Collaborations on Imaging – the Medimmune’S Innovative Way

Total Page:16

File Type:pdf, Size:1020Kb

Collaborations on Imaging – the Medimmune’S Innovative Way Collaborations on Imaging – The Medimmune’s Innovative Way Jerry Wu, PhD, Medimmune Developments in Healthcare Imaging – Connecting with Industry 18th October 2017 Contents 1 A brief overview of Medimmune 2 Scientific collaborations 3 Scientific Interest Group for Imaging 2 A brief overview of Medimmune Global Biologics Research and Development Arm of ~2,200 Employees in the US and UK Robust pipeline of 120+ Biologics in Research & Development with 40+ projects in Clinical Stage Development California Gaithersburg Cambridge 3 Medimmune – Biologics arm of AstraZeneca Late-stage Discovery and Early Development Development Innovative Medicines and Early Development Unit (Small Molecules) Global Internal and Collaboration and Medicines external combinations Development Market opportunities MedImmune (Biologics) 4 Current therapeutic areas Respiratory, Inflammation and Cardiovascular and Infectious Disease Oncology Autoimmunity Metabolic Disease Neuroscience Main Therapeutic Areas Opportunity-driven Protein Biologics Small Molecules Immuno-therapies Devices Engineering 5 RESPIRATORY, INFLAMMATION AND AUTOIMMUNITY ONCOLOGY (RIA) Medimmune R&D pipeline INFECTIOUS DISEASE (ID), NEUROSIENCE AND CARDIOVASCULAR AND METABOLIC DISEASE (CVMD) GASTROINTESINAL DISEASE PHASE 1 PHASE 2 PHASE 2 PIVOTAL/PHASE 3 Durvalumab + MEDI-573 Durvalumab MEDI-565 MEDI0562 MEDI4276 Durvalumab MEDI0680 Metastatic ≥2nd Line Advanced Solid Tumors Solid Tumors Solid Tumors Stage III NSCLC Solid Tumors Breast Cancer Bladder Cancer Durvalumab/AZD5069/ Durvalmab + MEDI0680 MEDI1873 Durvalumab + Durvalumab Durvalumab MED9447 AZD9150 Tremelimumab Solid Tumors Solid Tumors Solid Tumors 2nd Line SCCHN Solid Tumors Sq.Cell Carcinoma of H&N 1st Line NSCLC Tremelimumab + Durvalumab + Durvalumab + Durvalumab + Durvalmab + MEDI9197 MEDI9447 MEDI0562 Tremelimumab Tremelimumab Tremelimumab Tremelimumab Solid Tumors Solid Tumors Solid Tumors Hepatocellular carcinoma Gastric Cancer 1st Line SCCHN 1st Line NSCLC Durvalumab + Durvalumab or Durvalumab + Durvalumab + Durvalumab + Durvalumab + IRESSA Tezepelumab (MEDI9929) Inebilizumab Monalizumab (Tremelimumab or AZD9150) Tremelimumab Tremelimumab Non-Small Cell Lung Cancer Asthma/Atopic Dermatitis Neuromyelitis Optica Solid Tumors Diffuse large B-cell lymphoma 1st Line Bladder Cancer 3rd Line NSCLC Durvalumab + Durvalumab + Durvalumab + Moxetumomab AZD9412 Mavrilimumab Benralizumab AZD1775 MEDI0562 selumetinib Pasudotox Asthma/COPD Rheumatoid Arthritis COPD Solid Tumors Solid Tumors Solid Tumors Hairy Cell Leukemia Durvalumab + Durvalumab+ MEDI9314 MEDI0382 MEDI6012 Benralizumab Tralokinumab Tremelimumab Dabrafenb + Trametinib Atopic Dermatitis Diabetes/Obesity Acute Coronary Syndrome Severe Asthma Severe Asthma Solid Tumors Melanoma MEDI8111 Anifrolumab MEDI0700 MEDI4166 MEDI3902 Anifrolumab Systemic Lupus Erythematosus Prevention of Nosocomial Trauma/Bleeding Systemic Lupus Erythematosus Diabetes/Cardiovascular Systemic Lupus Erythematosus (Subcutaneous) Pseudomonas Pneumonia MEDI4893 MEDI7352 MEDI4920 MEDI1814 MEDI8897 Hospital-acquired Osteoarthritis Pain Primary Sjögren’s Syndrome Alzheimer’s Disease Passive RSV Prophylaxis Pneumonia / S. aureus * As of February 2017 MEDI7734 Anifrolumab MEDI8852 Myositis Lupus Nephritis Influenza A Treatment MEDI5872 6 Primary Sjögren’s Syndrome Scientific Collaborations Academic collaboration highlights INSTITUTION THERAPEUTIC AREA DESCRIPTION • Joint PhD program supports joint thesis projects ALL • Novel Entrepreneur-in-Residence program • Research collaborations in neuro, biopharmaceutical research • Creation of CRUK-MEDI Alliance Laboratory ONCOLOGY • CRUK provides novel drug targets • We provides antibody libraries and antibody engineering technologies • First industry sponsor for Catalyst awards ALL • Call for proposals in MedImmune therapeutic areas • Goal is to collaborate on joint projects • Collaborations in formulation science BPD • Multiple projects with