ABSTRACT

INSIGHTS INTO RHYOLITE MAGMA DOME SYSTEMS BASED ON MINERAL AND WHOLE ROCK COMPOSITIONS AT THE MONO CRATERS, EASTERN

The Mono Craters magmatic system, found in a transtensional tectonic setting, consists of small magmatic bodies, dikes, and sills. New sampling of the Mono Craters reveals a wider range of magmatic compositions and a more complex storage and delivery system than heretofore recognized. Space compositional patterns, as well as crystallization temperatures and pressures taken from olivine-, feldspar-, orthopyroxene-, and clinopyroxene-liquid equilibria, are used to create a new model for the Mono Craters magmatic system. Felsic magmas erupted throughout the entire Mono Craters chain, whereas intermediate batches only erupted at Domes 10-12 and 14. Mafic magmas are spatially restricted, having erupted only at Domes 10, 12 and 14. Data from the new whole rock analyses illustrates a linear trend. Fractional crystallization does not replicate this trend but rather the linear trend indicates magma mixing. This study also analyzes samples from the Mono and the June Lake Basalts and compares them to the Mono Craters. Although the Islands fall into the intermediate to felsic group, they contain distinctly higher

Al2O3 and Na2O at a given SiO2. Therefore, this study concludes that the Mono Craters represent a distinct magmatic system not directly related to the magmatic activity that created the Mono Lake Islands.

Michelle Ranee Johnson May 2017

INSIGHTS INTO RHYOLITE MAGMA DOME SYSTEMS BASED ON MINERAL AND WHOLE ROCK COMPOSITIONS AT THE MONO CRATERS, EASTERN CALIFORNIA

by Michelle Ranee Johnson

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology in the College of Science and Mathematics California State University, Fresno May 2017 APPROVED For the Department of Earth and Environmental Sciences:

We, the undersigned, certify that the thesis of the following student meets the required standards of scholarship, format, and style of the university and the student's graduate degree program for the awarding of the master's degree.

Michelle Ranee Johnson Thesis Author

Keith Putirka (Chair) Earth & Environmental Sciences

John Wakabayashi Earth & Environmental Sciences

Christopher Pluhar Earth & Environmental Sciences

For the University Graduate Committee:

Dean, Division of Graduate Studies AUTHORIZATION FOR REPRODUCTION OF MASTER’S THESIS

X I grant permission for the reproduction of this thesis in part or in its entirety without further authorization from me, on the condition that the person or agency requesting reproduction absorbs the cost and provides proper acknowledgment of authorship.

Permission to reproduce this thesis in part or in its entirety must be obtained from me.

Signature of thesis author: ACKNOWLEDGMENTS I would like to express gratitude to Keith Putirka for his knowledge, expertise, patience, and ability to push me past my self-imposed limits. I will always be thankful to John Wakabayashi for his enthusiasm helping me with my thesis and my AGU posters, even at the last minute. Many thanks go to Chris Pluhar for his aid in helping me with my grammar and his knowledge of the Mono Basin area. I appreciate Bernard Evans for his help and expertise with helping me understand my thin sections. I am immensely grateful for Margaret Mangan's interest in this project, her knowledgeable answers to my many questions, and allowing me to use the USGS electron microprobe. I am also thankful for her invitation and subsequent opportunity to speak with her and her associates at the USGS concerning this project. Thank you to the USGS scientists Dave Ponce, Darcy McPhee, Jared Peacock, and Amanda Pera McDonnell for sharing their expertise and their geophysical research on the Mono Craters and the surrounding area. Mae Marcaida, USGS, kindly shared several of her samples from the Mono Lake Islands for microprobe research. Tom Sisson, USGS, encouraged and helped me gain perspective. Mike Clynne, USGS, shared his knowledge in volcanology and willingly offered supportive words. It was an honor to meet Wes Hildreth, USGS, who has a remarkable ability to explain and clarify concepts. I am much obliged to Sarah Roeske at UC Davis and Leslie Hayden at the USGS for helping me with the electron microprobes at their locations. I also want to thank them for their knowledge and skill in the use of the machines and for their patience in teaching me how to use their equipment. v v

Both Pete van der Water and Bob Dundas kindly helped me navigate graduation requirements. Kerry Workman-Ford is appreciated for her talent in making me smile when I needed a boost. Belinda Rossette, Sue Delcroix, and Dawn Moate thoughtfully assisted me when I needed to complete paperwork and meet deadlines. I also want to thank Sue Bratcher and Kellie Townsend for taking their time to aid me in printing my AGU posters. Many thanks to Sue Bratcher, Kellie Townsend, and Douglas Kliewer who helped me whenever there was a problem with the lab equipment and/or when supplies were needed in the lab. I am grateful for exceptional friends and colleagues whom I have made over the years at CSU Fresno who have influenced and counseled me throughout this journey. I am indebted to my personal friends who helped me collect samples out in the field over the course of 1.5 weeks of the 9 weeks in the field: namely Stuart Wilkinson (who helped me collect samples from Domes 17 & 18), Doug Nidever (Domes 6-8;13-14), Alicia Castro (Dome 19), Kyle Davis and Lindsay Mate (Domes 11&12), Nelly Sangrujiveth (Domes 25;27), and Keith Putirka, Gerardo Torrez, Andrew Wonderly (Dome 12). This paper would not have been possible without the unwavering support of my parents, Joseph and Ranee Johnson. I am obliged to Bouakham Sriri-Perez, who consistently provided sound advice and cheerfully encouraged me throughout the process. TABLE OF CONTENTS Page

LIST OF TABLES ...... vii

LIST OF FIGURES ...... viii

INTRODUCTION ...... 1

Geologic Background ...... 6

METHODS ...... 15

Field Observation and Sample Collection ...... 15

Whole Rock Geochemistry ...... 17

Electron Microprobe Analyses (EPMA) ...... 18

Thermobarometry Analyses and Calculations ...... 19

RESULTS ...... 20

Whole Rock Geochemistry Analysis ...... 20

Petrology ...... 27

Thermobarometry Analysis ...... 28

DISCUSSION ...... 37

CONCLUSION ...... 44

REFERENCES CITED ...... 45

APPENDIX: SUPPLEMENTAL TABLES ...... 53

LIST OF TABLES

Page

Table 1: The number of samples collected per each dome...... 16 Table 2: Number of samples collected at the Mono Craters from Kelleher and Cameron (1990) study versus this newer study at the various textural and mineralogical groupings that Kelleher and Cameron (1990) and Wood (1983) named...... 38 Table A1: Whole rock geochemistry of the Mono Lake Islands (MLI), Mono Craters (MC), and June Lake Basalts (JLB)...... 54 Table A2: Comparison of minerals and their major elements analyzed at UC Davis...... 59 Table A3: Comparison of minerals and their major elements analyzed at the USGS, Menlo Park, CA...... 60

Table A4: Clinopyroxene compositions (wt %) ...... 61

Table A5: Orthopyroxene compositions (wt %) ...... 66

Table A6: Plagioclase compositions ...... 67

Table A7: Sanidine compositions ...... 74

Table A8: Olivine crystal compositions ...... 78

Table A9: Petrology analysis ...... 80

LIST OF FIGURES

Page

Figure 1: Generalized map from Mono Lake in the North to Mammoth Mt and Long Valley in the South ...... 2 Figure 2: GIS location map (produced by Bryant Platt) of the samples from this study at the Mono Craters (n=111), Mono Lake Islands (n=9), and June Lake Basalts (n=7)...... 5 Figure 3: Modified map of the Mono Craters from Kelleher and Cameron (1990) showing the numbering system of Wood (1983)...... 8

Figure 4: Cross-section of the Mono Craters Tunnel (Jacques 1940)...... 9 Figure 5: Ages of the Mono Craters compiled by Marcaida (2015) of previous studies...... 11

Figure 6: Ages of the various Mono Craters domes from different studies...... 12 Figure 7: Transtensional tectonics in the LVC region (related to and Eastern California Shear Zone; modified from Bursik, 2009)...... 14 Figure 8: Zoomed-in map from Google Earth (2017) to show the new numbering of Dome 9a and 9b from this study alongside Domes 8 and the explosion pit Dome 10...... 17 Figure 9(a-i): Whole-rock analyses of 128 samples from the Mono Craters (MC), Mono Lake Islands (MLI), and June Lake Basalts (JLB)...... 24

Figure 10(a-b): a. SiO2 versus Latitude of the Mono Craters, Mono Lake Islands, and June Lake Basalts and b. Individual domes/craters vs. SiO2...... 26 Figure 11: Alkali-Silica diagram of the Mono Craters, Mono Lake Islands, and June Lake Basalts (both SiO2 and Na2O+K2O are in wt %)...... 27 Figure 12(a-d): Equilibrium diagrams for clinopyroxene, orthopyroxene, plagioclase, and olivine...... 31 Figure 13(a-d): Cpx and Opx quantitative analysis and thermobarometry results of domes of the Mono Craters and June Lake Basalts...... 34 Figure 14: Comparing Kelleher and Cameron (1990) whole rock analyses of Dome 12 with this study's analyses of Dome 12...... 38 ix ix Page

Figure 15: This AFC model using rock sample "MC-D12J" as the host magma, clearly demonstrates that the samples do not fall on the fractional crystallization trend, but instead show a linear trend...... 39 Figure 16: Whole rock analyses plots of the Mono Craters/Mono Lake Islands/June Lake Basalts research between this research and the studies from Kelleher and Cameron (1990), Bailey (2004), and Cousens (1996)...... 40

Figure 17(a-b): Age (yrs BP) versus Pressure (kbar) and Temperature (oC)...... 42

INTRODUCTION

Researching geologically young volcanic systems provides insight on how volcanism commences and propagates in an area. For example, in extensional settings, bimodal volcanism is produced; whereas, stratovolcanoes tend to develop in compressional tectonic settings (Bursik 2009). Magmatic differentiation (i.e., fractional crystallization, assimilation, magma mixing), type(s) of magmatic plumbing systems (one single chamber/multiple chambers/dikes and/or sills), and the triggering mechanisms that occur are other ways these young volcanic centers can provide insight. The region began erupting dacitic material around 3.5-2.5 Ma. Subsequently, rhyolitic eruptions took place at Glass Mountain (2.2- 0.79 Ma), and the supervolcano eruption that produced the Bishop Tuff transpired ~760 ka at Long Valley Caldera (with less momentous eruptions that re-occurred every ~200ka (see Figure 1; Hill et al. 1985; Hildreth 2004)). Smaller eruptions ensued at the Inyo Craters (last eruption ~600 years ago), Mono Craters (latest eruption ~600 years ago), and the Mono Lake Islands (last erupted ~1790 A.D.). In the Mono Basin area, eruptions have routinely occurred at ~200-500 year intervals (Bailey 1982; Hill et al. 1985; Hildreth 2004). The main focus of this paper is the Mono Craters, which are a geologically young (~40 ka-600 yr BP) group of volcanoes ~15 km NNW of the 'supervolcano' Long Valley Caldera (see Figure 1). The Mono Craters, Inyo Craters, and Mono Lake Islands are areas which have witnessed the most recent volcanic activity in the vicinity as the beneath Long Valley Caldera is considered 'moribund,' and the volcanic activity has moved northwards (Hildreth 2004; Bursik 2009). The Mono Craters formed to the east of the transtensional NNW-trending Sierran

2 2

Figure 1: Generalized map from Mono Lake in the North to Mammoth Mt and Long Valley Caldera in the South Notes: modified from Bergfeld and Hunt (2015) after Bailey (1989). Mono Craters Tunnel depicted. RC= Red Cones. LP= area of deep Long Period .

3 3 range-front fault system (Bailey 2004; Bursik 2009). Tectonic activity can affect the magmatic systems of volcanoes and even change the activity level of a (s) (Lipman et al. 1985; Walter 2007), whereas magmatic intrusions may trigger earthquakes by changing the stress at active faults (Thatcher and Savage 1982; Walter 2009). The extension rate of the Sierran range-front fault system (and the other faults in the vicinity) directly affects the volcanic activity of the Mono Craters and the surrounding volcanoes (Bursik and Sieh 1989; Bursik 2009). This study focuses on understanding the nature of the magmatic plumbing system of the Mono Craters (as well as the Mono Lake Islands and the June Lake Basalts) by using thermobarometry, whole-rock geochemistry, and petrology. Previous geochemical research of the Mono Craters focused solely on whole-rock and trace-element geochemistry (Kelleher and Cameron 1990; Bailey 2004). Their studies only gave a partial history of the Mono Craters as they did not research the thermobarometry nor the petrology. Using whole-rock geochemistry alongside thermobarometry and petrology are important as these methods can aid in determining the depth and possible size of the magma chamber/pods/dikes/sills underneath the Mono Craters. Unlike geophysical research, which can determine what the magmatic system is like in the present, thermobarometry and petrology can aid in reconstructing the storage systems and how they might have been in the past (Dahrén 2015). By not examining the thermobarometry and the petrology, the previous researchers did not investigate what the possible pressures and temperatures of the magma chamber beneath the Mono Craters are, leaving out much-needed details. New geochemical data collected and subsequent analyses aid in determining the depths of the magma chamber, pods, and/or dikes below the Mono 4 4

Craters, shedding new light on the volcanic processes beneath the Mono Craters. The Mono Craters have demonstrated the ability to produce sub-plinian to plinian eruptions in the past (Sieh and Bursik 1986). Therefore, investigating the magmatic processes beneath the Mono Craters aids geologists in establishing the size and possible magnitude of a future eruption by quantifying the depths and temperatures of the magma chamber(s). Magmatic differentiation is another way to comprehend the complexities of the magmatic system and can aid in understanding magma genesis. Kelleher and Cameron (1990) determined fractional crystallization was the main factor behind the Mono Craters. This study differs from Kelleher and Cameron (1990) by hypothesizing that magma mixing is the main process at the Mono Craters. Dome 22, for example, showed evidence of banded pumices and flow structures (commonly found with magma mixing (Perugini and Poli 2012)). Three of the Mono Craters domes have rocks ranging from mafic to felsic compositions, with one having intermediate to felsic compositions. Harker Diagrams also show more evidence for magma mixing versus fractional crystallization. Whole-rock geochemical data listed on NAVDAT shows previous researchers only analyzed eighteen samples from the Mono Craters and seven samples from the Mono Lake Islands (Kelleher and Cameron 1990; Bailey 2004). This new study examines 111 rocks from the Mono Craters (ranging from mafic to felsic in composition), nine from the Mono Lake Islands (Intermediate to Felsic), and seven from the June Lake Basalts (mafic). Figure 2 shows the sample locations from this study. A higher-density sampling of the Mono Craters in this study gives us detailed information about the magma chamber(s) below and depicts a varied volcanic history. The diversity of the geochemistry found within the Mono Craters 5 5

Figure 2: GIS location map (produced by Bryant Platt) of the samples from this study at the Mono Craters (n=111), Mono Lake Islands (n=9), and June Lake Basalts (n=7). Notes: The Mono Craters' numbering system of Wood (1983) depicted. Fault locations from the USGS and CGS (USGS and CGS, 2006).

6 6 indicates one of three possibilities. Either the magma chamber is more diverse in composition than just a felsic magma body, or there may be more than one magma chamber, or lastly, there may be a series of dikes and sills underneath the Mono Craters at varying levels. Other mostly rhyolitic systems also have intermediate to mafic inclusions/activity (Bacon and Metz 1984; Bacon 1986; Varga et al. 1990). One nearby example is the Inyo Craters, which have andesite inclusions near the vents of Deadman Creek and Glass Creek domes (both ~600 years old; Varga et al. 1990). Varga et al. (1990) determined that these inclusions represent mixing of both rhyolitic and basaltic magmas. The andesitic inclusions had hornblende and biotite as microphenocrysts, which suggested that crystallization occurred at pressures of ≥2 kbar (Naney 1983; Varga et al. 1990). This research also assesses if there is an interconnection between the Mono Craters and the surrounding volcanoes (i.e., Mono Lake Islands, June Lake Basalts, and Long Valley Caldera). Thermobarometry analysis aids in determining the pressures and temperatures of the magma chamber(s) beneath the Mono Craters. Lastly, this study investigates the diversification of magmas by analyzing the Mono Craters' whole-rock geochemistry and thermobarometry.

Geologic Background The June Lake Basalts erupted ~75-25 ka and ended with the eruption north of Mono Lake at Black Point ~13.3 ka (Bailey et al. 1976). Hildreth (2004) stated that <20 vents of the Mono Craters-Inyo Craters have been active with subplinian to plinian eruptions in the last 2000 years. Since ~20 ka, eruption rates occurred at the Mono Craters within ~200-500-year intervals (Bailey 1982; Hill et al. 1985). According to Hildreth (2004), all but four of the Mono Craters are Holocene in 7 7 age, with three domes being ~13 ka, and one ~20 ka. During the Holocene, the magmatic system underneath Dome 12 of the Mono Craters chain moved both north and south, producing ~30 dike-fed domes (see Figures 2 and 3 for numbering system; Domes 1 and 2 of Wood (1983) numbering system are Paoha and Negit of the Mono Lake Islands). The latest eruption of the Mono Craters was ~600-650 years ago and ejected ~0.6 km3 of volcanic material (Hildreth 2004; Sieh and Bursik 1986). The Mono Lake Islands are the youngest eruptions of basalt, dacite, and low-silica rhyolite in the area (14-0.25 ka; Hildreth 2004). Previous researchers hypothesized that the Mono Craters are all high-silica rhyolitic domes, except dacitic Dome 12 (Figure 3; Kelleher and Cameron 1990; Hildreth 2004). Earlier research done by Kelleher and Cameron (1990) separated the Mono Craters into six different sections (Dome 12, Porphyritic Biotite-bearing Domes, Porphyritic Orthopyroxene-bearing Domes, Porphyritic-Fayalite bearing Domes, Sparsely Porphyritic Domes, and Aphyric Domes; see Figure 3). However, both andesite and basalt were alongside rhyolite during the excavation of the Mono Craters Tunnel, which extended the Los Angeles Aqueduct in the 1930's (Jacques 1940; see Figure 4). Jacques’ (1940) findings, as well as results from this new study, demonstrate that the Mono Craters' have a more varied magmatic history and introduces a different perspective than what has been thought to be the magmatic system beneath the Mono Craters. The diversity of magmas indicates there is more to the Mono Craters magmatic system than just a shallow, felsic magma body/dike system.

