -
TLR4 Signaling and Macrophage Inflammatory Responses Are Dampened by GIV/Girdin
TLR4 signaling and macrophage inflammatory responses are dampened by GIV/Girdin Lee Swansona, Gajanan D. Katkara, Julian Tama, Rama F. Pranadinataa, Yogitha Chareddya, Jane Coatesa, Mahitha Shree Anandachara, Vanessa Castilloa, Joshua Olsonb, Victor Nizetb,c, Irina Kufarevac, Soumita Dasd, and Pradipta Ghosha,e,1 aDepartment of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093; bDepartment of Pediatrics, University of California San Diego, La Jolla, CA 92093; cSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093; dDepartment of Pathology, University of California San Diego, La Jolla, CA 92093; and eDepartment of Medicine, University of California San Diego, La Jolla, CA 92093 Edited by Shizuo Akira, Osaka University, Osaka, Japan, and approved September 18, 2020 (received for review June 10, 2020) Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflam- and integrins (reviewed in refs. 5, 6), here we studied if and how matory response; controlled responses confer immunity but uncon- GIV may impact the LPS/TLR4 signaling in the most relevant trolled responses cause harm. Here we define how a multimodular cell line, i.e., macrophages. We dissect the relevance of those scaffold, GIV (a.k.a. Girdin), titrates such inflammatory response in findings in murine disease models and its broader relevance macrophages. Upon challenge with either live microbes or microbe- among other TLRs. derived lipopolysaccharides (a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and Results and Discussion suppress proinflammatory cytokines and signaling pathways GIV Is Preferentially Expressed in the Myeloid Cells of Our Immune (i.e., NFkB and CREB) downstream of TLR4 compared to their System. -
RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Toll-Like Receptor Signaling Pathway Cat. no. 330231 PAHS-018ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Toll-Like Receptor (TLR) Signaling Pathway RT² Profiler PCR Array profiles the expression of 84 genes central to TLR-mediated signal transduction and innate immunity. The TLR family of pattern recognition receptors (PRRs) detects a wide range of bacteria, viruses, fungi and parasites via pathogen-associated molecular patterns (PAMPs). Each receptor binds to specific ligands, initiates a tailored innate immune response to the specific class of pathogen, and activates the adaptive immune response.