joint steering committee • Research and education collaborations across 4 campuses ALL • Jointly funded with UMB and Maryland Dept. of Business and Economic Development AKK • Multiple projects with joint steering committee In 2015, MedImmune published 550+ publications, in which there were 35+ high impact publications (impact factor > 15) 8 Scientific collaboration is a key driver behind our move Laboratory of School of Clinical Molecular Biology Cambridge Institute Medicine AZ/Medimmune R&D Centre and Corporate HQ building Medimmune/AstraZeneca already have >100 collaborations with Cambridge Site of planned Energy Centre Addenbrooke’s Hospital and R&D Enabling Building Future hospital site The Rosie Hospital 9 Key collaborations in Cambridge ...through collaborations ...through our Scientific ...with leading scientists in With the tech and biotech Excellence programme Cambridge organisations sector of events 10 LMB / AZ-Medi Blue Sky collaboration LMB Divisions Cell Biology Neurobiology Protein and Nucleic Acid Chemistry Structural Studies Core Technology Facilities From mass spectrometry and nuclear magnetic resonance to scientific computing 11 Scientific Interest Group for Imaging Medimmune Cambridge 2020 Vision Use our unique position and exceptional talent to build scientific innovation and collaboration to deliver impact for patients 13 Continuing progress on our 2020 Vision • Collaboration opportunities – Developing externally facing platform to enable future collaboration and outreach with partners • Scientific focus – creation of Scientific Interest Groups (SIG) – Imaging – Machine Learning – Devices and Delivery – Genomics – Experimental Medicine 14 Scientific Interest Groups – What are they for? • Allow the sharing of ideas & opportunities in distinct focus areas • Identify opportunities for collaboration within the local area • Share what is happening within functional & therapeutic areas • Discuss new technologies and platforms to apply these within the organisation • A forum to discuss how to solve scientific problems in relevant areas • Share information & ideas across the organisation – IMED/Medi/Spirogen/Definiens • Provide a link into the Medimmune 2025 Strategic focus areas 15 Imaging – part of Digital Health Initiative • Digital pathology – Automated tissue and organ analysis – Predictive multiplexing IHC biomarkers – Improve pathology diagnosis through machine learning • Non invasive techniques – CT, PET and MRI – In vivo microscopy imaging for expressed biologics • Image analysis, machine learning and deep learning 16 Collaboration strategy for Scientific Interest Group • Use networks to uncover partners with technology and capabilities in imaging – Brainstorm workshop and consult all therapeutic areas – Internally identify problems that require a solution – Based on nature of problem, reach out internal and external networks for solutions • Ultimate goal to access or acquire novel capabilities and technology 17 How will we work? Reach out for collaborations Co-creation of solution with external experts and internal partners Proof of Work with TAs/ concept & cross functional implement groups to identify Evaluate possible the key problems technology to solve for the problems 18 How we achieve our bold vision: Start Small, Think Big. “Start small, think big. Don’t worry about too many things at once. Take a handful of simple things to begin with, and then progress to more complex ones. Think about not just tomorrow, but the future. Put a ding in the universe.” Steve Jobs 19 Our approach to challenges 1. Open Access 6. Maximal 2. Added Efficient Value SIG Imaging 5. 3. Scalable Flexible 4. Multi- modal 20 Acknowledgements • Scientific Interest Group for Imaging • High Content Imaging at Medimmune Research • Informatics, Medimmune R&D • Medimmune Cambridge Site Leadership Team • AZ High Content Biology & AZ Quantitative Biology • … and everyone else who helps us do our jobs! 21 Thank you! Jerry Wu, Chair of Scientific Interest Group for Imaging [email protected] Confidentiality Notice This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com 23.