Bergfeld and Hunt’s (2015) study of magmatic CO2 emissions in the Mono Basin area hypothesized these emissions might reflect basalt is intruding beneath the silicic magma chambers. The North Coulée (Dome 13) yielded the largest 8 8

Figure 3: Modified map of the Mono Craters from Kelleher and Cameron (1990) showing the numbering system of Wood (1983). 9 9

Figure 4: Cross-section of the Mono Craters Tunnel (Jacques 1940).

amount of CO2 emissions in the vicinity and found to be similar to fumaroles in the West Moat of the Long Valley Caldera and on Mammoth Mountain (Bergfeld and Hunt 2015). This similarity made Bergfeld and Hunt (2015) hypothesize that there is a connection in both the silicic and basaltic magmatic sources in the area, similar to the process at the Emmons Lake Volcanic Center in the Aleutian arc (Mangan et al. 2009). 10 10 Eichelberger et al. (2006) stated that mixing and/or some form of contact is a common occurrence between different batches of magma. When mixing/contact occurs, it may trigger an eruption which does not allow time for their chemistry or phase assemblages to alter (Eichelberger et al. 2006). Reagon et al. (2003) posited that at any given volcanic center, ~104-105 years of mafic magmatism were needed to produce silicic andesites and dacites. If Reagon et al. (2003) are correct, then the magmatic source beneath the Mono Craters dacitic dome (Dome 12; considered to be the oldest dome in the chain) would be much older than when the dome initially erupted. Both Sampson and Cameron (1987), as well as Hildreth (2004) and this study, believed the volcanic systems in the Mono Basin and Long Valley area to be separate, yet adjacent systems. According to Hildreth (2004), the magmatic foci changed over time, once actively lying underneath Long Valley Caldera, currently lies beneath the Mono Craters and Inyo Craters. Hildreth (2004) hypothesized that the mantle-driven magmatic foci had moved continually, allowing various silicic to be abandoned (including the Long Valley Caldera magma chamber that produced the Bishop Tuff, which has now crystallized and currently moribund). Marcaida (2015) plotted age dates of the various geochronology studies (Dalrymple 1967 (K-Ar sanidine); Bursik and Sieh 1989 (recalibrated hydration rind); Hu et al. 1994 (40Ar/39Ar sanidine); Reid (2003; 238U-230Th allanite); and Vazquez et al. (2013; 238U-230Th zircon/allanite and 40Ar/39Ar sanidine) along with Marcaida's (2015) 238U-230Th zircon-allanite age dates) (see Figure 5). Added to Marcaida (2015) map are Sieh and Bursik (1986) stratigraphic and radiocarbon age dates (Figure 5). The data shows ages ranging from 0.66±20 ka to 42.5±1.1 ka, but does not include ages from Domes 7, 10, 12, 14, 16, 18, 21-23. Marcaida (2015) also determined by using titanomagnetite chemistry that dome 24 consists of two separate domes: an "upper lobe" (26±1.2 ka) and "lower lobe" (38±1.2 ka). The "upper lobe" has been renamed Dome 31 (see Figure 5). 11 11

Figure 5: Ages of the Mono Craters compiled by Marcaida (2015) of previous studies. Notes: Modified to include the research of Sieh and Bursik (1986) added. Red stars indicate where Marcaida (2015) study took samples, including her newly numbered dome 31 (age 26±1.2 ka). 12 12

In Figure 6, the Mono Craters domes are compared with the ages of the eruptions using the data from the various studies: Dalrymple (1967), Sieh and Bursik (1986), Bursik and Sieh (1989, 2013), Hu et al. (1994), Reid (2003), Vazquez et al. (2013), and Marcaida (2015). Only Dome 12 shows terraces from the old shoreline of Mono Lake (Lajoie 1968; Wood 1983; Bursik and Sieh 1989; Marcaida 2015). Thus, Dome 12 is considered the oldest dome in the Mono Craters chain (but does not have any geochronology work thus far to specify an age date).

Figure 6: Ages of the various Mono Craters domes from different studies. Notes: Studies include (color of diamond, researcher, type of geochronology): Green: Dalrymple (1967), K-Ar sanidine geochronology; Dark Red: Sieh and Bursik (1986), stratigraphic and radiocarbon; light blue: Stine (1987) & Benson et al. (2003), shoreline ages/dendrochronology/sedimentation rates; Black: Bursik and Sieh (1989), recalibrated hydration-rind ages; Purple: Reid (2003), 238U-230Th sanidine geochronology; Pink: Vazquez et al. (2013), 238U-230Th zircon/allanite and 40Ar/39Ar sanidine geochronology; Orange: Marcaida (2015), 238U-230Th zircon/allanite geochronology.

Achauer et al. (1986) determined using seismographic and magnetotelluric methods that the top of the Mono Craters magma chamber was only ~10 km deep, with a relatively small volume of 200-600 km3. Current studies completed by Peacock et al. (2015), posited that there are two magma chambers, likely linked by 13 13 a dike (also using magnetotelluric and seismographic methods). They determined the northerly magma chamber lies underneath (Dome 3), while the southerly chamber is found beneath South Coulée (Dome 22). They also determined that the top of the magma mush column is ~10 km with a volume of ~300 km3 (Peacock et al. 2015). Busby (2012; 2013) and Bursik (2009) both concurred that the Mono Craters structural environment was part of a releasing bend in a transtensional environment (Figure 7). These releasing bends were large-scale pull-aparts (~10- 100 km) between oblique slip faults (Bursik 2009). Bursik (2009) suggested that the magmatic activity that occurred underneath Long Valley Caldera moved northwest during the Quaternary and lies currently beneath the Mono Craters. This theory is consistent with the focus of tectonic activity that has also moved northwest (Bursik 2009). The tectonic extension in the Mono Basin aided in bringing magma up to the surface (Bursik and Sieh 1989; Bursik et al. 2014). Bormann et al. (2016) hypothesized that the dike injections along the Mono Craters (Riley et al. 2012; Marshall et al. 1997; Feng and Newman 2009) could accommodate the right-lateral slip and the extension rates in the Bormann et al. (2016) model. 14 14

Figure 7: Transtensional tectonics in the LVC region (related to Walker Lane and Eastern California Shear Zone; modified from Bursik, 2009). Notes: Bold lines = major range-bounding faults (vertical component of motion depicted). Right- lateral motion shown on NNW-trending faults; left-lateral motion on NE-trending faults (Bursik and Sieh 1989). Rates of vertical slip (mm/yr) shown as numbers next to faults. The dashed line=area of maximum caldera subsidence (~3 km; Carle 1988). Colors=ages of the volcanic vents. Cross=basaltic vent; Circle=evolved vent. MLF=Mono Lake Fault; CMF=Cowtrack Mountain Fault; SLF=Silver Lake Fault; HSF=Hartley Springs Fault; SPF=Sagehen Peak Fault; HCF=Hilton Creek Fault; CDMF=Casa Diablo Mountain Fault.Scale and orientation = approximate.

METHODS

Field Observation and Sample Collection Samples (n=128) were collected from the Mono Craters, June Lake Basalts, and Mono Lake Islands (number of samples from each dome shown in Table 1). The Mono Lake Island samples were loaned out to this study from the USGS. No samples were collected from Dome 21 of the Mono Craters because it lacked outcroppings. Due to the domes/craters proximity to one another, most of the samples were collected on the peaks or close to the peaks of the volcanoes (unless the rocks were noticeably in situ). Obtaining rocks at or near the peaks and/or the volcanic plug confirmed the samples were taken from those exact domes/craters. The domes with the highest number of samples collected were either the domes with the most geochemical variation or had more diverse volcanic flows. An observation in the field on Domes 8-11 was Dome 9 appeared to be two domes, not one. In the Wood (1983) numbering system, Dome 9 was circular in shape with what looks to be a smaller rounded shape to the south (see Figure 3). Out in the field, the smaller circular shape of Dome 9 appears to be a smaller, yet separate dome entirely (see Figure 8; it has a separate vent from the larger dome 9). This study now divides Dome 9 into two domes: Dome 9a (the larger dome to the North) and 9b (the smaller dome to the South). To the SSE of Dome 9a is an explosion pit (Dome 10). In field estimations (and what would need to be further addressed in future studies), Dome 10 appears to be an older explosion pit, then Dome 9b erupted, with Dome 9a being the youngest of the three different volcanic vents.

16 16 Table 1: The number of samples collected per each dome. MLI=Mono Lake Islands, MC=Mono Craters, JLB=June Lake Basalts. Volcano/Dome # Amount of rocks collected MLI-Negit Island 2 MLI-Paoha Island 7 MC-3 2 MC-4 2 MC-5 1 MC-6 3 MC-7 1 MC-8 3 MC-9 1 MC-10 5 MC-11 11 MC-12 14 MC-13 4 MC-14 10 MC-15 2 MC-16 2 MC-17 8 MC-18 2 MC-19 4 MC-20 4 MC-21 0 MC-22 13 MC-23 4 MC-24 1 MC-25 2 MC-26 2 MC-27 4 MC-28 3 MC-29 1 MC-30 3 JLB 7 17 17

Figure 8: Zoomed-in map from Google Earth (2017) to show the new numbering of Dome 9a and 9b from this study alongside Domes 8 and the explosion pit Dome 10.

Whole Rock Geochemistry The samples were analyzed at two different laboratories. The majority of the samples (n=114) were analyzed for SiO2, TiO2, Al2O3, Fe2O3, MgO, MnO,

CaO, Na2O, K2O, P2O5, and Cr2O3 on the Phillips Analytical Wavelength Dispersive X-Ray Fluorescence Spectrometer at California State University, Fresno (CSUF) (see next paragraph for where the remaining samples were analyzed). Rock powders were calcined at CSUF's lab for ten minutes ranging from 750-1000oC. LOI numbers were then recorded (see Appendix, Table A1). The 1:6 ratio of the calcined sample powder and pre-fused flux (Claisse's 35% Li- tetraborate, 65% Li-metaborate flux) were mixed in a platinum crucible before adding six drops of LiI, the releasing agent. This mixture was fused into beads using the Claisse Fluxy fusion machine. The calibration standards used at CSUF (Busby et al., 2008) were AGV-2, BCR-2, BHVO-2, DTS-2, GSP-2, QLO-1, 18 18

RGM-1, SDC-1, STM-1, and W-2. For each analysis, the Standard Error Estimate for calibrations was ±1.0 wt % of standard major oxide values. The remaining rock samples (n=14) were shipped to Washington State University's (WSU) XRF lab for analysis of the same whole rock geochemistry

(except WSU measured FeO instead of Fe2O3). WSU used a ThermoARL XRF using the Hooper, (1964) and Johnson et al., (1999) methods. WSU analyzed samples using a ratio of 3.5:7 of sample powder and pure Li2B4O7, mixed for seven minutes, subsequently fused in a muffle furnace for five minutes at 1000oC (LOI numbers recorded in Appendix Table A1). Samples were reground into glass powders upon cooling and returned to the furnace for another five minutes. The standards used for calibration were AGV-1, BCR-1, BIR-1, DNC-1, G-2, GSP-1, PCC-1, STM-1, and W-2.

Electron Microprobe Analyses (EPMA) Cognate inclusions of plagioclase, sanidine, olivine, pyroxene, and biotite/hornblende (used in the pyroxene runs) from thirty-nine polished thin sections were analyzed, and the mineral compositions were determined by using both the Cameca-SX100 electron microprobe at UC Davis (see Appendix Table A2) and the JEOL-8900 electron microprobe at the USGS in Menlo Park, CA (see Appendix Table A3). The peak times varied from 10-60s at UC Davis and 10-20s at the USGS. The accelerating voltage was 15 kV at both laboratories. The raster length at the USGS was 10 µm, whereas the raster length ranged from 1-10 µm at UC Davis. Beam currents ranged from 10-20 nA at UC Davis, while 5-15 nA were the beam currents at the USGS. The beam diameter at the USGS varied from1-5 µm, whereas at the USGS the beam diameter stayed at a consistent 1 µm. 19 19 Thermobarometry Analyses and Calculations Pressures and temperatures of crystallization were determined using clinopyroxene-liquid thermobarometry, orthopyroxene-liquid thermobarometry, olivine-liquid geothermometry, and plagioclase-melt equilibrium geothermometry (Putirka et al., 2003; Putirka, 2008; see Appendix Tables A4-A8).

Equilibrium for cpx, opx, and ol was obtained by using KD(Fe-Mg).

Plagioclase and sanidine equilibrium were attained by using KD(Na-Ca). Both KD equilibria were based on the equation: KD = csolid/cliquid. RESULTS

Whole Rock Geochemistry Analysis Whole-rock analyses of samples from the Mono Craters, Mono Lake

Islands, and June Lake Basalts have mafic (~53-61% SiO2), intermediate (~65-

71% SiO2), and felsic (~74-78% SiO2) magmas within the Mono Craters proper

(Figures 9(a-i); see Appendix Table A1). The oxides of TiO2, Al2O3, Fe2O3, MnO,

MgO, CaO, and P2O5 all have negative slopes when plotted against SiO2 (Figures

9a-f; i). K2O vs. SiO2 has a positive slope (Figure 9h), and Na2O does not depict a variation (Figure 9g).

The felsic samples from the Mono Lake Islands contain ~69-71% SiO2, whereas the intermediate samples contain ~64-65% SiO2. Although the Mono Lake Islands fall into the intermediate to felsic group, they have distinctly higher

Al2O3 and Na2O at a given SiO2 when compared to the Mono Craters, as well as being lower silica rhyolites than the Mono Craters (Figure 9a;c). Lastly, the June

Lake Basalts contain ~54-55% SiO2.

a. 21 21

b.

c. 22 22

d.

e. 23 23

f.

g. 24 24

h.

i. Figure 9(a-i): Whole-rock analyses of 128 samples from the Mono Craters (MC), Mono Lake Islands (MLI), and June Lake Basalts (JLB). Notes: The Mono Craters are broken down into three sections: Felsic Domes (the majority of the domes), Intermediate to Felsic Dome (only Dome 11), and the Mafic to Felsic Domes (Domes 10;12;14). Error bars included (some are small errors so are hidden beneath the triangles). 25 25

This higher-density sampling of the Mono Craters also reveals spatiotemporal patterns. For example, high-silica rhyolite magmas (~73-78%

SiO2) erupted throughout the entire Mono Craters chain (Figure 10(a-b)). Whereas, the intermediate magmas erupted in only two areas (Mono Lake Islands and Domes 10-12, 14 of the Mono Craters) (Figure 10(a-b)). Figure 10(a-b) also depicts two distinct areas where the mafic magmas erupted: (Domes 10, 12, 14 of the Mono Craters and June Lake Basalts). Only Domes 10, 12 and 14 had mafic to felsic eruptions (Figure 10(a-b)).

a. 26 26

b.

Figure 10(a-b): a. SiO2 versus Latitude of the Mono Craters, Mono Lake Islands, and June Lake Basalts and b. Individual domes/craters vs. SiO2. Notes: For reference: Domes 1&2=Mono Lake Islands; 3-30 = Mono Craters.

Figure 11 demonstrates that the Mono Craters and Mono Lake islands illustrate two different trends that do not overlap. On this basis, this paper hypothesizes that the Mono Lake Islands eruptions represent a distinct episode of magmatism not directly related to the magmatic activity that created the Mono Craters due to the Mono Lake Islands having trending trachydacite-rhyolite versus the Mono Craters which trend andesite-dacite-rhyolite. 27 27

Figure 11: Alkali-Silica diagram of the Mono Craters, Mono Lake Islands, and June Lake Basalts (both SiO2 and Na2O+K2O are in wt %).

Petrology Glassy matrixes are found in ~90% of thin sections analyzed. Percentages of crystals found in the thin sections of this study range between ~0-22% (see Appendix Table A9). These percentages can be broken down into the Mono Craters range from 0-18%; Mono Lake Islands 0-8%; and the June Lake Basalts have an array from 9-22%. The various textures found in these thin sections are Baveno, Carlsbad, polysynthetic, lamellar, oscillatory zoning, perthitic texture, 28 28 and some seriticized textures. Two thin sections (D11c and D12h-1) have grommerblasts of varying different crystals (typically they are pl+sa±ol±cpx).

Thermobarometry Analysis The clinopyroxene (cpx), orthopyroxene (opx), plagioclase (plag), and olivine (ol) equilibrium tests show that the analyses are in equilibrium (Figures 12a-d; see Appendix Tables A4-6; 8).

a. 29 29

b. 30 30

c. 31 31

d. Figure 12(a-d): Equilibrium diagrams for clinopyroxene, orthopyroxene, plagioclase, and olivine. Notes: Figure 12b: Blue=Mono Lake Islands, Green=Mono Craters Felsic Domes, Orange=Mono Craters Mafic-Felsic Domes, and Red=June Lake Basalts. Figure 12d: Orange=Mono Craters Mafic-Felsic Domes and Red = June Lake Basalts.

32 32

The opx and cpx thermobarometry (Figures 13a-d) have felsic samples crystallizing at lower temperatures and pressures with more mafic samples crystallizing at higher temperatures and pressures, which is to be expected. The Mono Lake Islands cpx and opx thermobarometry suggest that both types of crystals crystallized at fairly shallow depths (5-15 km) with temperatures ranging from ~990-1200oC. The felsic opx samples of the Mono Craters crystallized at ~5 km and ~1000oC, whereas the more mafic opx crystallized at much higher temperatures (~1200oC) and pressures (~4.8 kbar). The cpx thermobarometry depicted a much broader range of crystallization depth ranges (~1-~35 km), as well as temperatures (~1000-1200oC). The June Lake Basalts have a narrower range of temperatures for both cpx and opx thermobarometry (~1100-1150oC), and depths (~5-20 km).

a. 33 33

b.

c. 34 34

d. Figure 13(a-d): Cpx and Opx quantitative analysis and thermobarometry results of domes of the Mono Craters and June Lake Basalts. Notes: These graphs include a) cpx quantitative analysis; b). opx quantitative analysis; c) cpx and opx T vs P; d). cpx and opx T vs Depth (km), e). cpx and opx T vs. Latitude; f). cpx P vs. latitude, g). SiO2 vs. Cpt T of the June Lake Basalts and Mono Craters mafic samples.

In Figure 13b, when comparing temperature versus latitude between all of the thermometers (cpx, opx, ol, and plag), the data depicted temperatures ranging from ~750-1250oC. In general, the plagioclases (shown in squares) were the lowest in temperatures, but the plagioclases also had the widest range of temperatures, as they were the highest in temperature in the June Lake Basalts (as well as the June Lake Basalt's lowest temperatures).The Mono Lake Islands showed a narrow range of temperatures in all the thermometers (~1000-1100oC), whereas the Mono Craters Mafic to Felsic Domes had the widest range of temperatures around Latitude 37.9 (~750-1200oC). The pressures versus latitude (Figure 13c) shows a similar story as the temperatures. The mafic to felsic Mono Craters rocks have the widest range of pressures (~0.3-7.6 kbar). For the pressures, only cpx and opx is used as these are barometers. The felsic Mono Craters samples have a very narrow crystallization window regarding pressure (~1.2 kbar) for the 35 35 samples that had opx (no cpx was in equilibrium for the felsic samples). The Mono Lake Islands had a similar, yet lower pressure range (~2-4) as the June Lake basalts (~1.3-5 kbar).

