ICARUS 129, 254±267 (1997) ARTICLE NO. IS975759 Habitable Planets with High Obliquities1 Darren M. Williams Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, Pennsylvania 16802 E-mail:
[email protected] and James F. Kasting Department of Geosciences, Pennsylvania State University, 211 Deike Building, University Park, Pennsylvania 16802 Received September 19, 1996; revised April 21, 1997 Butler and Marcy 1996, Gatewood 1996, Butler et al. 1996, Earth's obliquity would vary chaotically from 08 to 858 were Cochran et al. 1996) have generated widespread anticipa- it not for the presence of the Moon (J. Laskar, F. Joutel, and tion of detecting an Earth-like planet around a nearby P. Robutel, 1993, Nature 361, 615±617). The Moon itself is solar-type star. As of this writing, all of the companions thought to be an accident of accretion, formed by a glancing found around Sun-like main-sequence stars are at least 1.5 blow from a Mars-sized planetesimal. Hence, planets with simi- times the mass of Saturn, and none of these objects orbit lar moons and stable obliquities may be extremely rare. This entirely within a circumstellar habitable zone, or HZ (Wil- has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life- liams et al. 1997). We follow Kasting et al. (1993, henceforth supporting climates may be small. KWR) in de®ning the HZ as the region around a star in To test this proposition, we have used an energy-balance which an Earth-like planet (of comparable mass and having climate model to simulate Earth's climate at obliquities up to an atmosphere containing N2 ,H2O, and CO2) is climati- 908.