Recommended publications
  • (CHMP) Agenda for the Meeting on 22-25 February 2021 Chair: Harald Enzmann – Vice-Chair: Bruno Sepodes
    22 February 2021 EMA/CHMP/107904/2021 Human Medicines Division Committee for medicinal products for human use (CHMP) Agenda for the meeting on 22-25 February 2021 Chair: Harald Enzmann – Vice-Chair: Bruno Sepodes 22 February 2021, 09:00 – 19:30, room 1C 23 February 2021, 08:30 – 19:30, room 1C 24 February 2021, 08:30 – 19:30, room 1C 25 February 2021, 08:30 – 19:30, room 1C Disclaimers Some of the information contained in this agenda is considered commercially confidential or sensitive and therefore not disclosed. With regard to intended therapeutic indications or procedure scopes listed against products, it must be noted that these may not reflect the full wording proposed by applicants and may also vary during the course of the review. Additional details on some of these procedures will be published in the CHMP meeting highlights once the procedures are finalised and start of referrals will also be available. Of note, this agenda is a working document primarily designed for CHMP members and the work the Committee undertakes. Note on access to documents Some documents mentioned in the agenda cannot be released at present following a request for access to documents within the framework of Regulation (EC) No 1049/2001 as they are subject to on- going procedures for which a final decision has not yet been adopted. They will become public when adopted or considered public according to the principles stated in the Agency policy on access to documents (EMA/127362/2006). Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2021.
    [Show full text]
  • Evaluation of Antibody Properties and Clinically Relevant Immunogenicity
    Drug Safety https://doi.org/10.1007/s40264-018-00788-w ORIGINAL RESEARCH ARTICLE Evaluation of Antibody Properties and Clinically Relevant Immunogenicity, Anaphylaxis, and Hypersensitivity Reactions in Two Phase III Trials of Tralokinumab in Severe, Uncontrolled Asthma Mats Carlsson1 · Martin Braddock2 · Yuling Li3 · Jihong Wang3 · Weichen Xu3 · Nicholas White4 · Ayman Megally5 · Gillian Hunter6 · Gene Colice5 © The Author(s) 2019 Abstract Introduction Tralokinumab is a monoclonal antibody (mAb) that neutralizes interleukin (IL)-13, a cytokine involved in the pathogenesis of asthma. Objective The objectives of this study were to characterize the potential immunogenic properties of tralokinumab and report data for anti-drug antibodies (ADAs) and hypersensitivity reactions from two phase III clinical trials. Methods The oligosaccharide structure of tralokinumab, Fab-arm exchange, and ADAs were characterized by standard techniques. Hypersensitivity adverse events (AEs) were evaluated in two pivotal clinical trials of tralokinumab in severe, uncontrolled asthma: STRATOS 1 and 2 (NCT02161757 and NCT02194699). Results No galactose-α-1,3-galactose (α-Gal) epitopes were found in the Fab region of tralokinumab and only 4.5% of glycoforms contained α-Gal in the Fc region. Under non-reducing conditions, Fab-arm exchange did not take place with another immunoglobulin (Ig) G­ 4 mAb (mavrilimumab). However, following glutathione reduction, a hybrid antibody with monovalent bioactivity was detected. ADA incidences (titers) were as follows: STRATOS 1—every 2 weeks (Q2 W) 0.8% (26.0), every 4 weeks (Q4 W) 0.5% (26.0), placebo 0.8% (52.0); STRATOS 2—Q2 W 1.2% (39.0), placebo 0.8% (13.0). Participant-reported hypersensitivity AE rates were as follows: STRATOS 1—Q2 W 25.9%, Q4 W 25.0%, placebo 25.5%; STRATOS 2—Q2 W 13.2%, placebo 9.0%.