In the thermometry shown in Figure 13d, when comparing SiO2 versus temperature, the plagioclase thermometry has a hot and a cool trend, versus the other thermometers, which group with the hotter trend. The lower the SiO2, the higher the temperature, whereas the lower temperatures correlate with the higher

SiO2. The two trends (hot and cold) depict two different mixing trends. The hotter trend (that corresponds with the thermometry of cpx, opx, ol and plag) may all come from mixing with a more mafic source than the cooler trend (found only in the plagioclase thermometry, which may correlate to the more evolved magma which was not mixing with the more mafic source). Thermobarometry of the purely high-silica rhyolitic (felsic) domes (Domes 3-9; 13; 15-30) demonstrated temperatures ranging from ~760o-1015oC (Figures 13a-d). None of the felsic cpx barometers were in equilibrium, so there are no pressure estimates for the felsic domes of the Mono Craters. These domes are distinctive in that they only contain high-silica rhyolite, with no mafic- intermediate samples being found. Dome 11 is unique to the Mono Craters chain in that it only contains intermediate and felsic samples. Thermobarometry calculations of this dome's samples indicate temperatures ranging from ~850o-1110oC, with pressures varying from ~1.6-3 kbar (Figures 13a-d). The most varied domes (10,12, and 14) contain mafic, intermediate and felsic compositions and their thermobarometry calculations suggest temperatures that vary from ~745o-1185oC, with pressures ranging from ~0.3-7.6 kbar (Figures 13a-d). 36 36

Thermobarometry results from the June Lake basalts have temperatures ranging from ~950o-1215oC with pressures ranging from ~1.3-5 kbar (Figures 13a- d). The Mono Lake Islands temperatures from this study vary from ~980o-1115oC (Figure 14) and have pressures ranging from ~2-4 kbar. It may be noted in all of the Mono Craters, Mono Lake Islands, and June Lake Basalts that as SiO2 of the whole rocks increases, the temperature decreases (Figure 13d). DISCUSSION

Although all of the Mono Craters contain high-silica rhyolite, they have a more varied magmatic history than heretofore recognized. Hildreth (2004) states that all lava from the Mono Craters, except Dome 12, are high-silica rhyolite (~75-

77% SiO2). Recent research from Peacock (personal communication, 2014) disagrees with Hildreth (2004) because Peacock's findings indicate that the Mono Craters are too magnetic to be composed of an all high-silica rhyolite composition. Peacock (personal communication, 2014), therefore, surmises intermediate to more mafic components lie beneath the domes. This study, having found mafic to intermediate samples at multiple domes (Domes 10-12;14) and having found higher phenocryst content (~0-18%) than Hildreth's (2004) research (~0-8%), concurs with Peacock's findings. However, this study does agree with Hildreth's (2004) findings regarding the unitary, mushy, plutonic parent lying beneath the Mono Craters. High-silica rhyolite samples are nearly identical in both studies. In contrast, this study reveals no signs of fractional crystallization. No fractional crystallization trend may indicate that the intermediate-mafic portions of the Mono Craters do not tap into the plutonic, parental reservoir hypothesized by Hildreth (2004). Mafic-intermediate magmas of the Mono Craters are spatially restricted (as shown in Figures 10a-b). The author hypothesizes that the larger felsic magma body/dikes may suppress the mafic-intermediate magma movement to only limited areas. In Figure 14, samples from this new study are compared to the Kelleher and Cameron (1990) study. Kelleher and Cameron (1990) picked ~2-4 samples from each of their different mineralogical and textural groupings of the domes, whereas 38 38 this study selected anywhere from ~11-26 samples per assemblage (see Table 2). Kelleher and Cameron’s (1990) study is therefore limited due to the small sampling studied.

Figure 14: Comparing Kelleher and Cameron (1990) whole rock analyses of Dome 12 with this study's analyses of Dome 12.

Table 2: Number of samples collected at the Mono Craters from Kelleher and Cameron (1990) study versus this newer study at the various textural and mineralogical groupings that Kelleher and Cameron (1990) and Wood (1983) named. Samples Kelleher and Cameron (1990) Johnson Dome 12 2 14 Porphyritic-biotite bearing 4 16 Porphyritic-opx bearing 2 12 Porphyritic-fayalite bearing 2 29 Sparsely Porphyritic 3 16 Aphyric 2 24 Total 15 111 39 39

Data developed by this new study differs from Kelleher and Cameron's (1990) hypothesis in that Kelleher and Cameron (1990) hypothesized that fractional crystallization controls the Mono Craters. Graphing done by this newer study using Harker Diagrams does not produce compositions that match fractional crystallization trends (see Figure 15). Instead, linear trends are found, which are more indicative of magma mixing.

Figure 15: This AFC model using rock sample "MC-D12J" as the host magma, clearly demonstrates that the samples do not fall on the fractional crystallization trend, but instead show a linear trend.

Neither researchers Kelleher and Cameron (1990) nor Hildreth (personal communication, 2012) believe Dome 12 to be part of the Mono Craters chain. In contrast, this study finds that Dome 12 correlates well with the whole rock and thermobarometry analyses in the mixing trend, and, therefore, deems Dome 12 should be included with the rest of the Mono Craters chain. Kelleher and Cameron (1990) hypothesize that the Mono Craters come from several different batches of magma and not from a single chamber. This study concurs with their analysis because the Mono Craters are not just felsic in 40 40 composition; there are mafic-intermediate rocks found in the middle of the volcanic chain at Domes 10-12 and 14. Figure 16 portrays data from this study in comparison to older studies (Kelleher and Cameron (1990), Cousens (1996), Bailey (2004)) shows the data depicting similar trends and geochemical groupings.

Figure 16: Whole rock analyses plots of the Mono Craters/Mono Lake Islands/June Lake Basalts research between this research and the studies from Kelleher and Cameron (1990), Bailey (2004), and Cousens (1996).

In the past, there have been two opposing theories about the Mono Crater's and Long Valley's magmatic system. Hermance et al. (1984) postulated that the Mono Craters were from one magma chamber since they found them to be chemically homogeneous, geologically young with frequent eruptions. They also hypothesized that beneath the NW section of Long Valley were magma reservoirs that extended 30-35 km N to the Mono Lake Islands. Several researchers concurred with these findings (Bailey et al. 1976; Bailey 1982; Reid et al. 1997). Contrasting with the above theory, this study (2017) as well as Hildreth (1981; 2004), Sampson and Cameron (1987), and Bailey (2004) concur that the Mono Craters, Mono Lake Islands, Long Valley and the other surrounding 41 41 volcanoes are not interconnected nor interrelated. Instead, the Mono Craters are a distinct volcanic system and are a series of silicic domes/craters that show evidence of magma mixing. Hildreth (1981) explained that when magma mixing occurs for prolonged periods of time, at depth, then intermediate hybrids might occur. Intermediate inclusions were found in both this study and Kelleher and Cameron's (1990) study. In this new research, numerous intermediate samples are found at Domes 10-12 and 14 of the Mono Craters, showing mixing trends. Analyzing age dates from previous researchers (Stine (1987); Benson et al. (2003); Dalrymple (1967); Bursik and Sieh (1989); Reid (2003); Vazquez et al. (2013) and Hu et al. (1994)) with this study's thermobarometry results gives us some insights into the age progression (Figures 17(a-b)). Unfortunately, there are no age dates that correlate with this study's mafic-felsic domes (10,12, and 14) to see their temporal evolution. The Mono Craters' intermediate to felsic dome (Dome 11) shows the widest array of pressures as well as temperatures (~1.5-3.25 kbar; ~800-1150oC) and is the oldest volcanic dome with thermobarometry results (Figure 17(a-b)). There are two eruption ages for Dome 11 (~13 ka (Bursik and Sieh (1989) and ~20 ka (Reid (2003); Vazquez et al. (2013)). The Mono Craters felsic domes have the lowest pressures (~1-1.5 kbar) and yield the lowest temperatures (~750-1000oC). These felsic domes that have thermobarometry analyses have eruption ages ranging from ~6-12.5 ka (Figure 17(a-b); Dalrymple (1967); Hu et al. (1994)). The youngest eruptions in the vicinity are from the Mono Lake Islands ~250 yrs BP (Figure 17(a-b); Stine (1987); Benson et al. (2003)). These magmas depict crystallization pressures of ~2-4 kbar and temperatures ranging from ~950-1150oC. 42 42

a.

b. Figure 17(a-b): Age (yrs BP) versus Pressure (kbar) and Temperature (oC). Notes: Looking at the temporal evolution of the magmatic system by analyzing age from the various geochronology studies (see Figures 5 and 6) versus this study's thermobarometry results.

43 43

This study hypothesizes that the evolved felsic magmas are stored at shallow depths (with pressures ~1-1.5 kbar) within a quasi-continuous or well- linked series of en-echelon oriented dikes or chambers. These form as a response to regional transtensional stresses (Busby 2012; Bursik 2009; Bailey 2004). The mafic magmas come up from deeper depths in limited areas (Domes 10-12; 14) to mix with the felsic magmas to produce the intermediate magmas. CONCLUSION

The Mono Craters are an independent volcanic center and are not interconnected nor interrelated to the Mono Lake Islands, nor the Long Valley Caldera. The magmatic system beneath the Mono Craters is more than just a felsic system. This study includes numerous samples from multiple domes with SiO2 contents between ~52-78% (with the dacitic dome 12 itself having samples ranging between ~53-77% SiO2). The Mono Craters do not show signs of fractional crystallization; instead, they show evidence of magma mixing by the linear trends shown in the numerous diagrams. The magma diversity suggests a more complex magmatic system than heretofore recognized. The evolved felsic magmas store at shallow depths within a quasi-continuous or well-linked series of en-echelon oriented dikes or chambers. The spatially restricted and deeper mafic magmas do not infiltrate the more shallow, brittle-deformed dike system that is so well exploited by the felsic magmas, except in the spatially restricted area of Domes 10-12; 14 where mafic to intermediate magmas are found. Future research of the Mono Craters on the geochronology of the mafic to felsic domes (Domes 10, 12, and 14) would need to be done to aid and fill in the gaps of the temporal evolution of the Mono Craters.

REFERENCES CITED REFERENCES CITED

Achauer, U., Greene, L., Evans, J.R., and Iyer, H.M. (1986) Nature of the magma chamber underlying the Mono Craters area, eastern California, as determined from teleseismic travel time residuals. Journal of Geophysical Research: Solid Earth, 91, 13873-13891.

Bacon, C.R. (1985) Implications of silicic vent patterns for the presence of large crustal magma chambers. Journal of Geophysical Research: Solid Earth, 90, 11243-11252.

Bailey, R.A. (1982) Other potential eruption centers in California; Long Valley, Mono Lake, Coso, and Clear Lake volcano fields. Status of volcanic prediction and emergency response capabilities in volcanic hazard zones of California. California Division of Mines and Geology Special Publication, 63, 17-28.

Bailey, R.A. (2004) Eruptive history and chemical evolution of the precaldera and postcaldera basalt-dacite sequences, Long Valley, California: Implications for magma sources, current seismic unrest, and future volcanism. No. 1692. US Department of the Interior, US Geological Survey, 1-75.

Bailey, R.A., Dalyrymple, G. B., and Lanphere, M. A. (1976) Volcanism, structure, and geochronology of Long Valley Caldera, Mono County, California. Journal of Geophysical Research, 81, 725-744.

Benson, L., Linsley, B., Smoot, J., Mensing, S., Lund, S., Stine, S., and Sarna- Wojcicki, A. (2003) Influence of the Pacific Decadal Oscillation on the climate of the Sierra , California and Nevada. Quaternary Research, v. 59, 151-159.

Bergfeld, D., Evans, W.C., Howle, J.F., and Hunt, A.G. (2015) Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism. Journal of Volcanology and Geothermal Research, 292, 70-83.

Bormann, J.M., Hammond, W.C., Kreemer, C., and Blewitt, G. (2016) Accommodation of missing shear strain in the Central Walker Lane, western : Constraints from dense GPS measurements. Earth and Planetary Science Letters. 440, 169-177. 47 47 Bursik, M. (2009) A general model for tectonic control of magmatism: Examples from Long Valley Caldera (USA) and El Chichón (México). Geofísica Internacional, 48, 171-183.

Bursik, M., and Sieh, K. (1989) Range front faulting and volcanism in the Mono Basin, Eastern California. Journal of Geophysical Research: Solid Earth, 94, 15587-15609.

Bursik, M., Renshaw, C., McCalpin, J., and Berry, M. (2003) A volcanotectonic cascade: Activation of range front faulting and eruptions by dike intrusion, Mono Basin‐Long Valley Caldera, California. Journal of Geophysical Research: Solid Earth, 108, ECV 10, 1-14.

Bursik, M.I. and Sieh, K. (2013) Digital database of the Holocene tephras of the Mono-Inyo Craters, California (Online). Available: https://pubs.usgs.gov/ds/758/data/monoinyodates.html (accessed March 22, 2017). U.S. Geological Survey Data Series 758.

Busby, C.J., Hagan, J.C., and Renne, P. (2013) Initiation of range front-Walker Lane faulting ca. 12 Ma in the Ancestral Cascades arc. Geosphere, 9(5), 1125-1146.

Busby, C.J. (2012) Extensional and transtensional continental arc basins: Case studies from the southwestern United States. In Busby, C.J. and Azor, A. Eds., Tectonics of Sedimentary Basins: Recent Advances, p. 382-404. Blackwell Publishing, Ltd., UK.

Carle, S. F. (1988) Three dimensional gravity modeling of the geologic structure of Long Valley Caldera. Journal of Geophysical Research, 93, 11, 13,237- 13,250.

Clemens, J.D., and Birch, W.D. (2012) Assembly of a zoned volcanic magma chamber from multiple magma batches: The Cerberean Cauldron, Marysville Igneous Complex, Australia. Lithos, 155, 272-288.

Cousens, B.L. (1996) Magmatic evolution of Quaternary mafic magmas at Long Valley Caldera and the Devils Postpile, California: Effects of crustal contamination on lithospheric mantle-derived magmas. Journal of Geophysical Research, 101(B12), 27,673-27,689.

Dahrén, B. (2016) Magma plumbing architecture in and the North Atlantic Igneous Province, 46 p. Digital Comprehensive Summaries of Uppsala Dissertations from the faculty of Science and Technology 1328. Uppsala: Acta Universitatis Upsaliensis. 48 48 Dalrymple, G.B. (1964a) Cenozoic chronology of the Sierra Nevada, California. University of California Publications in Geological Science, 47, 1-41.

Dalrymple, G.B. (1964b) Potassium-argon dates of three Pleistocene interglacial basalt flows from the Sierra Nevada, California. Geological Society of America Bulletin, 75, 753-758.

Dalrymple, G.B. (1967) Potassium-Argon ages of recent rhyolites of the Mono and Inyo Craters, California. Earth and Planetary Science Letters, 3, 289-298.

Dawson, P.B., Iyer, J.R., and Evans, H.M. (1990). Teleseismic tomography of the compression wave velocity structure beneath the Long Valley Region, California. Journal of Geophysical Research., 95, 11,021-11,050.

DePaolo, D.J., and Daley, E.E. (2000) Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169, 157-185.

Deer, W.A., Howie, R.A., and Zussman, J. (1992) An introduction to the Rock- Forming Minerals, 696 p. Longman Group Limited, Essex.

Dodge, F.C., and Moore, J. (1981) Late Cenozoic volcanic rocks of the southern Sierra Nevada, California; II, Geochemistry. Geological Society of America Bulletin, 92, 912-914.

Druitt, T.H., and Bacon, C.R. (1989) Petrology of the zoned calcalkaline magma chamber of Mount Mazama, , Oregon. Contributions to Mineralogy and Petrology, 101, 245-259.

Eichelberger, J.C., Izbekov, P.E., and Browne, B.L. (2006) Bulk chemical trends at arc volcanoes are not liquid lines of descent. Lithos, 87, 135-154.

Hermance, J.F., Slocum, W.M., and Neumann, G.A. (1984) The Long Valley/Mono Basin volcanic complex: a preliminary magnetotelluric and magnetic variation interpretation. Journal of Geophysical Research: Solid Earth, 89, 8325-8337.

Hildreth, W. (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. Journal of Geophysical Research: Solid Earth, 86, 10153-10192. 49 49 Hildreth, W. (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. Journal of Volcanology and Geothermal Research: Solid Earth, 136, 169- 198.

Hill, D.P., Bailey, R.A., and Ryall, A.S. (1985) Active tectonic and magmatic processes beneath Long Valley caldera, eastern California: an overview. Journal of Geophysical Research: Solid Earth, 90, 11111-11120.

Hu, Q., Smith, P.E., Evensen N.M., and York, D. (1994) Lasing in the Holocene: extending the 40Ar- 39Ar laser probe method into the 14C age range. Earth and Planetary Science Letters, 123, 331-336.

Jacques, H.L. (1940) Mono Craters tunnel construction problems. American Water Works Association, 32, 43-56.

Jellinek, A.M., and DePaolo, D.J. (2003) A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bulletin of Volcanology, 65, 363-381.

Kelleher, P.C., and Cameron, K.L. (1990) The Geochemistry of the Mono Craters‐Mono Lake Islands Volcanic Complex, eastern California. Journal of Geophysical Research: Solid Earth, 95, 17643-17659.

Lajoie, K.R. (1968) Late Quaternary stratigraphy and geologic history of Mono Basin, eastern California, 271 p. Ph.D. thesis, University of California, Berkeley.

Lipman, P.W., Lockwood, J.P., Okamura, R.T., Swanson, D.A., Yamashita, K.M., (1985) Ground Deformation associated with the 1975 magnitude-7.2 and resulting changes in activity of Kilauea Volcano, Hawaii, p. 45. U.S. Geological Survey Professional Paper 1276, Reston, VA.

Macdonald, R., Smith, R.L., and Thomas, J.E. (1992) Chemistry of the subalkalic silicic obsidian, 214 p. US Geological Survey, Professional Paper 1523. Washington, DC: US Government Printing Office.

Mahood, G.A., Ring, J.H., Manganelli, S., and McWilliams, M.O. (2010) New 40Ar/39Ar ages reveal contemporaneous mafic and silicic eruptions during the past 160,000 years at Mammoth Mountain and Long Valley caldera, California. Geological Society of America Bulletin, 122, 396-407. 50 50 Mangan, M., Miller, T., Waythomas, C., Trusdell, F., Calvert, A., and Layer. P. (2009) Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake Volcanic Center, eastern Aleutian arc. Earth Planet Science Letters, 287, 363-372.

Mankinen, E.A., Grommé, C.S., Dalrymple, G.B., Lanphere, M.A., and Bailey, R.A. (1986) Paleomagnetism and K‐Ar ages of volcanic rocks from Long Valley Caldera, California. Journal of Geophysical Research: Solid Earth, 91, 633-652.

Marcaida, M., Mangan, M.T., Vazquez, J.A., Bursik, M.I., and Lidzbarski, M.I. (2014) Geochemical fingerprinting of Wilson Creek formation tephra layers (Mono Basin, California) using titanomagnetite compositions. Journal of Volcanology and Geothermal Research, 273, p. 1-14.

Marcaida, M. (2015) Resolving the timing of Late Pleistocene dome emplacement at Mono Craters, California, from 238U-230Th and 40Ar/39Ar dating, 96 p. San Jose State University.

