fnins-12-00664 September 27, 2018 Time: 15:25 # 1 METHODS published: 25 September 2018 doi: 10.3389/fnins.2018.00664 A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble Edited by: Yu-Guo Yu, Jay S. Coggan1 †, Corrado Calì2 †, Daniel Keller1, Marco Agus3,4, Daniya Boges2, Fudan University, China * * Marwan Abdellah1, Kalpana Kare2, Heikki Lehväslaiho2,5, Stefan Eilemann1, Reviewed by: Renaud Blaise Jolivet6,7, Markus Hadwiger3, Henry Markram1, Felix Schürmann1 and Clare Howarth, Pierre J. Magistretti2 University of Sheffield, United Kingdom 1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland, 2 Biological and Environmental Ying Wu, Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 3 Visual Xi’an Jiaotong University, China Computing Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 4 CRS4, Center of Research *Correspondence: and Advanced Studies in Sardinia, Visual Computing, Pula, Italy, 5 CSC – IT Center for Science, Espoo, Finland, Jay S. Coggan 6 Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva, Switzerland, 7 The European jay.coggan@epfl.ch; Organization for Nuclear Research, Geneva, Switzerland
[email protected] Corrado Calì
[email protected]; One will not understand the brain without an integrated exploration of structure and
[email protected] function, these attributes being two sides of the same coin: together they form the †These authors share first authorship currency of biological computation. Accordingly, biologically realistic models require the re-creation of the architecture of the cellular components in which biochemical reactions Specialty section: This article was submitted to are contained.