    [Show full text]
  • Study Protocol
    PROTOCOL SYNOPSIS A Multicentre, Randomised, Double-blind, Placebo-controlled, Phase 3 Study Evaluating the Efficacy and Safety of Two Doses of Anifrolumab in Adult Subjects with Active Systemic Lupus Erythematosus International Coordinating Investigator Study site(s) and number of subjects planned Approximately 450 subjects are planned at approximately 173 sites. Study period Phase of development Estimated date of first subject enrolled Q2 2015 3 Estimated date of last subject completed Q2 2018 Study design This is a Phase 3, multicentre, multinational, randomised, double-blind, placebo-controlled study to evaluate the efficacy and safety of an intravenous treatment regimen of anifrolumab (150 mg or 300 mg) versus placebo in subjects with moderately to severely active, autoantibody-positive systemic lupus erythematosus (SLE) while receiving standard of care (SOC) treatment. The study will be performed in adult subjects aged 18 to 70 years of age. Approximately 450 subjects receiving SOC treatment will be randomised in a 1:2:2 ratio to receive a fixed intravenous dose of 150 mg anifrolumab, 300 mg anifrolumab, or placebo every 4 weeks (Q4W) for a total of 13 doses (Week 0 to Week 48), with the primary endpoint evaluated at the Week 52 visit. Investigational product will be administered as an intravenous (IV) infusion via an infusion pump over a minimum of 30 minutes, Q4W. Subjects must be taking either 1 or any combination of the following: oral corticosteroids (OCS), antimalarial, and/or immunosuppressants. Randomisation will be stratified using the following factors: SLE Disease Activity Index 2000 (SLEDAI-2K) score at screening (<10 points versus ≥10 points); Week 0 (Day 1) OCS dose 2(125) Revised Clinical Study Protocol Drug Substance Anifrolumab (MEDI-546) Study Code D3461C00005 Edition Number 5 Date 18 May 2016 (<10 mg/day versus ≥10 mg/day prednisone or equivalent); and results of a type 1 interferon (IFN) test (high versus low).
    [Show full text]
  • Final Scope PDF 184 KB
    Appendix B NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE Health Technology Appraisal Anifrolumab for treating active autoantibody-positive systemic lupus erythematosus Final scope Remit/appraisal objective To appraise the clinical and cost effectiveness of anifrolumab within its marketing authorisation for treating active autoantibody-positive systemic lupus erythematosus. Background Systemic lupus erythematosus (SLE) is a chronic autoimmune condition that causes inflammation in the body's tissues. The manifestations of SLE vary greatly between people and can affect the whole body including the skin, joints, internal organs and serous membranes. SLE can result in chronic debilitating ill health. The cause of SLE is unknown though a combination of genetic, environmental and hormonal factors is thought to play a role in disease development and progression. SLE can lead to mucocutaneous disease, arthritis, kidney failure, heart and lung inflammation, central nervous abnormalities and blood disorders. Over 90% of people with SLE develop problems with their joints and muscles such as arthralgia (joint pain) and myalgia (muscle pain). Up to 40% develop renal disease, which significantly contributes to morbidity and mortality.1 Disease activity varies over time and, at the onset, symptoms are very general and may include unexplained fever, extreme fatigue, muscle and joint pain and skin rash. Active SLE involves frequent flares and more severe symptoms compared with disease that is inactive or under control (in remission). Persistent disease activity and side effects from cumulative doses of corticosteroids contribute significantly to the accrual of irreversible long-term organ damage. It is estimated that in 2019 there were around 60,000 people with SLE in England and Wales and around 3,000 people are being diagnosed with SLE each year.2,3 The prevalence of SLE is significantly related to ethnicity, and is highest among people of African-Caribbean family background.