Marshall, G.A., Langbein, J., Stein, R.S., Lisowski, M., and Svarc, J. (1997) Inflation of Long Valley Caldera, California, Basin and Range strain, and possible Mono Craters dike opening from 1990-94 GPS surveys. Geophysical Research Letters, 24(9), 1003-1006.

"Mono Craters, Mono County, CA", 37.910997, -119.025850. (Online). Available: https://www.google.com/maps/place/37%C2%B054'39.6%22N+119%C2%B 001'33.1%22W/@37.9104101,- 119.0323015,1760m/data=!3m1!1e3!4m5!3m4!1s0x0:0x0!8m2!3d37.910997 !4d-119.02585 (accessed March 21, 2017). Google Earth.

Naney, M.T. (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science, 283(10), 993-1033.

Ormerod, D.S. (1988) Late-to post-subduction magmatic transitions in the Western Great Basin, USA, 313 p. Ph.D. thesis, Open University, Milton Keynes, U.K.

Peacock, J.R. (2014) Personal communication.

Peacock, J.R., Mangan, M.T., McPhee, D., and Ponce, D.A. (2015) Imaging the magmatic system of Mono Basin, California, with magnetotellurics in three dimensions. Journal of Geophysical Research: Solid Earth, 120, 7273-7289. 51 51 Perugini, D., and Poli, G. (2012) The mixing of magmas in plutonic and volcanic environments: analogies and differences. Lithos, 153, 261-277.

Petford, N., and Gallagher, K. (2001) Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters, 193, 483-499.

Putirka, K.D. (2008) Thermometers and barometers for volcanic systems. In Putirka, K.D. and Tepley, F.J. III, Eds., Minerals, Inclusions, and Volcanic Processes, 69, p. 61-120. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.

Putirka, K.D., Mikaelian, H., Ryerson, F., and Shaw, H. (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile- bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88, 1542-1554.

Reagan, M.K., Sims, K.W.W., Erich, J., Thomas, R.B., Cheng, H., Edwards, R.L., Layne, G. and Ball, L. (2003) Time-scales of differentiation from mafic parents to rhyolite in North American continental arcs. Journal of Petrology, 44, 1703-1726.

Reid, M.R. (2003) New ages for young rhyolites, Mono Craters, California; ion microprobing into the Holocene: Geological Society of America Abstracts with Programs, 35(6), p. 183.

Reid, M.R., Coath, C.D., Harrison, T.M., and McKeegan, K.D. (1997) Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230 Th-238U ion microprobe dating of young zircons. Earth and Planetary Science Letters, 150, 27-39.

Riley, P., Tikoff, B., and Hildreth, W. (2012) Transtensional deformation and structural control of contiguous but independent magmatic systems: Mono- Inyo Craters, Mammoth Mountain, and Long Valley Caldera, California. Geosphere, 8, 740-751.

Sampson, D.E., and Cameron, K.L. (1987) The geochemistry of the Inyo volcanic chain: Multiple magma systems in the Long Valley region, eastern California Journal of Geophysical Research: Solid Earth, 92, 10403-10421.

Sieh, K., and Bursik, M. (1986) Most recent eruption of the Mono Craters, eastern central California. Journal of Geophysical Research: Solid Earth, 91, 12539- 12571. 52 52 Stine, S. (1990) Late Holocene fluctuations of Mono Lake, eastern California: Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 333-381.

Thatcher, W., and Savage, J.C. (1982) Triggering of large earthquakes by magma- chamber inflation, Izu Peninsula, Japan. Geology, 10(12), 637-640.

U.S. Geological Survey and California Geological Survey (2006) Quaternary fault and fold databases for the United States (Online). Available: http://earthquakes.usgs.gov/hazards/qfaults/ (accessed March 1, 2017). U.S. Geological Survey.

Varga, R.J., Bailey, R.A., and Suemnicht, G.A. (1990) Evidence for 600 year‐old basalt and magma mixing at Inyo Craters Volcanic Chain, Long Valley Caldera California. Journal of Geophysical Research: Solid Earth, 95, 21441- 21450.

Vazquez, J. and Lidzbarski, M.I. (2012) High-resolution tephrochronology of the Wilson Creek Formation (Mono Lake, California) and Laschamp event using 238U-230Th SIMS dating of accessory mineral rims. Earth and Planetary Science Letters, v. 357-358, 54-67.

Vazquez, J., Calvert, A., Marcaida, M., Mangan, M., Lidzbarski, M., and Stelton, M. (2013) Resolving the early chronology of Mono Craters volcanism with combined 238U-230Th and 40Ar/39Ar dating. American Geophysical Union Fall Meeting 2013. V13G-2698.

Walter, T.R. (2007) How a tectonic earthquake may wake up volcanoes: Stress transfer during the 1996 earthquake-eruption sequence at the Karymsky Volcanic Group, Kamchatka. Earth and Planetary Science Letters, 264(3), 347-359.

Wood, S.H. (1983) Chronology of late Pleistocene and Holocene volcanics, Long Valley and Mono Basin geothermal areas, eastern California, 76 p. U.S. Geological Survey, Open File Report 83-747.

Zimmerman, S.H., Hemming, S.R., Kent, D.V., and Searle, S.Y. (2006) Revised chronology for late Pleistocene Mono Lake sediments based on paleointensity correlation to the global reference curve: Earth and Planetary Science Letters, 252(1-2), 94-106.

APPENDIX: SUPPLEMENTAL TABLES 54 54 Table A1: Whole rock geochemistry of the Mono Lake Islands (MLI), Mono Craters (MC), and June Lake Basalts (JLB). Numbers may be rounded up. Sample SiO TiO Al2 Fe2 Mn Mg Ca Na2 K2 P2O Cr2 Sum LO 2 2 O3 O3 O O O O O 5 O3 % I MLI-NI-1 64. 0.8 16.5 4.6 0.08 1.28 3.2 4.6 3.6 0.2 0.0 99.6 0.0 7 0 8 1 MLI-NI-2 64. 0.8 16.6 4.9 0.08 1.37 3.6 4.6 3.5 0.3 0.0 100.4 0.1 6 8 0 8 MLI-PI-1 64. 0.9 16.5 4.6 0.10 1.32 3.8 4.9 3.7 0.3 0.0 100.3 0.8 1 2 2 8 MLI-PI-2 71. 0.2 15.2 2.1 0.06 0.30 0.9 4.6 5.3 0.0 0.0 99.8 3.6 1 0 9 5 MLI-PI-3 64. 0.9 16.6 4.6 0.09 1.29 3.1 4.9 3.7 0.3 0.0 100.1 0.1 5 2 1 1 MLI-PI-4 70. 0.2 15.5 2.5 0.07 0.26 1.2 4.6 4.9 0.0 0.0 99.8 0.1 3 2 7 4 MLI-PI-5 69. 0.2 15.4 2.7 0.07 0.36 1.4 4.6 4.7 0.0 0.0 99.2 0.3 6 7 9 1 MLI-PI-6 69. 0.3 15.4 2.8 0.07 0.40 1.5 4.6 4.9 0.0 0.0 99.4 0.7 4 0 8 2 MLI-PI-7 63. 1.0 16.8 5.4 0.10 1.55 3.6 4.8 3.6 0.4 0.0 100.8 0.3 5 5 0 4 MC-D3F 76. 0.1 12.8 1.1 0.05 0.5 3.9 4.4 0.0 0.0 99.5 0.3 5 8 1 4 MC-D3G 76. 0.1 12.9 1.1 0.05 0.0 0.5 4.1 4.7 0.0 0.0 100.3 0.4 8 2 1 3 MC-D4A 76. 0.0 12.9 1.2 0.05 0.06 0.5 3.9 4.6 0.0 0.0 100.0 0.4 7 4 2 2 MC-D4B 77. 0.0 13.0 1.2 0.05 0.06 0.6 3.9 4.7 0.0 0.0 100.4 1.5 0 5 2 7 MC-D5A 76. 0.0 12.7 1.2 0.05 0.01 0.5 4.0 4.7 0.0 0.0 99.4 2.0 2 7 1 5 MC-D6A 76. 0.1 12.9 1.1 0.05 0.00 0.6 4.0 4.5 0.0 0.0 99.9 1.4 7 0 0 0 MC-D6B 76. 0.1 12.9 1.1 0.05 0.00 0.5 4.0 4.7 0.0 0.0 100.1 1.3 8 5 1 1 MC-D6D 76. 0.1 12.8 1.1 0.05 0.00 0.5 3.8 4.8 0.0 0.0 99.9 2.8 8 1 2 8 MC-D7A 77. 0.1 12.8 1.1 0.04 0.5 4.0 4.6 0.0 0.0 100.3 1.0 1 1 1 6 MC-D8A 77. 0.1 12.9 1.1 0.05 0.00 0.6 3.8 4.8 0.0 0.0 100.5 0.1 1 2 1 2 MC-D8B 76. 0.1 12.8 1.2 0.05 0.00 0.5 3.9 4.6 0.0 0.0 99.5 1.0 4 1 2 4 MC-D8C 76. 0.1 12.9 1.1 0.05 0.00 0.5 4.0 4.6 0.0 0.0 100.1 0.5 8 0 1 6 MC-D9A 76. 0.1 12.8 1.1 0.05 0.01 0.5 4.1 4.7 0.0 0.0 99.7 0.8 4 2 2 6 MC-D10A 77. 0.1 13.1 1.1 0.05 0.00 0.5 4.0 4.7 0.0 0.0 100.5 2.6 0 0 0 7 MC-D10B 60. 1.5 16.2 7.3 0.14 1.86 5.1 4.0 2.8 0.2 0.0 99.6 0.9 5 0 7 1 MC-D10c 76. 0.0 12.7 1.2 0.05 0.01 0.6 3.9 4.8 0.0 0.0 100.1 2.5 9 6 1 6 MC-D10D 77. 0.0 13.0 1.2 0.05 0.01 0.5 4.0 4.7 0.0 0.0 100.6 0.4 1 5 2 6 55 55 MC-D10F 67. 0.8 14.9 4.8 0.09 1.79 3.6 3.8 3.5 0.1 0.0 100.7 0.4 1 7 5 3 MC-D11A 76. 0.0 12.8 1.1 0.05 0.00 0.6 4.1 4.6 0.0 0.0 99.8 0.1 5 7 9 7 MC-D11B 76. 0.1 13.0 1.2 0.07 0.00 0.6 3.7 4.5 0.0 0.0 99.3 2.7 2 3 1 1 MC-D11C 66. 0.9 16.6 3.9 0.06 1.18 4.1 4.1 3.2 0.1 0.0 100.4 0.6 2 4 5 3 MC-D11D 66. 0.9 15.1 4.9 0.08 1.28 3.3 4.0 3.6 0.5 0.0 100.4 0.6 7 4 9 3 MC-D11E 76. 0.0 12.9 1.2 0.05 0.01 0.5 3.9 4.7 0.0 0.0 100.0 2.2 7 4 1 7 MC-D11F 76. 0.0 12.8 1.1 0.05 0.01 0.6 3.8 4.7 0.0 0.0 99.9 0.1 6 4 2 9 MC-D11g 76. 0.0 12.7 1.2 0.05 0.03 0.6 3.9 4.8 0.0 0.0 100.1 3.1 8 7 2 2 MC-D11L 76. 0.0 12.8 1.1 0.05 0.02 0.6 3.8 4.6 0.0 0.0 99.9 1.0 9 4 2 7 MC-D11M 76. 0.0 12.8 1.1 0.05 0.01 0.6 3.8 4.6 0.0 0.0 99.6 0.4 6 4 2 3 MC-D11O 77. 0.0 13.0 1.2 0.05 0.01 0.6 3.9 4.7 0.0 0.0 100.3 1.0 0 2 2 0 MC-D11O-2 76. 0.0 12.8 1.2 0.05 0.01 0.6 3.8 4.6 0.0 0.0 99.9 0.9 9 4 2 1 MC-D12B 57. 1.7 16.0 8.4 0.13 3.28 5.6 4.0 2.4 0.3 0.0 99.5 1.4 4 7 2 8 MC-D12C 57. 1.7 16.4 8.2 0.13 3.67 5.9 3.9 2.1 0.3 0.0 99.7 0.9 5 3 0 4 MC-D12D 65. 0.4 15.4 4.7 0.12 1.65 4.2 3.0 4.0 0.2 0.0 99.1 1.4 4 9 1 8 MC-D12E 65. 0.4 16.1 4.9 0.14 1.75 4.4 3.0 4.3 0.2 0.0 100.3 1.5 1 9 0 4 MC-D12G 76. 0.0 12.6 1.1 0.05 0.02 0.6 4.1 4.6 0.0 0.0 99.4 - 3 8 1 MC-D12H 66. 0.8 14.7 4.5 0.09 1.88 3.4 3.7 3.7 0.1 0.0 99.6 0.5 7 3 5 5 MC-D12i 67. 0.4 15.8 4.0 0.11 1.34 4.1 3.1 4.5 0.1 0.0 100.9 0.5 3 5 9 9 MC-D12J 52. 1.4 17.7 10.9 0.09 3.45 6.2 3.4 2.6 0.6 0.0 99.1 2.6 7 6 3 3 MC-D12K 54. 2.0 16.8 9.6 0.15 4.33 7.0 4.0 1.8 0.3 0.0 100.4 0.0 3 4 6 3 MC-D12L 76. 0.1 12.7 1.1 0.05 0.01 0.5 4.1 4.6 0.0 0.0 99.2 2.1 0 2 1 0 MC-D12m 75. 0.1 13.2 1.3 0.03 0.15 0.8 3.3 5.4 0.0 0.0 100.0 1.8 6 9 5 7 MC-D12N-1 57. 1.7 16.6 8.4 0.11 2.92 5.6 3.9 2.4 0.3 0.0 99.9 0.6 9 7 3 8 MC-D12N-2 57. 1.8 16.7 8.9 0.11 2.87 5.8 3.9 2.3 0.3 0.0 100.2 0.4 4 4 4 6 MC-D12p 77. 0.0 12.6 1.1 0.05 0.00 0.6 4.0 4.7 0.0 0.0 100.3 0.0 3 6 1 7 MC-D13A 76. 0.0 12.8 1.1 0.05 0.00 0.5 4.1 4.7 0.0 0.0 100.1 0.3 8 7 1 1 MC-D13B 76. 0.1 12.8 1.1 0.05 0.5 4.0 4.5 0.0 0.0 99.7 0.7 6 3 1 3 MC-D13C 76. 0.1 12.9 1.1 0.05 0.00 0.5 4.0 4.5 0.0 0.0 100.1 0.4 9 7 0 4 56 56 MC-D13D 77. 0.1 12.9 1.1 0.06 0.5 4.0 4.5 0.0 0.0 100.2 0.2 0 3 0 6 MC-D14A 77. 0.0 12.5 1.1 0.05 0.00 0.5 3.9 4.7 0.0 0.0 100.0 0.9 2 6 1 7 MC-D14B 76. 0.0 13.3 1.3 0.05 0.05 0.6 3.9 4.9 0.0 0.0 100.4 1.3 3 7 2 1 MC-D14C 76. 0.0 13.2 1.3 0.05 0.03 0.6 3.9 4.8 0.0 0.0 99.9 1.0 0 6 2 2 MC-D14D 76. 0.0 12.9 1.3 0.05 0.01 0.6 4.0 4.9 0.0 0.0 100.0 1.9 3 8 1 9 MC-D14E 60. 1.3 15.4 7.2 0.11 3.73 5.3 3.8 2.6 0.2 0.0 99.7 0.6 0 1 7 7 MC-D14F-a 76. 0.0 12.9 1.3 0.05 0.04 0.6 4.1 4.8 0.0 0.0 100.0 0.9 1 8 1 6 MC-D14F-b 69. 0.6 13.7 4.2 0.08 1.32 2.5 3.9 3.9 0.1 0.0 100.0 1.0 5 4 3 3 MC-D14G host 75. 0.0 13.0 1.4 0.05 0.04 0.6 3.9 4.8 0.0 0.0 99.7 1.1 8 5 1 3 MC-D14G 60. 1.3 15.3 7.2 0.12 3.50 5.3 3.8 2.5 0.2 0.0 99.6 0.9 inclusion 3 0 8 1 MC-D14H 76. 0.0 12.8 1.3 0.05 0.01 0.6 4.1 4.8 0.0 0.0 99.9 0.4 1 7 1 1 MC-D15A 76. 0.0 12.8 1.2 0.05 0.02 0.6 4.3 4.8 0.0 0.0 100.5 1.4 8 9 2 2 MC-D15B 76. 0.0 12.5 1.2 0.05 0.00 0.5 4.0 4.6 0.0 0.0 99.6 0.6 6 6 8 2 MC-D16A 76. 0.1 13.1 1.2 0.05 0.00 0.5 4.0 4.7 0.0 0.0 100.2 0.3 4 4 2 3 MC-D16B 77. 0.1 12.9 1.1 0.05 0.03 0.6 4.2 4.4 0.0 0.0 100.6 1.1 3 2 2 7 MC-D17A 74. 0.2 13.3 1.8 0.06 0.38 1.0 4.0 4.5 0.0 0.0 99.4 0.1 0 9 4 4 MC-D17b 76. 0.6 12.7 1.1 0.05 0.02 0.6 4.0 4.7 0.0 0.0 100.0 1.2 1 0 3 2 MC-D17C 76. 0.1 12.7 1.1 0.05 0.00 0.5 3.9 4.6 0.0 0.0 99.8 3.7 8 2 1 6 MC-D17D 76. 0.1 13.2 1.2 0.05 0.00 0.5 3.7 4.8 0.0 0.0 100.2 1.6 7 4 1 3 MC-D17G 76. 0.1 12.7 1.1 0.05 0.00 0.6 3.9 4.5 0.0 0.0 99.8 1.5 8 4 1 8 MC-D17H 77. 0.1 13.2 1.0 0.03 0.11 1.1 2.9 5.1 0.0 0.0 100.6 0.6 0 7 2 0 MC-D17I 77. 0.1 12.9 1.1 0.05 0.00 0.5 4.1 4.6 0.0 0.0 100.5 0.2 2 3 1 7 MC-D17J 76. 0.1 13.0 1.2 0.05 0.02 0.6 4.1 4.7 0.0 0.0 100.5 0.4 8 1 1 1 MC-D18A 76. 0.1 12.6 1.1 0.06 0.00 0.6 3.9 4.4 0.0 0.0 99.5 1.8 7 5 1 7 MC-D18B 78. 0.1 12.0 1.0 0.04 0.5 3.6 4.4 0.0 0.0 100.0 2.5 4 2 1 8 MC-D19A 77. 0.1 12.9 1.1 0.05 0.00 0.5 4.1 4.7 0.0 0.0 100.5 0.8 0 1 1 0 MC-D19B 76. 0.1 12.9 1.1 0.0. 0.01 0.6 4.1 4.6 0.0 0.0 100.1 1.5 6 1 5 1 8 MC-D19C 76. 0.1 12.6 1.1 0.05 0.5 3.9 4.6 0.0 0.0 99.6 1.3 8 0 1 2 MC-D19D 76. 0.1 12.8 1.2 0.06 0.5 4.0 4.5 0.0 0.0 99.9 0.5 7 0 0 4 57 57 MC-D20A 77. 0.1 13.0 1.0 0.05 0.00 0.6 3.9 4.8 0.0 0.0 100.7 0.1 3 3 1 5 MC-D20B 75. 0.2 13.3 1.6 0.06 0.31 1.0 4.1 4.5 0.0 0.0 100.4 0.3 4 3 3 5 MC-D20C 76. 0.1 12.8 1.0 0.04 0.00 0.6 3.9 4.5 0.0 0.0 99.5 0.2 6 2 1 0 MC-D20D 77. 0.1 12.8 1.1 0.05 0.00 0.5 4.0 4.6 0.0 0.0 100.4 1.4 0 3 8 0 MC-D22A 76. 0.0 12.9 1.1 0.05 0.5 4.1 4.7 0.0 0.0 100.2 0.2 8 8 1 8 MC-D22B-1 76. 0.1 12.8 1.2 0.05 0.5 3.9 4.7 0.0 0.0 99.6 0.9 5 0 1 9 MC-D22B-2 76. 0.0 12.7 0.9 0.02 0.5 4.0 4.7 0.0 0.0 99.6 0.2 9 8 1 1 MC-D22C 76. 0.1 12.9 1.1 0.05 0.00 0.5 4.0 4.6 0.0 0.0 100.1 0.6 8 5 1 6 MC-D22D 76. 0.1 12.8 1.2 0.06 0.00 0.6 4.0 4.6 0.0 0.0 99.8 0.4 5 0 1 4 MC-D22E 76. 0.0 12.8 1.1 0.05 0.00 0.5 4.0 4.7 0.0 0.0 99.9 1.3 6 6 1 1 MC-D22G 76. 0.1 12.8 1.1 0.05 0.00 0.5 4.1 4.6 0.0 0.0 99.5 0.4 4 7 1 4 MC-D22H 76. 0.1 12.8 1.2 0.06 0.6 4.0 4.5 0.0 0.0 99.7 0.5 6 1 0 1 MC-D22I 76. 0.0 12.8 1.2 0.06 0.00 0.5 4.1 4.7 0.0 0.0 100.1 0.4 7 6 0 6 MC-D22J 76. 0.1 12.8 1.1 0.05 0.5 4.0 4.7 0.0 0.0 100.1 0.3 9 1 1 4 MC-D22K 76. 0.0 12.7 1.2 0.06 0.5 4.0 4.7 0.0 0.0 99.5 0.4 3 7 0 7 MC-D22L-ROCK 76. 0.1 12.9 1.1 0.06 0.00 0.6 4.0 4.5 0.0 0.0 100.1 1.6 8 3 1 7 MC-D22L- 76. 0.1 12.9 1.2 0.06 0.00 0.6 3.9 4.6 0.0 0.0 100.1 1.7 PEBBLES 8 1 1 6 MC-D23A 76. 0.0 13.1 1.2 0.05 0.02 0.6 3.7 4.9 0.0 0.0 100.4 3.5 7 7 5 0 MC-D23B 76. 0.0 12.8 1.1 0.05 0.6 3.8 4.8 0.0 0.0 99.6 3.2 3 8 3 0 MC-D23B(2) 76. 0.0 13.0 1.2 0.06 0.6 3.8 4.9 0.0 0.0 100.3 - 8 9 1 MC-D23C 77. 0.1 12.9 1.1 0.05 0.00 0.5 3.9 4.5 0.0 0.0 100.3 1.7 1 3 2 0 MC-D24AA 77. 0.1 12.9 1.1 0.05 0.5 4.0 4.4 0.0 0.0 100.3 1.1 2 7 1 1 MC-D25A 76. 0.1 12.9 1.1 0.04 0.5 4.1 4.6 0.0 0.0 100.3 0.1 9 2 1 5 MC-D25C 77. 0.1 12.9 1.1 0.05 0.00 0.5 4.0 4.6 0.0 0.0 100.3 0.0 1 6 1 7 MC-D26A 76. 0.0 12.6 1.1 0.05 0.03 0.6 3.9 4.7 0.0 0.0 99.6 1.8 6 9 1 2 MC-D26B 77. 0.1 12.8 1.1 0.06 0.5 4.0 4.6 0.0 0.0 100.2 1.2 0 2 1 7 MC-D27A 77. 0.1 13.0 1.1 0.05 0.5 4.1 4.6 0.0 0.0 100.4 0.9 0 1 1 9 MC-D27B-CSUF 77. 0.1 12.9 1.1 0.05 0.00 0.5 4.1 4.7 0.0 0.0 100.6 1 1 1 MC-D27B-WSU 76. 0.0 12.5 1.2 0.05 0.00 0.5 4.0 4.7 0.0 0.0 99.6 0.2 5 6 1 6 58 58 MC-D27C 76. 0.1 12.9 1.1 0.05 0.5 4.2 4.6 0.0 0.0 100.1 0.5 6 0 1 4 MC-D27D 76. 0.0 12.9 1.1 0.04 0.03 0.6 3.9 4.8 0.0 0.0 100.2 0.3 8 5 2 6 MC-D28A 76. 0.0 12.6 1.1 0.05 0.02 0.6 4.2 4.8 0.0 0.0 100.0 2.6 5 7 1 7 MC-D28D 76. 0.0 12.9 1.1 0.05 0.00 0.6 4.1 4.7 0.2 0.0 100.4 0.7 7 7 3 8 MC-D28E 76. 0.1 12.9 1.2 0.06 0.6 3.9 4.6 0.0 0.0 100.0 2.1 7 0 1 9 MC-D29A 76. 0.1 12.4 1.1 0.05 0.05 0.8 3.9 4.4 0.0 0.0 99.0 2.9 3 0 1 4 MC-D30A 76. 0.1 12.8 1.2 0.05 0.00 0.5 4.1 4.6 0.0 0.0 99.9 1.1 5 1 1 7 MC-D30B 76. 0.1 12.7 1.2 0.05 0.01 0.5 4.0 4.3 0.0 0.0 99.2 2.4 3 0 1 9 MC-D30C 76. 0.0 12.9 1.2 0.05 0.00 0.5 4.0 4.6 0.0 0.0 100.3 2.3 9 8 1 9 JLB 1 54. 1.6 17.5 9.2 0.12 3.90 7.4 3.8 1.7 0.4 0.0 100.4 0.3 7 6 7 1 JLB 2 54. 1.7 17.5 9.0 0.12 3.91 7.5 3.9 1.7 0.4 0.0 100.2 4.2 3 1 7 6 JLB 3 54. 1.5 18.3 8.5 0.11 4.14 7.8 3.5 1.5 0.4 0.0 99.9 1.5 1 4 2 8 JLB 4 54. 1.4 18.3 8.5 0.11 3.97 8.0 3.6 1.5 0.4 0.0 100.4 0.6 4 7 9 9 JLB 10A 54. 1.5 18.5 8.7 0.11 4.16 8.2 3.2 1.3 0.4 0.0 100.4 0.1 3 3 1 9 JLB 10B 53. 1.5 18.2 8.6 0.11 4.32 8.1 3.7 1.6 0.4 0.0 100.3 2.2 7 3 1 1 JLB 11 54. 1.4 18.4 8.3 0.11 3.98 7.9 3.6 1.5 0.4 0.0 99.9 1.9 3 5 3 6

59 59

Table A2: Comparison of minerals and their major elements analyzed at UC Davis. Plagioclase Sanidine Olivine Pyroxene Biotite SiO2 X X X X X TiO2 X X X Al2O3 X X X X X FeOt X X X X X MnO X X X MgO X X X CaO X X X X X Na2O X X X X K2O X X X BaO X Cl X Peak Times 10-20 10-60 10-20 10 10 (s) Accelerating 15 15 15 15 15 Voltage (kV) Raster 10 10 1 1 5 Length (µm) Beam 10 10 20 20 10 Current (nA) Beam 1 1 1 1 1 Diameter (µm)

60 60

Table A3: Comparison of minerals and their major elements analyzed at the USGS, Menlo Park, CA. Abbreviations: Pyx=Pyroxene; Bt=Biotite; Hbl=Hornblende Plagioclase Sanidine Olivine Pyx/Bt/Hbl SiO2 X X X X TiO2 X Al2O3 X X X FeOt X X X X MnO X X MgO X X X X CaO X X X X Na2O X X X K2O X X X Cr2O3 X Ni X Peak Times 10-20 10-20 10-20 10-20 (s) Accelerating 15 15 15 15 Voltage (kV) Raster 10 10 10 10 Length (µm) Beam 5 5 15 15 Current (nA) Beam 1 1 1 1 Diameter (µm) 61 61

Table A4: Clinopyroxene compositions (wt %) Rounded up when needed o Mineral X Cor Hig Si Ti Al2 Fe Mn Mg Ca Na2 K2 Cr2 Su T( P(kb Name tl e/Ri h/L O2 O2 O3 O O O O O O O3 m C) ar) # m ow Mg MLI- 1 52. 0. 2.0 9.7 0.34 15. 19.4 0.4 0. 0.00 99 990. 3.0 NI2- 0 26 28 00 .3 95 cpx2(1-2) MLI- 2 Cor 51. 0. 2.5 9.7 0.33 14. 20.1 0.4 0. 0.01 99 991. 3.2 NI2- e 6 32 45 00 .3 05 cpx4(2;4- 6;8- 13;16) MLI_NI2 2 Rim 51. 0. 2.5 9.6 0.27 14. 20.2 0.5 0. 0.04 99 995. 3.8 - 5 33 65 01 .6 15 cpx4(Rim 2) MC- 3 Lo 49. 1. 4.3 9.8 0.28 14. 19.7 0.4 0. 0.02 99 103 1.5 2D10bcp w 5 52 21 03 .7 7.8 x1(2-4) MC- 3 Hig 51. 1. 3.3 9.5 0.22 15. 19.3 0.3 0. 0.04 10 102 0.3 2D10bcp h 2 23 03 03 0. 9.2 x1(1) 2 MC- 4 Lo 48. 1. 5.5 10. 0.3 13. 19.5 0.5 0. 0.01 10 105 5.9 2D10fcpx w 8 90 2 46 02 0. 3.7 1(1-2;4) 1 MC- 4 Hig 51. 1. 2.7 9.2 0.3 15. 19.5 0.3 0. 0.0 99 103 3.6 2D10fcpx h 8 00 14 02 .9 2.8 1(3;5) MC- 5 Lo 47. 2. 6.6 11. 0.3 12. 19.4 0.6 0. 0.0 10 106 6.7 2D10fcpx w 2 65 0 18 04 0. 1.5 2(7) 0 MC- 5 Int. 49. 1. 5.3 9.5 0.26 13. 19.9 0.5 0. 0.06 10 105 5.8 2D10fcpx 0 91 51 03 0. 1.8 2(1;5-6) 0 MC- 5 Hig 51. 0. 2.6 9.5 0.34 14. 19.3 0.4 0. 0.07 99 103 4.1 2D10fcpx h 7 92 78 02 .6 6.9 2(2-4) MC- 6 Hig 46. 2. 6.2 11. 0.26 11. 19.4 0.5 0. 0.03 98 105 6.0 2D10fcpx h 7 86 1 86 03 .9 5.2 2a(2) MC- 6 Lo 49. 1. 4.5 10. 0.36 13. 19.3 0.5 0. 0.03 99 105 5.9 2D10fcpx w 6 24 5 15 06 .4 1.9 2a(1) MC- 7 Lo 50. 1. 4.2 9.3 0.24 13. 20.2 0.4 0. 0.01 99 104 4.9 2D10fcpx w 1 54 42 03 .6 1.8 3(1-3;5- 6) MC- 7 Hig 52. 0. 2.5 9.3 0.29 15. 18.8 0.4 0. 0.01 99 104 4.6 2D10fcpx h 3 85 01 02 .5 1.7 3(4) MC- 8 Lo 47. 2. 7.0 9.5 0.22 12. 19.9 0.6 0. 0.00 99 106 6.8 2D10fcpx w 1 66 18 01 .2 0.6 4(6) MC- 8 Int. 49. 1. 5.1 9.4 0.26 13. 19.7 0.4 0. 0.02 99 104 5.1 2D10fcpx 6 74 10 02 .4 6.3 62 62 4(4-5) MC- 8 Hig 51. 1. 3.0 9.1 0.25 14. 19.3 0.4 0. 0.01 99 103 4.1 2D10fcpx h 5 12 62 02 .3 7.7 4(1-3;7) MC- 9 Lo 50. 1. 3.8 8.7 0.21 13. 20.2 0.4 0. 0.00 99 103 4.6 2D10fcpx w 7 43 52 03 .0 8.9 5(3) MC- 9 Hig 52. 0. 2.3 10. 0.37 14. 17.5 0.4 0. 0.01 99 104 4.4 2D10fcpx h 3 84 8 72 03 .3 4.3 5(1) MC- 1 Lo 50. 1. 4.4 9.2 0.27 13. 20.2 0.5 0. 0.01 99 104 5.3 2D10fcpx 0 w 1 51 72 03 .9 5.3 6(1-2;6- 8;10) MC- 1 Hig 51. 1. 3.3 9.5 0.31 14. 18.5 0.4 0. 0.02 99 104 4.5 2D10fcpx 0 h 3 11 91 03 .4 3.8 6(3-5;9) MC- 1 51. 0. 2.7 9.7 0.33 14. 19.6 0.3 0. 0.02 99 103 3.8 2D10fcpx 1 7 96 69 02 .9 3.5 7(1-4) MC- 1 51. 0. 2.7 9.5 0.26 14. 19.7 0.4 0. 0.03 99 998. 1.6 D11c- 2 1 48 91 00 .1 5 cpx2(6;9; 11) MC- 1 50. 1. 3.6 9.0 0.26 13. 20.5 0.4 0. 0.00 99 992. 3.1 D11d- 3 3 31 73 01 .1 4 pyx1(2) MC- 1 Hig 51. 1. 2.4 9.7 0.28 15. 19.4 0.3 0. 0.00 99 109 4.4 D12b- 4 h 5 00 08 00 .6 1.4 cpx1(3-4) MC- 1 Int. 49. 1. 4.3 9.7 0.25 13. 20.4 0.4 0. 0.00 99 109 3.8 D12bc-x- 4 5 43 61 00 .6 3.6 1(1;5) MC- 1 Lo 46. 2. 6.1 10. 0.23 11. 20.7 0.3 0. 0.00 99 109 4.4 D12b- 4 w 5 87 3 91 00 .0 1.4 cpx1(2) MC- 1 48. 1. 5.0 10. 0.23 13. 19.9 0.5 0. 0.00 99 112 5.9 D12c- 5 9 66 2 32 00 .7 0.3 plag2-f MC- 1 51. 0. 2.3 9.6 0.29 15. 19.9 0.3 0. 0.00 10 107 0.5 D12c- 6 3 88 51 00 0. 6.0 plag2-h 2 MC- 1 50. 1. 3.8 9.6 0.30 14. 20.3 0.4 0. 0.00 10 111 5.1 D12c- 7 0 36 38 00 0. 1.2 plag2-i 1 MC- 1 50. 1. 3.0 10. 0.37 14. 19.3 0.4 0. 0.00 99 110 4.1 D12c- 8 4 05 8 35 00 .6 5.1 plag2-j MC- 1 51. 0. 2.5 9.6 0.32 15. 19.2 0.3 0. 0.00 10 110 3.9 D12c- 9 5 88 60 00 0. 4.1 plag3- 0 (I,j) MC- 2 50. 1. 3.2 9.1 0.30 14. 19.9 0.4 0. 0.00 99 110 4.7 D12c- 0 3 09 99 00 .4 8.6 plag3-k MC- 2 Cor 50. 1. 3.6 9.2 0.22 14. 20.6 0.4 0. 0.00 10 110 4.8 D12c- 1 e 4 26 39 00 0. 7.5 plag4-(g- 1 k) 63 63 MC- 2 Rim 49. 1. 4.3 9.8 0.28 14. 20.2 0.4 0. 0.00 99 111 4.8 D12c- 1 5 43 01 00 .9 0.5 plag4-j MC- 2 49. 1. 3.8 9.3 0.29 14. 20.4 0.4 0. 0.00 99 110 4.9 D12c- 2 9 28 42 00 .7 9.0 plag4-l MC- 2 Lo 45. 3. 7.5 11. 0.25 12. 19.2 0.6 0. 0.00 99 113 7.0 D12c- 3 w 4 16 4 07 00 .5 7.0 olv7-p MC- 2 Hig 47. 2. 5.8 10. 0.28 12. 19.7 0.5 0. 0.00 99 112 6.1 D12c- 3 h 7 19 8 94 00 .8 4.3 olv7-(q,r) MC- 2 51. 1. 2.6 10. 0.34 15. 18.3 0.3 0. 0.00 10 110 3.2 D12c- 4 6 02 5 88 00 0. 3.5 plag8-f 5 MC- 2 Int 51. 0. 2.7 9.3 0.26 15. 19.4 0.4 0. 0.00 99 110 4.0 D12c- 5 1 89 38 00 .4 4.2 plag9- (a;c) MC- 2 Cor 49. 1. 4.4 9.9 0.25 14. 20.2 0.4 0. 0.00 10 111 4.9 D12c- 5 e 5 47 05 00 0. 1.5 plag9-b 2 MC- 2 Rim 51. 0. 2.4 9.8 0.27 15. 19.1 0.4 0. 0.00 10 111 4.8 D12c- 5 9 84 48 00 0. 1.1 plag9-d 2 MC- 2 50. 1. 3.5 9.4 0.27 14. 19.9 0.4 0. 0.00 99 110 4.2 D12c- 6 5 11 73 00 .7 5.9 plag9- (e,f) MC- 2 47. 1. 4.2 10. 0.27 13. 20.5 0.4 0. 0.00 98 109 3.0 2D12c- 7 9 40 6 57 04 .9 5.2 cpx5(2) MC- 2 48. 1. 3.7 10. 0.32 14. 20.0 0.4 0. 0.00 99 107 3.0 2D12c- 8 6 34 1 58 03 .0 9.8 cpx7(4) MC- 2 Cor 47. 1. 5.4 10. 0.33 13. 20.1 0.4 0. 0.00 99 105 6.0 D12h- 9 e 9 93 2 51 00 .8 0.7 1plag_py x2-e MC- 2 Int 48. 1. 4.7 10. 0.25 13. 20.0 0.5 0. 0.00 10 105 6.4 D12h- 9 8 68 3 91 00 0. 2.9 1plag_py 1 x2-(f,g) MC- 2 Rim 50. 0. 2.7 9.2 0.29 15. 20.8 0.4 0. 0.00 10 101 2.3 D12h- 9 9 92 17 00 0. 8.1 1plag_py 4 x2-h MC- 3 Cor 45. 2. 7.6 9.8 0.22 12. 20.6 0.6 0. 0.00 99 106 7.6 D12h- 0 e 4 65 75 00 .6 3.8 1plag3-e MC- 3 Rim 47. 1. 5.8 10. 0.28 13. 19.7 0.5 0. 0.00 10 106 7.0 D12h- 0 9 94 5 48 00 0. 0.3 1plag3-f 2 MC- 3 Cor 49. 1. 3.8 9.9 0.34 14. 20.2 0.4 0. 0.00 10 104 5.7 D12h- 1 e 8 32 35 00 0. 5.5 1plag4- 1 (f,g) MC- 3 Rim 51. 0. 2.5 10. 0.33 14. 19.7 0.4 0. 0.00 99 103 4.5 D12h- 1 0 87 1 78 00 .5 6.3 64 64 1plag4- (h-j) MC- 3 Cor 48. 1. 5.8 10. 0.25 13. 18.9 0.5 0. 0.01 99 105 6.5 2D12h- 2 e 0 87 5 23 03 .0 9.1 1cpx1(3) MC- 3 Cor 51. 0. 3.0 10. 0.41 14. 17.6 0.4 0. 0.00 99 105 5.6 2D12h- 2 e 4 92 7 35 17 .0 2.5 1cpx1(5) MC- 3 Rim 48. 2. 5.5 10. 0.25 13. 19.2 0.5 0. 0.00 99 105 6.7 2D12h- 3 3 01 0 26 07 .1 8.9 1cpx1(5b ) MC- 3 Rim 50. 1. 3.5 10. 0.33 14. 19.1 0.4 0. 0.01 99 104 5.5 2D12h- 3 8 21 1 08 04 .6 7.7 1cpx1(3b -4b) MC- 3 Rim 52. 0. 1.5 16. 0.80 13. 15.2 0.2 0. 0.01 10 103 2.6 2D12h- 3 3 48 0 85 07 0. 8.1 1cpx1(6b 4 ) MC- 3 51. 1. 3.4 9.3 0.29 14. 19.9 0.4 0. 0.01 10 104 5.6 2D12h-1- 4 3 13 33 03 0. 5.6 cpx2(1-8) 1 MC- 3 Lo 50. 1. 4.2 9.8 0.27 13. 19.5 0.4 0. 0.04 99 105 6.1 2D12h-1- 5 w 6 35 66 02 .9 1.5 cpx3(2;5) MC- 3 Hig 52. 0. 2.5 8.9 0.28 14. 19.7 0.3 0. 0.03 99 103 4.8 2D12h-1- 5 h 3 94 78 02 .8 9.0 cpx3(1;3- 4) MC- 3 Hig 52. 0. 2.4 9.0 0.32 14. 19.9 0.4 0. 0.01 99 103 4.9 2D12h-1- 6 h 7 93 15 02 .7 8.3 cpx4(2-4) MC- 3 Lo 51. 1. 3.3 9.1 0.31 13. 20.2 0.4 0. 0.00 99 104 5.3 2D12h-1- 6 w 8 23 55 02 .9 2.0 cpx4(1;6) MC- 3 50. 1. 3.4 9.6 0.28 14. 19.9 0.4 0. 0.01 99 104 4.9 D12h-2- 7 2 31 57 02 .6 0.7 cpx1(2-6) MC- 3 50. 1. 3.0 9.6 0.29 14. 19.7 0.4 0. 0.02 99 104 5.5 2D12h-2- 8 7 04 38 02 .2 3.8 cpx2(2-4) MC- 3 50. 1. 3.9 9.7 0.24 14. 20.0 0.3 0. 0.05 99 103 4.7 2D12h-2- 9 0 29 27 02 .7 9.3 cpx3(1) MC- 4 48. 1. 5.3 10. 0.29 13. 19.5 0.4 0. 0.01 99 105 6.0 2D12h-2- 0 2 75 4 59 03 .4 2.8 cpx3(2) MC- 4 49. 1. 3.7 10. 0.30 14. 19.7 0.4 0. 0.00 99 104 5.7 D12h-2- 1 3 09 3 30 00 .0 6.7 olv3-c MC- 4 51. 0. 2.64 18. 0.52 24. 1.52 0.03 0 0 99 146 3.4 D12h-2- 2 84 4 24 27 .5 8.7 olv4-(b,c) MC- 4 50. 1. 3.1 11. 0.27 16. 15.7 0.3 0. 0.00 99 105 4.8 D12h-2- 3 4 08 8 68 00 .3 5.1 olv4-e MC- 4 50. 0. 2.2 11. 0.48 14. 19.6 0.3 0. 0.00 99 101 1.5 D12h-2- 4 4 55 0 55 00 .1 4.4 65 65 olv4f(2) MC- 4 Cor 49. 1. 3.9 9.1 0.24 14. 20.6 0.4 0. 0.00 99 104 6.0 D12h-2- 5 e 3 28 27 00 .1 5.5 olv4-i MC- 4 Rim 49. 0. 3.4 11. 0.42 13. 20.4 0.4 0. 0.00 99 104 5.5 D12h-2- 5 3 79 3 09 00 .0 1.9 olv4-k JLB3- 4 50. 0. 3.6 7.7 0.15 14. 21.1 0.4 0. 0.27 99 111 3.3 cpx1(2) 6 4 53 88 01 .0 7.3 JLB3- 4 Hig 51. 0. 2.5 8.8 0.19 15. 20.4 0.3 0. 0.03 99 111 2.4 cpx2(5) 7 h 3 45 28 00 .3 1.0 JLB3- 4 Lo 48. 0. 5.0 9.4 0.18 13. 21.0 0.4 0. 0.05 99 112 4.0 cpx2(2-3) 7 w 7 87 53 01 .2 5.0 JLB10a- 4 Hig 52. 0. 2.1 8.4 0.24 15. 20.4 0.3 0. 0.03 99 110 1.3 pyx1(1) 8 h 4 84 24 01 .8 8.4 JLB10a- 4 Lo 49. 1. 4.4 8.5 0.16 13. 21.7 0.3 0. 0.01 99 111 2.6 pyx1(6) 8 w 8 50 33 00 .7 7.6 JLB10a- 4 Hig 52. 0. 2.0 8.7 0.29 15. 20.2 0.3 0. 0.02 99 111 2.0 pyx2(2;4- 9 h 2 84 24 00 .8 4.0 5) JLB10a- 4 Lo 49. 1. 4.8 8.7 0.19 13. 21.2 0.4 0. 0.07 99 112 3.1 pyx2(1;3; 9 w 1 67 45 00 .6 3.2 6-7) JLB10a- 5 Hig 51. 0. 2.4 8.5 0.27 14. 20.1 0.3 0. 0.01 99 139 2.4 pyx3(2;6) 0 h 7 86 99 00 .2 0.9 JLB10a- 5 Lo 47. 1. 5.4 9.5 0.26 12. 20.7 0.5 0. 0.00 99 113 5.0 pyx3(3) 0 w 8 94 85 00 .0 9.5 JLB11- 5 Hig 51. 0. 2.5 8.1 0.23 14. 20.5 0.3 0. 0.04 99 110 2.3 cpx2(4- 1 h 5 92 95 00 .2 9.0 6;14) JLB11- 5 Lo 48. 1. 4.9 9.0 0.19 13. 21.1 0.4 0. 0.03 99 112 3.8 cpx2(2;1 1 w 8 6 2 00 .2 2.1 5-18;20) JLB11- 5 51. 0. 2.7 8.0 0.25 14. 20.8 0.4 0. 0.05 99 111 3.5 cpx4 2 6 72 74 00 .3 6.9