    [Show full text]
  • Study Protocol
    2016N278580_02 CONFIDENTIAL GlaxoSmithKline group of companies 201789 TITLE PAGE Division: Worldwide Development Information Type: Protocol Amendment Title: A Phase 1/2, Double-Blind, Placebo-Controlled Study of the Pharmacokinetics, Safety and Tolerability of GSK3196165 in Combination with Methotrexate Therapy, in Japanese Subjects with Active Moderate-Severe Rheumatoid Arthritis Despite Treatment with Methotrexate. Compound Number: GSK3196165 Development Phase I/II Effective Date: 19- MAY-2017 Protocol Amendment Number: 02 Author(s): PPD Revision Chronology: GlaxoSmithKline Date Version Document Number 2016N278580_00 17-AUG-2016 Original 2016N278580_01 26-SEP-2016 Amendment Number 01 Revision contents: This amendment addresses PMDA modifications requested during the clinical trial notification process. It includes an additional Inclusion Criterion for FVC in Section 5.1; additional Exclusion Criterion and Stopping Criterion for HBV-DNA for subjects with positive anti-HBs antibody in Section 5.2 and Section 5.4; addition of a preventive dose of co-trimoxazole in Section 4.6.1 and Section 6.10.2.2; addition of HBV-DNA test at Screening and addition of footnote for clarification in Section 7.1; addition of “past week’s pain” in Section 12.6.2.1; correction of analysis populations in Section 9.3.1; and deletion of unapproved contraception methods in Japan in Section 12.2. 2016N278580_02 19-MAY-2017 Amendment Number 02 Revision contents: Change of Inclusion Criterion for CRP in Section 5.1. Copyright 2017 the GlaxoSmithKline group of companies. All rights reserved. Unauthorised copying or use of this information is prohibited. 1 2016N278580_02 CONFIDENTIAL 201789 SPONSOR SIGNATORY: Kihito Takahashi Date Vice President, Head of Development and Medical Affairs Division, GlaxoSmithKline K.K.
    [Show full text]
  • 110 Identification and Treatment of Rheumatologic Diseases
    4/2/2021 Describe common rheumatologic diseases Identification • Kristine M. Lohr, MD, MS and Treatment • Professor of Medicine and Chief of Determine routine diagnostic of Rheumatology Division Objectives evaluations for rheumatologic • University of Kentucky College of Medicine diseases prior to referral Rheumatologic • April 20, 2021 Diseases Describe new treatment modalities and alternative therapies for rheumatologic diseases 1 2 Prevalence Rates of Common Rheumatic Diseases • Osteoarthritis • Rheumatoid arthritis Most common • Gout rheumatologic • Lupus diseases • Fibromyalgia • Psoriatic arthritis • Ankylosing spondylitis Centers for Disease Control and Prevention March 2017 Vital Signs https://nccd.cdc.gov/cdi/rdPage.aspx?rdReport=DPH_CDI.ExploreByTopic&islTopic=ART&islYear=9999&go=GO 3 4 Arthritis among Adults Aged >18 yr. in Kentucky Age-adjusted Prevalence (%) Rheumatic Joint Disorders: History Male Female Survey Year Inflammatory Non-inflammatory (Mechanical) All adults aged > 18 yr. 27.8 33.3 2018 Joint pain In the AM, at rest, & with use With use, improved with rest With obesity 32.9 40.0 2018 Stiffness Prolonged morning (>1 hr.) Short-lived after inactivity With diabetes 64.7 40.6 2018 Fatigue Significant Minimal With heart disease 47.2 53.9 2018 Activity May improve stiffness May worsen symptoms Activity limitation due to doctor-diagnosed arthritis 49.5 64.0 2015 Rest May cause gelling May improve symptoms Severe joint pain due to doctor-diagnosed arthritis 35.3 38.3 2017 Instability Buckling, give-way Work limitation
    [Show full text]
  • Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis
    REVIEW published: 09 July 2021 doi: 10.3389/fimmu.2021.686155 Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis † † Jie Huang 1 , Xuekun Fu 1 , Xinxin Chen 1, Zheng Li 1, Yuhong Huang 1 and Chao Liang 1,2* 1 Department of Biology, Southern University of Science and Technology, Shenzhen, China, 2 Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both Edited by: existing and emerging targets, including the proteins, small molecular metabolites, and Trine N. Jorgensen, epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that Case Western Reserve University, result in inflammation and the development of new drugs for blocking the various United States modulators in RA. Reviewed by: Åsa Andersson, Keywords: rheumatoid arthritis, targets, proteins, small molecular metabolites, epigenetic regulators Halmstad University, Sweden Abdurrahman Tufan, Gazi University, Turkey *Correspondence: INTRODUCTION Chao Liang [email protected] Rheumatoid arthritis (RA) is classified as a systemic poly-articular chronic autoimmune joint † disease that primarily affects hands and feet.
    [Show full text]
  • Rheumatoid Arthritis) – Forecast and Market Analysis to 2023
    REFERENCE CODE GDHC509DFR | PUBLICAT ION DATE DECEMBER 2014 MAVRILIMUMAB (RHEUMATOID ARTHRITIS) – FORECAST AND MARKET ANALYSIS TO 2023 MAVRILIMUMAB (RHEUMATOID ARTHRITIS) – FORECAST AND MARKET ANALYSIS TO 2023 Executive Summary The table below presents the key metrics for The major driver for the growth of Mavrilimumab in Mavrilimumab in the 10MM Rheumatoid Arthritis the RA market over the forecast period is: (RA) pharmaceutical markets (US, France, Potential to be a first-in-class therapy. Germany, Italy, Spain, UK, Japan, Australia, China, India) in 2023. Major barrier to the growth of Mavrilimumab in the RA market over the forecast period is: Mavrilimumab: Key Metrics in the 10 Major Pharmaceutical Markets Crowded market, with multiple new entrants Level of Key Events (2013–2023) targeting the same patient population of TNF- Impact Launch of AstraZeneca’s mavrilimumab in inadequate responders. ↑↑ 2020 across the 6MM 2023 Market Sales The figure below illustrates the global US $306.0m Mavrilimumab sales by region during the forecast 5EU $60.4m period. Japan N/A Australia N/A Sales for Mavrilimumab by Region, 2023 China N/A 2023 India N/A Total: $366.3m Total $366.3m 16% Source: GlobalData 10MM = US, France, Germany, Italy, Spain, UK, Japan, Australia, China, and India 6MM = US, France, Germany, Italy, Spain, and UK US 5EU = France, Germany, Italy, Spain, and UK N/A = Not Available 5EU Sales for Mavrilimumab in the Rheumatoid Arthritis Market 84% GlobalData estimates sales of Mavrillimumab at Source: GlobalData the end of the forecast period in 2023, in the US & 5EU at $366.3 million increasing from $145.3 million in 2020.
    [Show full text]
  • Targeting GM-CSF in Rheumatoid Arthritis A.B
    Targeting GM-CSF in rheumatoid arthritis A.B. Avci1, E. Feist2, G.R. Burmester2 1Department of Internal Medicine, ABSTRACT well-known as a haemopoietic growth Rheumatology, Akdeniz University, Granulocyte-macrophage colony-stim- factor used to treat neutropenia follow- Faculty of Medicine, Antalya, Turkey; ulating factor (GM-CSF) is well-known ing chemotherapy. It was a long-time 2Department of Rheumatology and as a haemopoietic growth factor. How- concern that targeted therapies against Clinical Immunology, Charite-University Medicine Berlin, Berlin, Germany. ever, it is also essential in regulating this cytokine could cause severe side functions of mature myeloid cells such effects such as neutropenia or pulmo- Ali Berkant Avci, MD, Assoc. Prof. Eugen Feist, PD Dr as macrophages. Preclinical studies nary alveolar proteinosis. Therefore, Gerd-Rüdiger Burmester, Prof. Dr. and observations of flares of arthritis in during the early development phase Please address correspondence to: patients following GM-CSF treatment of compounds targeting GM-CSF or Ali Berkant Avci, MD, supported its important contribution to its receptor special attention was paid Akdeniz Üniversitesi Hastanesi, the pathogenesis of rheumatoid arthritis to this potential adverse event reveal- İç Hastalıkları AD Romatoloji BD, (RA). As the most advanced compound, ing no evidence for such an associated Kampüs 07059 Konyaaltı/Antalya, mavrilimumab, a monoclonal antibody risk profile. On the other hand the so Turkey. against GM-CSF receptor, has already far available results clearly showed E-mail:[email protected] completed phase II trials with a long rapid and sustained effects on disease Received and accepted on June 29, 2016. term of follow-up period of 74 weeks.