66 66

Table A5: Orthopyroxene compositions (wt %) Rounded up when needed. o Mineral Name Xtl High or SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 Total T ( C) # Low Mg MLI-NI2- 1 High 53.0 0.15 1.60 18.3 0.48 24.4 1.41 0.01 0.00 0 99.3 1112.8 opx1(1-4;9) MLI-NI2- 1 Int. 52.8 0.11 1.19 20.6 0.67 23.0 1.34 0.04 0.00 0.00 99.7 1112.8 opx1(5;8) MLI-NI2- 1 Low 52.5 0.10 1.00 22.1 0.85 21.7 1.21 0.05 0.00 0.03 99.5 1112.8 opx1(6) MLI-NI2- 2 52.9 0.14 0.39 22.1 0.92 19.9 3.19 0.07 0.02 0.01 99.6 1112.9 cpx4(Rim1;3-15) MLI-PI7-opx1(2- 3 54.1 0.14 1.32 19.0 0.73 23.8 1.39 0.04 0.01 0.00 100.6 1121.1 6) MC-D12b(b)- 4 Low 36.6 0.06 0.02 29.9 0.52 33.3 0.18 0.01 0.00 0.00 100.6 1164.2 opx1(1) MC-D12b(b)- 4 High 37.4 0.04 0.04 25.3 0.38 37.3 0.19 0.01 0.01 0.00 100.6 1164.2 opx1(2-3;5-6) MC-D12b(b)- 5 High 37.2 0.06 0.01 24.2 0.36 38.0 0.17 0.02 0.00 0.00 100.0 1164.2 opx2(1-2) MC-D12b(b)- 5 Int. 36.8 0.06 0.03 26.0 0.40 36.5 0.15 0.02 0.01 0.00 100.0 1164.2 opx2(4) MC-D12b(b)- 5 Low 36.7 0.04 0.02 27.2 0.46 35.1 0.16 0.01 0.00 0.00 99.7 1164.2 opx2(3;5) MC-D12b(b)- 6 High 36.9 0.07 0.02 29.5 0.53 33.2 0.17 0.02 0.00 0.00 100.3 1164.2 opx3 MC-D12b(b)- 6 Low 36.4 0.14 0.02 31.6 0.48 32.0 0.14 0.01 0.01 0.00 100.8 1164.2 opx3 MC-D12b(b)- 7 37.7 0.03 0.03 25.5 0.40 37.1 0.17 0.00 0.00 0.00 100.9 1164.2 opx4 MC-D12h-2- 8 51.8 0.4 2.64 18.2 0.52 24.3 1.52 0.03 0.00 0.00 99.4 1184.9 olv4(b,c) MC-2D12m- 9 51.5 0.08 0.29 28.0 1.24 18.4 0.96 0.02 0.03 0.00 100.5 1068.0 cpx1(3-5) MC-2D12m- 10 51.6 0.12 0.32 27.8 1.24 18.1 1.01 0.02 0.02 0.00 100.2 1068.0 cpx2(2-3) MC-D15a- 11 30.2 0.01 0.00 63.8 3.71 2.7 0.11 0.01 0.00 0.01 100.5 1013.9 pyx1(1-3;5-8) MC-D15a- 12 42.4 1.84 7.94 29.4 0.86 4.0 9.73 2.07 0.94 0.00 99.1 1013.9 pyx4b(1;4) MC-D17b-cpx- 13 43.3 1.83 8.07 28.7 0.90 3.9 9.90 2.08 0.95 0.00 99.6 1008.1 2(1;4-6) MC-D17b- 14 43.1 1.95 8.07 28.1 0.86 4.4 9.93 2.07 0.94 0.00 99.3 1008.1 cpx3(1-4) MC-D17g-opx- 15 30.7 0.00 0.00 63.5 3.68 2.8 0.11 0.02 0.00 0.01 100.7 992.8 1(1-6;8-9;11) JLB10a-pyx1 16 38.8 0.03 0.01 23.6 0.37 37.2 0.20 0.01 0.00 0.02 100.1 1137.5

JLB10b- 17 High 39.2 0.01 0.01 20.0 0.31 39.3 0.18 0.00 0.00 0.01 99.0 1145.8 opx1(2;4-5) JLB10b-opx1(1) 17 Low 39.0 0.03 0.08 21.4 0.29 38.1 0.25 0.00 0.00 0.03 99.2 1145.8

JLB10b- 18 39.3 0.02 0.00 20.0 0.33 39.3 0.21 0.03 0.00 0.02 99.2 1145.8 opx2(1;3-5) JLB10b-opx3(4- 19 High 39.7 0.03 0.00 17.3 0.32 42.0 0.18 0.00 0.01 0.01 99.5 1145.8 6) JLB10b-opx3(1) 19 Low 38.9 0.04 0.00 19.0 0.31 40.5 0.18 0.00 0.01 0.00 99.0 1145.8

JLB11-opx1(2-6) 20 38.1 0.03 0.01 23.6 0.42 37.0 0.17 0.01 0.00 0.03 99.3 1139.3

67 67

Table A6: Plagioclase compositions Rounded up when needed. o Mineral Name Xtl # Core or High or Low SiO2 Al2O3 FeO CaO Na2O K2O MgO Total T ( C) Rim Al

MLI-NI2-san1(4-7) 1 Rim 58.4 25.9 0.63 8.9 5.53 0.96 0.01 100.4 1091.7

MLI-NI2-plag1(1-13;15-17;19-22) 1 Core 61.3 24.5 0.20 6.0 7.46 1.04 0.01 100.5 1072.7

MLI-NI2-plag1a 2 57.2 26.8 0.48 9.5 5.55 0.69 0.04 100.2 1090.5

MLI-NI2-plag2(2-5;14) 3 High 55.7 28.1 0.43 10.6 5.31 0.36 0.05 100.5 1091.9

MLI-NI2-plag2(1;6-13;15-16) 3 Low 57.7 27.0 0.31 9.0 6.09 0.45 0.03 100.6 1083.7

MLI-NI2-plag3(1-2;6-10;16-18) 4 High 55.9 28.0 0.41 10.5 5.42 0.35 0.05 100.6 1090.9

MLI-NI2-plag3(3-5;11-15) 4 Low 57.2 27.1 0.34 9.4 5.89 0.45 0.03 100.5 1086.2

MLI-NI2-plag4(1-10) 5 55.6 28.0 0.45 10.6 5.36 0.33 0.06 100.3 1091.4

MLI-PI1-plag1(2-4;6-7;9-10) 6 62.2 23.7 0.17 4.8 8.05 1.33 0.01 100.2 1073.4

MLI-PI1-plag2(2-5) 7 62.5 23.4 0.18 4.6 7.98 1.39 0.01 100.1 1074.0

MLI-Pi1-plag2a(1-2;5) 8 High 57.8 26.5 0.49 9.0 5.77 0.12 0.01 99.7 1084.7

MLI-Pi1-plag2a(3-4) 8 Low 63.2 21.5 1.41 5.8 5.56 2.25 0.33 99.99 1101.0

MLI-PI2-san1(4-5) 9 64.0 22.9 0.17 4.0 8.16 1.75 0.01 100.9 983.6

MLI-PI2-plag1(1;4;6) 10 63.6 23.0 0.2 4.2 8.17 1.66 0.01 100.9 982.7

MLI-PI2-plag2(2-4) 11 62.3 24.0 0.18 5.1 7.74 1.24 0.00 100.5 980.5

MLI-PI2-plag3(4;6-8) 12 63.0 23.6 0.17 4.7 7.96 1.39 0.01 100.8 980.8

MLI-PI-plag4(1-9) 13 62.0 24.0 0.18 5.0 7.76 1.29 0.01 100.2 981.0

MLI-PI2-plag5(1-3;5) 14 63.1 23.4 0.18 4.4 8.17 1.53 0.00 100.7 981.2

MLI-PI2-plag6(1-7;9) 15 62.5 23.7 0.17 4.9 7.95 1.31 0.01 100.5 980.2

MLI-PI2-plag7(3-5) 16 62.0 24.1 0.21 5.4 7.87 1.18 0.01 100.7 980.2

MLI-PI2-plag8(1-2;5;14) 17 62.8 23.7 0.17 5.1 7.87 1.25 0.01 100.9 980.3

MLI-PI2-plag9(1-2;4) 18 63.2 23.4 0.18 4.4 8.07 1.46 0.00 100.7 980.7

MLI-PI7-plag1(7-8) 19 High 57.1 27.2 0.42 9.4 5.92 0.48 0.04 100.6 1086.8

MLI-PI7-plag1(6) 19 Low 58.3 26.4 0.34 8.4 6.10 0.58 0.03 100.1 1083.8

MC-1D10b-plag1(4) 20 52.4 29.3 0.36 12.8 4.22 0.23 0.07 99.4 1095.9

MC-1D10b-plag2(1-4) 21 52.4 29.3 0.38 12.5 4.17 0.24 0.11 99.1 887.6

MC-1D10b-plag3(1;7) 22 52.3 29.4 0.36 12.6 3.99 0.23 0.10 99.0 888.2

MC-1D10b-plag4(1-4) 23 53.4 29.0 0.59 11.9 4.38 0.30 0.07 99.7 886.3

MC-1D10b-plag5(4) 24 52.8 29.2 0.35 12.0 4.51 0.26 0.09 99.3 885.7

MC-1D10b-plag6(2-4) 25 52.2 30.0 0.34 12.8 4.09 0.25 0.08 99.7 888.2

MC-1D10b-plag7(1-4) 26 52.6 29.5 0.42 12.5 4.27 0.24 0.11 99.6 887.1

MC-D10b-plag1(1-2) 27 52.1 29.7 0.33 12.5 4.08 0.20 0.10 99.1 1129.3

MC-D10b-plag2(2-4) 28 53.0 30.0 0.42 13.0 4.01 0.22 0.08 100.7 1130.5

MC-D10b-plag3(1-4) 29 51.6 30.2 0.40 13.0 4.01 0.22 0.09 99.5 1130.5

MC-D10b-plag4(1-4) 30 52.7 29.7 0.58 12.5 4.31 0.26 0.07 100.1 1128.4

MC-D10b-plag5(1-6;8) 31 52.4 30.2 0.34 13.1 4.03 0.19 0.1 100.3 1130.4 68 68

MC-D10b-plag6(1-5) 32 53.2 29.6 0.40 12.3 4.39 0.23 0.07 100.3 1127.5

MC-D10b-plag7(1-2;4-5) 33 51.6 30.1 0.35 13.0 4.12 0.20 0.11 99.5 1129.8

MC-D10b-plag8(1-6;8-11) 34 52.5 30.0 0.36 12.8 4.23 0.21 0.10 100.1 1129.0

MC-D10b-plag-9(1-3;6) 35 52.1 30.1 0.11 13.0 4.05 0.20 0.08 99.8 1130.2

MC-D10c-plag1(3-4) 36 65.3 22.2 0.11 3.1 8.98 1.27 0.00 101.0 746.8

MC-D10f-plag1(1-3;5-6) 37 52.8 30.1 0.50 12.3 4.33 0.30 0.11 100.5 854.6

MC-1D10f-plag3(1-4;6-8) 38 53.7 29.5 0.53 11.9 4.51 0.31 0.08 100.4 853.4

MC-1D10f-plag4(1;3-10;16-22) 40 53.8 29.5 0.49 11.7 4.32 0.30 0.09 100.3 853.9

MC-1D10f-plag4(Line 11) 40 54.0 29.6 0.45 11.8 4.51 0.33 0.07 100.7 853.3

MC-1D10f-plag4(Line 13) 40 55.2 28.9 0.45 10.7 5.06 0.45 0.06 100.8 850.3

MC-1D10f-plag4(Line 14) 40 58.7 26.8 0.22 8.2 6.28 0.63 0.03 100.9 841.8

MC-1D10f-plag4(Line 15) 40 60.3 25.6 0.20 6.9 6.58 0.87 0.04 100.5 839.5

MC-1D10f-plag5(1;3-11) 41 53.7 29.4 0.51 11.7 4.4 0.31 0.08 100.1 853.6

MC-1D10f-plag6(2-3;5-7) 42 53.1 29.5 0.51 11.6 4.47 0.31 0.08 99.5 853.2

MC-1D10f-plag7(8-10) 43 51.2 30.7 0.30 12.9 3.87 0.21 0.09 99.3 856.3

MC-1D10f-plag8(1-5;7) 44 52.5 30.2 0.37 12.2 4.17 0.26 0.07 99.8 821.2

MC-1D10f-plag9(1-8) 45 52.3 30.2 0.40 12.5 4.16 0.25 0.11 99.9 821.4

MC-1D10f-plag10(1) 46 51.9 30.7 0.30 13.2 3.74 0.25 0.09 100.2 823.5

MC-D11c-plag1(3-8) 47 53.5 29.5 0.54 12.4 4.35 0.25 0.10 100.6 1110.1

MC-D11c-plag2(1-10) 48 53.3 29.6 0.53 12.5 4.31 0.26 0.1 100.6 1110.5

MC-D11c-plag3(1-3;5-6;8-11) 49 54.0 29.2 0.55 12.1 4.57 0.27 0.09 100.8 1108.5

MC-D11c-plag4(1-10) 50 53.6 28.9 0.53 12.0 4.59 0.26 0.08 100.0 1108.1

MC-D11c-plag5(1-15;17-19) 51 53.7 29.0 0.52 12.0 4.56 0.27 0.08 100.0 1107.8

MC-D11d-plag1(3;8;10) 52 52.1 29.6 0.36 12.6 4.05 0.21 0.09 99.1 884.1

MC-D11d-plag2(1;3) 53 52.0 30.0 0.34 12.8 3.94 0.20 0.09 99.5 854.7

MC-D11d-plag4(6-8) 54 52.8 29.5 0.40 12.4 4.07 0.23 0.08 99.5 853.9

MC-D11d-plag5(5-12) 55 52.8 30.0 0.37 12.8 3.92 0.20 0.09 100.2 854.7

MC-D11d-plag6(1-11) 56 53.8 29.1 0.54 19.1 4.24 0.24 0.08 100.1 853.1

MC-D11d-plag7(1-6) 57 54.1 28.8 0.56 11.8 4.44 0.27 0.08 100.0 1046.6

MC-D11d-plag8(1-3) 58 53.1 29.2 0.53 12.2 4.24 0.22 0.07 99.6 853.1

MC-D11d-plag9(2-4) 59 52.3 29.8 0.36 12.7 3.89 0.21 0.10 99.4 854.8

MC-D11j-plag1(1) 60 Low 60.5 24.5 0.12 6.3 7.79 0.42 0.00 99.6 1050.5

MC-D11j-plag1(4-5) 60 High 59.1 25.1 0.19 7.0 7.43 0.44 0.01 99.3 1055.5

MC-D11j-plag2(1;3-8) 61 62.9 23.6 0.15 4.7 8.46 0.55 0.01 100.3 1043.3

MC-D12b-plag1(7) 62 High 61.0 24.5 0.10 6.0 8.20 0.45 0.01 100.2 1096.2

MC-D12b-plag1(1-6) 62 Low 62.4 23.7 0.14 4.8 8.62 0.45 0.01 100.1 1089.5

MC-D12b-plag2(1;3-4) 63 53.2 29.5 0.50 12.6 4.25 0.21 0.10 100.4 1137.7

MC-D12b-plag3(1-3;5) 64 52.7 29.6 0.37 12.5 4.29 0.22 0.14 99.8 1137.4

MC-D12b-plag4(1-5) 65 52.1 30.2 0.35 13.2 3.89 0.20 0.10 100.1 1140.6

MC-D12b-plag5(1-5) 66 52.1 30.0 0.38 12.8 4.15 0.21 0.12 99.7 1138.7 69 69

MC-D12b-plag6(2;4-6) 67 51.5 30.2 0.38 13.0 3.91 0.19 0.13 99.4 1140.2

MC-D12b-plag8(1-2;6-7) 68 53.4 29.1 0.56 11.9 4.51 0.25 0.10 99.7 1135.2

MC-D12b-plag9(1-7) 69 52.5 30.0 0.35 13.0 4.05 0.21 0.11 100.1 1139.5

MC-D12b-plag10(1-7) 70 53.2 29.5 0.51 12.5 4.31 0.22 0.10 100.3 1137.3

MC-D12b-plag11(1-5) 71 52.6 30.2 0.35 12.9 3.99 0.20 0.11 100.3 1139.7

MC-D12b-plag12(1-11) 72 52.7 29.8 0.38 12.8 4.12 0.21 0.12 100.1 1138.9

MC-D12b(b)-plag1(1-3) 73 53.2 29.8 0.59 12.0 4.52 0.22 0.08 100.5 857.1

MC-D12b(b)-plag2(1-2) 74 51.8 31.0 0.36 13.0 4.09 0.20 0.10 100.6 859.6

MC-D12b(b)-plag5(1-2) 75 53.2 29.4 0.67 11.6 4.93 0.27 0.10 100.1 855.2

MC-D12c-plag2(a,b) 76 52.9 29.8 0.55 12.5 4.38 0.28 0.00 100.4 823.4

MC-D12c-plag2(c,d) 77 53.0 29.7 0.55 12.2 4.54 0.26 0.00 100.2 823.6

MC-D12c-plag2-e 78 52.7 29.7 0.58 12.3 4.50 0.24 0.00 99.9 823.3

MC-D12c-plag3(a,f) 79 Core 52.8 29.5 0.60 12.0 4.49 0.29 0.00 99.6 823.9

MC-D12c-plag3(c-e) 79 Int 53.8 28.9 0.51 11.4 4.84 0.33 0.00 99.9 825.7

MC-D12c-plag3(b,g) 79 Rim 54.2 28.8 0.52 11.0 5.02 0.34 0.00 99.9 826.6

MC-D12c-plag3-h 80 53.4 29.6 0.58 11.9 4.74 0.28 0.00 100.5 824.4

MC-D12c-plag4(a-e) 81 51.5 30.7 0.38 13.1 3.98 0.24 0.00 99.9 822.1

MC-D12c-plag6(a-e) 82 53.2 29.3 0.50 11.8 4.68 0.31 0.00 99.8 824.6

MC-D12c-plag6(f,g) 83 53.3 29.2 0.53 11.6 4.68 0.31 0.00 99.6 824.8

MC-D12c-plag9-n 84 Core 52.7 30.0 0.56 12.5 4.44 0.24 0.00 100.5 823.0

MC-D12c-plag9(o,p) 84 Int 54.0 29.3 0.54 11.6 4.81 0.34 0.00 100.6 825.4

MC-D12c-plag9-q 84 Rim 52.7 29.4 0.49 12.0 4.47 0.28 0.00 99.3 823.9

MC-D12c-plag9-r 85 56.0 27.8 0.39 10.3 5.47 0.42 0.00 100.4 829.5

MC-D12c-plag9-s 86 Core 52.6 29.3 0.51 11.9 4.59 0.29 0.00 99.2 824.3

MC-D12c-plag9-(t,u) 86 Rim 52.6 29.9 0.56 12.3 4.34 0.25 0.00 99.9 823.1

MC-D12c-plag9-v 87 51.3 30.6 0.51 13.2 3.95 0.20 0.00 99.7 821.7

MC-D12c-plag9-(Line w) 88 52.8 29.8 0.49 12.4 4.26 0.27 0.00 99.9 823.2

MC-D12c-plag9-(Line x) 88 59.9 25.3 0.60 8.9 4.44 1.40 0.00 100.5 840.0

MC-D12c-plag9-(Line y) 88 64.3 22.7 0.69 6.9 4.02 2.31 100.9 854.8

MC-D12c-plag9-(Line aa) 88 72.1 16.8 0.78 2.6 3.53 3.67 0.01 99.4 889.9

MC-D12c-plag9-(Line cc) 88 54.1 29.2 0.59 11.7 4.80 0.33 0.00 100.8 825.2

MC-1D12c-plag6(1) 89 Rim 61.2 24.9 0.32 6.5 6.77 0.75 0.04 100.5 844.5

MC-1D12c-plag6(2-7) 89 Core 55.6 28.7 0.46 10.4 4.56 0.29 0.09 100.1 859.0

MC-1D12c-plag7(1-6) 90 54.1 30.0 0.32 11.3 4.03 0.23 0.10 100.1 862.3

MC-D12g-plag4(b-c;e-f) 91 63.0 23.5 0.20 4.6 8.20 1.3 0.00 100.8 791.9

MC-D12g-plag4(g) 92 62.8 23.5 0.18 4.5 8.14 1.31 0.00 100.4 792.2

MC-D12g-plag5(a,d) 93 Rim 58.9 26.2 0.12 7.4 7.22 0.19 0.00 100.1 772.5

MC-D12g-plag5(b,e) 93 Int 56.9 27.6 0.17 9.2 6.35 0.15 0.00 100.4 765.6

MC-D12g-plag5-c 93 Core 51.7 31.0 0.27 13.4 4.15 0.08 0.00 100.6 755.8

MC-1D12gplag1(1-6) 94 63.3 23.4 0.22 4.6 7.87 1.20 0.00 100.6 791.0 70 70

MC-D12h-1-plag1(a-e) 95 51.6 30.9 0.37 13.2 3.92 0.22 0.00 100.3 810.6

MC-D12h-1-plag_pyx2(a-c;e) 96 Core 52.8 29.8 0.58 12.2 4.41 0.27 0.00 100.1 812.2

MC-D12h-1-plag_pyx2(d) 96 Rim 52.1 30.5 0.54 13.2 4.11 0.25 0.00 100.6 811.1

MC-D12h-1-plag3(b,d) 97 Rim 52.4 30.4 0.60 12.8 4.15 0.25 0.00 100.6 811.3

MC-D12h-1-plag3-c 97 Core 53.3 30.0 0.56 12.3 4.55 0.25 0.00 100.9 812.2

MC-D12h-1-plag3-l 98 52.5 29.9 0.58 12.4 4.35 0.27 0.00 99.99 812.0

MC-D12h-1-plag4-(a,b) 99 53.4 29.7 0.53 12.0 4.65 0.28 0.00 100.5 812.9

MC-D12h-1-plag4-(c,d) 100 53.5 29.5 0.55 11.9 4.69 0.31 0.00 100.3 813.3

MC-D12h-1-plag4-e 101 53.3 29.2 0.61 12.0 4.49 0.29 0.00 99.9 812.7

MC-D12h-1-plag5-(a,b) 102 52.4 30.6 0.36 12.9 4.16 0.24 0.00 100.6 811.1

MC-1D12h-1-plag1(2;4) 103 Rim 52.9 29.9 0.44 11.8 4.28 0.24 0.04 99.5 849.9

MC-1D12h-1-plag1(3) 103 Core 54.6 28.7 0.48 10.5 4.96 0.30 0.00 99.5 845.6

MC-1D12h-1-plag2(3-6) 104 53.0 29.3 0.57 11.3 4.60 0.31 0.09 99.2 848.3

MC-1D12h-1-plag5(1-3;6) 105 51.8 30.0 0.53 12.3 4.07 0.26 0.09 99.1 851.3

MC-1D12h-1-plag6(2-3;5) 106 52.6 30.3 0.34 12.2 4.18 0.23 0.11 99.9 850.6

MC-D12h-2-plag1(a,b) 107 52.1 30.1 0.40 12.8 4.17 0.24 0.00 99.8 851.4

MC-D12h-2-plag1(c,d) 108 51.8 30.4 0.37 12.9 4.10 0.24 0.00 99.7 851.7

MC-D12h-2-plag1-f 109 52.8 29.1 0.53 11.8 4.53 0.30 0.00 99.0 849.3

MC-D12h-2-olv2-f 110 53.0 29.0 0.54 11.5 4.71 0.31 0.00 99.1 848.2

MC-D12h-2-olv2-(h,i) 111 52.9 29.4 0.55 12.2 4.51 0.30 0.00 99.8 849.7

MC-D12h-2-olv3-h 112 52.9 29.0 0.53 11.7 4.51 0.29 0.00 99.0 849.2

MC-D12h-2-olv4-m 113 Core 53.8 28.5 0.70 10.9 5.09 0.37 0.00 99.3 846.1

MC-D12h-2-olv4-n 113 Rim 55.5 27.2 0.62 9.3 5.80 0.54 0.00 99.0 841.6

MC-1D12h-2-plag3(2-7) 114 54.9 28.9 0.42 11.2 4.14 0.26 0.10 99.9 849.7

MC-1D12h-2-plag4(1-5) 114 55.2 29.0 0.44 11.2 4.19 0.28 0.09 100.4 849.6

MC-1D12h-2-plag5(1-2;4) 115 56.3 27.8 0.48 10.1 4.69 0.31 0.07 99.7 846.1

MC-1D12m-plag1(1) 116 64.7 22.1 0.17 3.3 8.69 1.30 0.00 100.1 787.2

MC-D12m-plag1(1-5) 117 62.5 23.0 0.20 4.7 8.12 1.17 0.01 99.8 788.9

MC-D12m-plag2(1-3) 118 64.3 21.9 0.11 3.4 8.81 1.53 0.01 100.0 789.5

MC-D12m-plag3(1-4) 119 64.6 21.6 0.15 3.4 9.02 1.36 0.00 100.1 787.3

MC-D12m-plag4(1-6) 120 63.4 22.7 0.19 4.6 8.20 1.27 0.01 100.2 789.3

MC-D12p-plag2(1) 121 63.3 22.1 0.14 3.3 8.87 1.20 0.00 99.0 770.3

MC-D12p-plag16(1-8) 122 64.9 22.0 0.09 3.1 8.87 1.15 0.00 100.1 769.7

MC-D14e-plag1(1;3-7) 123 52.8 29.7 0.49 12.7 4.22 0.21 0.13 100.2 1119.6

MC-D14e-plag2(1-4;6-8) 124 52.9 29.6 0.50 12.7 4.27 0.24 0.10 100.3 1119.6

MC-D14e-plag4(2-3;5-6) 125 53.0 29.5 0.54 12.6 4.26 0.23 0.09 100.2 1119.3

MC-D14e-plag5(1-5) 126 54.9 28.3 0.55 11.0 5.12 0.31 0.08 100.3 1111.9

MC-D14e-plag6(1-10) 127 52.7 29.7 0.44 12.7 4.19 0.22 0.11 100.1 1119.8

MC-D14e-plag7(1-9) 128 51.5 30.4 0.35 13.6 3.74 0.14 0.14 99.8 1122.8

MC-D14f1-plag1(2-5;7-15) 129 64.4 22.4 0.14 3.3 8.71 1.38 0.01 100.4 936.2 71 71

MC-D14f1-plag2(1-16) 130 53.5 28.8 0.54 11.7 4.72 0.29 0.10 99.6 1041.6

MC-D14f1-plag3(1-2;4-14;16) 131 High 52.4 30.0 0.50 13.0 4.06 0.19 0.10 100.2 1046.3

MC-D14f1-plag3(3;15) 131 Low 55.0 28.2 0.52 11.1 5.09 0.32 0.09 100.3 1038.6

MC-D14f1-plag4(1-12) 132 53.0 29.5 0.49 12.6 4.31 0.22 0.12 100.2 1044.6

MC-D14f2-plag1(1-3) 133 64.2 22.2 0.10 3.2 8.76 1.37 0.07 99.9 935.9

MC-D14f2-plag2(1-4) 134 52.0 29.9 0.54 13.1 4.05 0.21 0.08 99.9 1046.6

MC-D14f2-plag3(1-6;8) 135 High 53.3 29.5 0.52 12.4 4.37 0.26 0.11 100.4 1044.3

MC-D14f2-plag4(1;3-4;6;8-11) 136 High 53.3 29.5 0.48 12.4 4.46 0.24 0.10 100.4 1043.8

MC-D14f2-plag4(2;5;7;12-14) 136 Low 54.3 28.5 0.45 11.4 5.00 0.31 0.10 100.0 1039.6