    [Show full text]
  • Immunfarmakológia Immunfarmakológia
    Gergely: Immunfarmakológia Immunfarmakológia Prof Gergely Péter Az immunpatológiai betegségek döntő többsége gyulladásos, és ennek következtében általában szövetpusztulással járó betegség, melyben – jelenleg – a terápia alapvetően a gyulladás csökkentésére és/vagy megszűntetésére irányul. Vannak kizárólag gyulladásgátló gyógyszereink és vannak olyanok, amelyek az immunreakció(k) bénításával (=immunszuppresszió révén) vagy emellett vezetnek a gyulladás mérsékléséhez. Mind szerkezetileg, mind hatástanilag igen sokféle csoportba oszthatók, az alábbi felosztás elsősorban didaktikus célokat szolgál. 1. Nem-szteroid gyulladásgátlók (‘nonsteroidal antiinflammatory drugs’ NSAID) 2. Kortikoszteroidok 3. Allergia-elleni szerek (antiallergikumok) 4. Sejtoszlás-gátlók (citosztatikumok) 5. Nem citosztatikus hatású immunszuppresszív szerek 6. Egyéb gyulladásgátlók és immunmoduláns szerek 7. Biológiai terápia 1. Nem-szteroid gyulladásgátlók (NSAID) Ezeket a vegyületeket, melyek őse a szalicilsav (jelenleg, mint acetilszalicilsav ‘aszpirin’ használatos), igen kiterjedten alkalmazzák a reumatológiában, az onkológiában és az orvostudomány szinte minden ágában, ahol fájdalom- és lázcsillapításra van szükség. Egyes felmérések szerint a betegek egy ötöde szed valamilyen NSAID készítményt. Szerkezetük alapján a készítményeket több csoportba sorolhatjuk: szalicilátok (pl. acetilszalicilsav) pyrazolidinek (pl. fenilbutazon) ecetsav származékok (pl. indometacin) fenoxiecetsav származékok (pl. diclofenac, aceclofenac)) oxicamok (pl. piroxicam, meloxicam) propionsav
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • Antibodies to Watch in 2021 Hélène Kaplona and Janice M
    MABS 2021, VOL. 13, NO. 1, e1860476 (34 pages) https://doi.org/10.1080/19420862.2020.1860476 PERSPECTIVE Antibodies to watch in 2021 Hélène Kaplona and Janice M. Reichert b aInstitut De Recherches Internationales Servier, Translational Medicine Department, Suresnes, France; bThe Antibody Society, Inc., Framingham, MA, USA ABSTRACT ARTICLE HISTORY In this 12th annual installment of the Antibodies to Watch article series, we discuss key events in antibody Received 1 December 2020 therapeutics development that occurred in 2020 and forecast events that might occur in 2021. The Accepted 1 December 2020 coronavirus disease 2019 (COVID-19) pandemic posed an array of challenges and opportunities to the KEYWORDS healthcare system in 2020, and it will continue to do so in 2021. Remarkably, by late November 2020, two Antibody therapeutics; anti-SARS-CoV antibody products, bamlanivimab and the casirivimab and imdevimab cocktail, were cancer; COVID-19; Food and authorized for emergency use by the US Food and Drug Administration (FDA) and the repurposed Drug Administration; antibodies levilimab and itolizumab had been registered for emergency use as treatments for COVID-19 European Medicines Agency; in Russia and India, respectively. Despite the pandemic, 10 antibody therapeutics had been granted the immune-mediated disorders; first approval in the US or EU in 2020, as of November, and 2 more (tanezumab and margetuximab) may Sars-CoV-2 be granted approvals in December 2020.* In addition, prolgolimab and olokizumab had been granted first approvals in Russia and cetuximab saratolacan sodium was first approved in Japan. The number of approvals in 2021 may set a record, as marketing applications for 16 investigational antibody therapeutics are already undergoing regulatory review by either the FDA or the European Medicines Agency.
    [Show full text]