MC-D14f2-plag5(1-5) 137 55.6 27.8 0.49 10.2 5.61 0.41 0.05 100.1 1034.5

MC-D14f2-plag6(1-4) 138 54.2 29.0 0.54 11.7 4.91 0.31 0.09 100.7 1040.7

MC-D14f2-plag7(1-2) 139 65.2 22.2 0.13 3.1 8.88 1.39 0.00 100.8 936.0

MC-D14f2-plag8(1-13) 140 56.2 27.4 0.44 9.9 5.70 0.48 0.04 100.2 1034.0

MC-D15a-plag10(1-10) 141 64.7 22.4 0.15 3.4 8.93 1.12 0.00 100.7 769.2

MC-D15a-plag13(1-6;8) 142 64.1 22.1 0.12 3.2 9.55 1.21 0.00 100.2 769.2

MC-D15a-plag14(1-4) 143 65.1 22.1 0.14 3.1 8.99 1.24 0.00 100.6 770.3

MC-D15a-plag16(1-3) 144 65.5 22.0 0.12 3.0 8.93 1.30 0.00 100.9 771.1

MC-D17b-plag1(1-6) 145 64.5 22.1 0.10 2.9 8.93 1.37 0.00 99.8 932.6

MC-D17b-plag2(2-3;5;7) 146 64.3 22.3 0.14 3.1 8.91 1.28 0.01 100.1 931.2

MC-D17b-plag3(1;3;5) 147 63.9 22.4 0.10 3.2 9.02 1.24 0.01 99.9 930.4

MC-D17g-plag1(1-2;4-7;9) 148 64.4 22.0 0.13 3.0 9.06 1.25 0.00 99.8 928.3

MC-D17g-plag2(1-10) 149 64.9 21.8 0.13 2.9 9.07 1.24 0.00 100.1 928.2

MC-D18b-plag8(1-5;7) 150 64.5 21.8 0.11 3.0 9.10 1.30 0.00 99.8 760.8

MC-D18b-plag10(1-6;8-11) 151 64.4 22.0 0.12 3.2 9.64 1.26 0.00 100.6 759.6

MC-D25a-plag1(1-5) 152 65.0 21.8 0.10 2.8 9.12 1.27 0.01 100.1 768.3

MC-D25a-plag3(1-5) 153 65.2 22.0 0.09 2.7 9.12 1.37 0.00 100.5 769.5

MC-D25a-plag8(1;3-4) 154 65.1 21.7 0.11 2.6 9.20 1.37 0.00 100.0 769.5

MC-D25c-plag3(1-3) 155 64.6 22.1 0.14 3.1 9.02 1.21 0.00 100.2 766.8

MC-D25c-plag6(1-6) 156 65.2 21.8 0.12 2.9 9.08 1.33 0.00 100.4 768.1

MC-D25c-plag20(1-2;4-6) 157 64.9 22.1 0.12 2.8 8.98 1.42 0.00 100.2 769.3

MC-D25c-plag21(1-4) 158 64.6 22.2 0.10 2.9 9.05 1.33 0.00 100.1 768.1

MC-D28a-plag1(a-b;g-h) 159 Core 64.8 22.1 0.10 2.9 9.01 1.38 0.00 100.3 802.0

MC-D28a-plag1(c-d) 159 Int 64.1 22.3 0.10 3.1 8.87 1.26 0.00 99.8 800.4

MC-D28a-plag1-(e-f) 159 Rim 64.3 22.3 0.13 3.0 9.03 1.33 0.00 100.2 801.1

MC-D28a-plag1-n 160 64.7 22.4 0.14 3.1 8.93 1.29 0.00 100.6 800.5

MC-D28a-san3-(h-j) 161 64.9 22.1 0.10 2.7 9.07 1.42 0.00 100.2 802.7

MC-D28a-san4-(a-d) 162 64.6 22.1 0.12 3.0 8.93 1.28 0.00 100.1 800.8

MC-D28a-san6-g 163 65.1 21.9 0.13 2.9 8.93 1.28 0.00 100.3 801.1

MC-D28a-san6-(i-l) 164 64.8 22.3 0.13 2.9 9.0 1.30 0.00 100.4 801.3

MC-1D28a-plag1(1-5) 165 66.4 21.3 0.11 2.7 8.9 1.20 0.00 100.6 771.9 72 72

MC-1D28aplag2(1-4) 166 66.2 20.9 0.07 2.6 8.91 1.26 0.00 99.9 772.7

MC-1D28d-plag2(2-5) 167 65.0 22.4 0.11 3.0 8.73 1.36 0.01 100.6 772.3

MC-1D28d-plag3(4) 168 64.1 22.2 0.13 3.1 8.77 1.13 0.00 99.4 772.3

MC-1D28d-plag4(1-4) 169 63.4 22.5 0.16 3.3 8.59 1.29 0.00 99.3 774.5

MC-D28e-plag1(a-c) 170 63.7 22.5 0.14 3.4 8.80 1.25 0.00 99.8 772.6

MC-D28e-plag3(c,e) 171 Core 65.0 22.1 0.14 2.8 9.10 1.35 0.00 100.5 773.2

MC-D28e-plag3(d) 171 Rim 64.4 22.4 0.09 3.2 8.80 1.32 0.00 100.2 773.3

MC-D28e-san6(h) 172 Core 64.9 22.2 0.13 3.0 8.98 1.39 0.00 100.5 773.8

MC-D28e-san6(j,k) 172 Int 64.4 22.4 0.11 3.1 8.90 1.28 0.00 100.1 772.7

MC-D28e-san6(I,l) 172 Rim 64.2 22.1 0.14 3.0 8.99 1.30 0.00 99.7 772.8

MC-D28e-plag7-(a-h) 173 64.2 22.3 0.12 3.1 8.85 1.35 0.00 100.0 773.6

MC-1D28e-plag1(1-4) 174 65.2 21.3 0.11 2.9 9.16 1.35 0.01 100.0 773.1

MC-1D28e-plag2(1-8) 175 65.1 21.5 0.08 2.9 9.08 1.36 0.00 100.0 773.3

MC-1D28e-plag3(1-10) 176 64.7 22.0 0.10 3.1 9.20 1.32 0.00 100.4 772.7

MC-D29a-plag1(2-5) 177 64.8 21.7 0.09 3.6 9.27 1.29 0.00 100.7 778.5

MC-D29a-plag4-b 178 65.0 22.3 0.10 3.1 9.03 1.26 0.00 100.7 807.2

MC-D29a-plag4-(c,d) 179 65.3 22.1 0.13 2.7 9.15 1.44 0.00 100.8 809.5

MC-D29a-san5-j 180 64.6 22.2 0.15 3.0 8.97 1.27 0.00 100.1 807.6

MC-D29a-plag6-(a,b) 181 Core 65.3 22.0 0.11 2.7 9.13 1.44 0.00 100.6 809.4

MC-D29a-plag6-(c-d;g) 181 Int 64.7 22.4 0.02 3.1 9.04 1.30 0.00 100.6 807.1

MC-D29a-plag6-e 181 Rim 64.2 22.7 0.12 3.3 8.94 1.24 0.00 100.4 806.3

MC-D30a-plag1(a-i) 182 64.6 22.0 0.12 2.8 8.91 1.40 0.00 99.8 800.6

MC-D30a-plag2(a-c) 183 64.6 22.1 0.14 3.0 8.82 1.39 0.00 100.1 799.7

MC-D30a-plag2-d 184 63.5 22.5 0.13 3.2 8.72 1.26 0.00 99.3 798.2

JLB3-plag1(1;3-5) 185 High 49.1 32.3 0.54 15.8 2.59 0.11 0.10 100.5 1210.8

JLB3-plag1(2;6) 185 Low 53.1 29.4 0.68 12.5 4.44 0.23 0.10 100.4 1198.5

JLB3-plag2(3-5;9-10) 186 High 47.9 33.0 0.53 16.6 2.22 0.08 0.1 100.4 1212.0

JLB3-plag2(1-2;7-8;11) 186 Low 49.6 31.6 0.53 15.0 3.01 0.13 0.11 100.1 1208.9

JLB3-plag3(2-6) 187 High 48.4 32.5 0.53 16.1 2.34 0.09 0.10 100.1 1211.6

JLB3-plag3(1) 187 Low 52.1 29.4 0.66 12.7 4.14 0.22 0.10 99.3 1200.7

JLB3-plag4(1-5) 188 Core 48.4 32.8 0.55 16.3 2.34 0.09 0.09 100.6 1211.7

JLB3-plag4(1-4) 188 Rim 51.5 30.4 0.72 13.5 3.80 0.19 0.11 100.3 1203.8

JLB3-plag5(2-4) 189 High 47.8 32.9 0.48 16.6 2.11 0.08 0.09 100.0 1212.3

JLB3-plag5(5) 189 Low 51.4 30.6 0.57 13.9 3.66 0.16 0.12 100.5 1204.9

JLB3-plag6(1-4) 190 48.9 32.0 0.58 15.7 2.58 0.11 0.10 100.1 1210.8

JLB3-plag7(1-4) 191 48.9 31.8 0.51 15.4 2.73 0.11 0.10 99.5 1210.1

JLB3-plag8(1-5) 192 48.2 32.8 0.44 16.2 2.27 0.09 0.10 100.1 1211.8

JLB3-plag9(1-5) 193 53.2 29.2 0.76 12.4 4.50 0.20 0.11 100.3 1197.8

JLB3-plag10(1-5) 194 49.4 32.2 0.44 15.5 2.74 0.11 0.11 100.5 1210.1

JLB10a-plag1(1) 195 47.9 32.9 0.42 16.1 2.22 0.09 0.08 99.7 949.4 73 73

JLB10a-plag2(2;4-12) 196 Core 47.6 32.8 0.49 16.1 2.18 0.08 0.09 99.3 949.4

JLB10a-plag2(13-20) 196 Rim 51.2 30.2 0.63 13.1 3.79 0.18 0.10 99.3 1174.3

JLB10b-plag1(a-f;j) 197 48.0 32.9 0.45 16.2 2.15 0.09 0.10 99.8 1213.6

JLB10b-plag2(2-12) 198 47.7 32.8 0.46 16.2 2.17 0.08 0.10 99.5 1213.5

JLB10b-plag3(1-4;6-10) 199 48.2 32.8 0.46 16.0 2.32 0.09 0.10 99.9 1213.1

JLB10b-plag4(2-4;6;9-10) 200 53.5 28.4 0.76 11.6 4.59 0.31 0.13 99.3 1197.8

JLB10b-plag5(1-2;4-8) 201 53.3 29.1 0.77 12.3 4.28 0.25 0.14 100.1 1200.7

JLB10b-plag6(4;6-7) 202 High 53.3 29.2 0.51 12.2 4.39 0.23 0.09 99.9 1199.8

JLB10b-plag6(1-3;5;8) 202 Low 54.7 28.1 0.49 10.9 4.98 0.29 0.09 99.5 1193.5

JLB10b-plag7(1-8) 203 52.5 29.4 0.54 12.2 4.33 0.22 0.09 99.3 1200.1

JLB10b-plag8(1-11) 204 52.1 29.7 0.74 12.8 4.02 0.21 0.13 99.7 1203.0

JLB10b-plag9(1-11) 205 49.1 32.3 0.52 15.7 2.56 0.11 0.12 100.3 1212.3

JLB10b-plag10(1-5;7-9;11-15) 206 48.8 32.2 0.43 15.5 2.57 0.11 0.11 99.8 1212.2

JLB10b-plag11(9;11-12) 207 High 47.6 32.9 0.47 15.5 2.57 0.09 0.10 99.3 1212.1

JLB10b-plag11(1-8) 207 Intermediate 49.0 32.2 0.49 15.4 2.59 0.11 0.11 100.0 1212.1

JLB10b-plag11(10;13) 207 Low 51.0 30.6 0.59 13.7 3.43 0.16 0.11 99.5 1207.2

JLB10b-plag12(1-8) 208 48.7 32.3 0.46 15.8 2.46 0.10 0.11 100.0 1212.6

JLB10b-plag13(1-2;4-5) 209 High 49.0 32.3 0.43 15.7 2.51 0.11 0.11 100.1 1212.5

JLB10b-plag13(3) 209 Low 50.7 31.0 0.46 14.2 3.18 0.16 0.14 99.8 1209.0

JLB10b-plag14(1-5) 210 48.7 32.3 0.54 15.8 2.50 0.10 0.11 100.0 1212.5

JLB10b-plag15(1-15) 211 48.3 32.5 0.43 15.9 2.34 0.09 0.09 99.7 1213.0

JLB11-plag1(4-7;9-14;16;18-19) 212 High 48.8 31.9 0.49 15.4 2.60 0.12 0.09 99.5 1212.9

JLB11-plag1(1-3;8;17) 212 Low 51.9 29.7 0.65 13.0 3.97 0.25 0.09 99.6 1204.6

JLB11-plag2(6) 213 High 48.9 31.7 0.46 15.4 2.70 0.11 0.13 99.3 1212.5

JLB11-plag2(1-5;7-11) 214 Low 51.4 30.2 0.64 13.5 3.62 0.21 0.12 99.8 1207.1

JLB11-plag3(1-2;4-5;7;10-11;13;19-20) 215 High 48.5 32.2 0.54 15.7 2.50 0.11 0.07 99.6 1213.3

JLB11-plag3(3;6;9;12;14-18) 215 Low 50.6 30.8 0.59 14.0 3.35 0.18 0.08 99.5 1208.8

JLB11-plag4(3;5;8-9) 216 High 48.7 32.4 0.61 15.6 2.52 0.11 0.04 100.0 1213.2

JLB11-plag4(1-2;6-7) 216 Intermediate 49.8 31.4 0.59 14.6 3.05 0.16 0.08 99.7 1210.7

JLB11-plag4(4) 216 Low 53.2 29.5 0.8 12.4 4.18 0.24 0.05 100.4 1202.3

JLB11-plag6(1-2;5-7;11-15;19-20) 217 High 47.8 32.6 0.43 16.2 2.15 0.09 0.09 99.4 1214.4

JLB11-plag6(3-4;21) 217 Intermediate 49.3 31.5 0.41 15.2 2.75 0.13 0.11 99.4 1212.3

JLB11-plag6(8-10;16-18) 217 Low 51.3 30.0 0.61 13.5 3.59 0.19 0.12 99.3 1207.1

JLB11-plag7(2-5;8-10) 218 Rim 51.1 30.6 0.61 13.8 3.36 0.22 0.09 99.8 1208.9

JLB11-plag7(11-12;14-15;17) 218 Core 48.5 32.0 0.46 15.6 2.40 0.10 0.10 99.1 1213.5

JLB11-plag7b(2-3;4-6;8-9) 219 48.2 32.2 0.45 15.9 2.21 0.09 0.11 99.2 1214.2

JLB11-plag9(1-3) 220 Rim 51.5 30.0 0.58 13.2 3.87 0.19 0.11 99.5 1205.1

JLB11-plag9(1-2) 220 Core 48.3 32.4 0.44 15.6 2.40 0.11 0.09 99.4 1213.6 74 74 Table A7: Sanidine compositions Rounded up when necessary.

Mineral Name Xtl # Rim or High or SiO2 Al2O3 FeO CaO Na2O K2O MgO BaO Total Core Low K

MLI-NI2-san1a 1 Core 73.7 13.9 2.19 0.58 2.9 5.7 0.27 0.00 99.2

MLI-PI2-san1(4-5) 2 66.2 19.3 0.14 0.48 4.5 9.7 0.01 0.00 100.3

MLI-PI2-san2(1-4) 3 65.6 19.0 0.16 0.37 4.3 10.0 0.00 0.00 99.5

MC-D10b-san1(1-3;9-12) 4 65.9 18.9 0.12 0.35 4.5 9.7 0.00 0.00 99.4

MC-D12b-san1(5) 5 High 65.9 18.7 0.02 0.00 3.2 12.2 0.00 0.00 99.9

MC-D12b-san1(1-4) 5 Low 66.6 18.8 0.08 0.35 4.5 9.8 0.01 0.00 100.2

MC-D12b-san2(1-4) 6 66.9 18.9 0.07 0.32 4.7 9.8 0.00 0.00 100.7

MC-D12b-san3(1-2;4-5) 7 66.6 18.8 0.05 0.21 4.5 10.2 0.00 0.00 100.4

MC-1D12g-san1(2-3) 8 66.4 19.1 0.07 0.26 3.7 11.0 0.00 0.00 100.5

MC-1D12gsan2(8) 9 67.2 18.8 0.05 0.19 3.4 11.4 0.00 0.00 100.9

MC-1D12gsan3(5) 10 66.4 19.0 0.04 0.21 3.6 11.5 0.00 0.00 100.7

MC-D12gsan3-c 11 66.0 19.8 0.06 0.22 3.5 11.3 0.00 0.01 101.0

MC-D12m-san1(1-5) 12 66.2 18.5 0.09 0.19 3.8 11.5 0.00 0.00 100.3

MC-D12m-san2(1-4) 13 65.7 18.3 0.07 0.18 3.9 11.3 0.00 0.00 99.3

MC-D12m-san3(4) 14 66.7 18.5 0.04 0.22 3.8 11.4 0.00 0.00 100.7

MC-D12m-san3(1-3;5-6) 15 66.2 18.7 0.10 0.23 3.6 11.2 0.00 0.00 100.0

MC-D12m-san4(2) 16 66.7 18.4 0.14 0.22 3.9 11.4 0.00 0.00 100.8

MC-D12m-san5(1-4) 17 66.5 18.3 0.11 0.21 3.8 11.4 0.00 0.00 100.3

MC-D12p-san5(1-12) 18 65.9 18.6 0.04 0.16 3.9 11.1 0.00 0.00 99.7

MC-D12p-san6(1-7) 19 65.7 18.7 0.07 0.14 3.6 11.6 0.00 0.00 99.7

MC-D12p-san7(1-3) 20 65.5 18.6 0.07 0.12 3.6 11.6 0.00 0.00 99.5

MC-D12p-san8(1-3) 21 65.9 18.8 0.09 0.13 3.9 11.3 0.00 0.00 100.1

MC-D12p-san10(1-7) 22 65.7 18.7 0.08 0.15 3.8 11.2 0.00 0.00 99.6

MC-D12p-san11a(1-2) 23 65.9 18.9 0.06 0.00 3.9 11.1 0.00 0.00 100.0

MC-D12p-san11b(2-3) 24 High 65.9 18.7 0.07 0.12 4.0 11.3 0.00 0.00 100.0

MC-D12p-san11b(1) 24 Low 66.1 18.9 0.09 0.14 4.8 9.8 0.00 0.00 99.9

MC-D12p-san13(1-5) 25 66.2 18.5 0.06 0.14 3.7 11.4 0.00 0.00 100.0

MC-D12p-san15a(1-2) 26 65.6 18.8 0.14 0.16 4.0 11.2 0.00 0.00 99.9

MC-D14f1-san1(1-8) 27 66.3 18.8 0.08 0.22 4.1 10.6 0.03 0.00 100.1

MC-D14f1-san2(1-7) 28 66.1 18.9 0.05 0.22 4.0 10.7 0.00 0.00 100.0

MC-D14f1-san3(1-3) 29 66.3 19.0 0.09 0.23 4.1 10.6 0.00 0.00 100.3

MC-D14f1-san4(1-15) 30 66.1 18.9 0.08 0.26 4.1 10.6 0.00 0.00 100.1

MC-D14f2-san1(1-4) 31 66.1 18.9 0.09 0.24 4.1 10.6 0.00 0.00 100.1

MC-D14f2-san2(1;3-8) 32 66.2 18.9 0.09 0.25 4.1 10.5 0.00 0.00 100.0

MC-D14f2-san3(1-2) 33 65.9 19.1 0.07 0.24 4.1 10.6 0.00 0.00 100.0

MC-D14f2-san4(1-6) 34 66.1 18.8 0.08 0.24 4.1 10.4 0.00 0.00 99.8

MC-D14f2-san5(1-2) 35 66.1 18.6 0.05 0.22 4.0 10.7 0.00 0.00 99.6 75 75

MC-D15a-san1(1-12) 36 66.1 18.7 0.07 0.16 3.8 11.2 0.00 0.00 100.0

MC-D15a-san2(1-04;6-8) 37 65.7 18.6 0.07 0.19 3.8 11.1 0.00 0.00 99.4

MC-D15a-san4(3-6) 38 65.5 18.5 0.06 0.18 3.8 11.2 0.00 0.00 99.2

MC-D15a-san5(1-10) 39 66.4 18.4 0.05 0.17 3.9 11.2 0.00 0.00 100.0

MC-D15a-san7(1-2;4-7) 40 66.7 18.6 0.08 0.17 3.9 11.1 0.00 0.00 100.6

MC-D15a-san11(1-5;7) 41 66.4 18.8 0.06 0.17 4.0 10.9 0.00 0.00 100.4

MC-D15a-san12(1-4) 42 66.2 18.9 0.05 0.16 3.9 11.0 0.00 0.00 100.2

MC-D15a-san15(1-6) 43 66.5 18.8 0.06 0.18 4.0 10.8 0.00 0.00 100.4

MC-D15a-san17b(1-5;7) 44 65.8 18.9 0.07 0.18 4.2 11.0 0.00 0.00 100.1

MC-D17g-san1(1-8;10;12) 45 65.8 18.9 0.05 0.2 3.9 10.7 0.00 0.00 99.6

MC-D17g-san2(4-8;10) 46 66.2 18.8 0.10 0.17 3.9 10.7 0.00 0.00 99.8

MC-D17g-san3(1-5) 47 65.9 18.8 0.06 0.18 3.9 10.7 0.00 0.00 99.5

MC-D17g-san4(1-2;5-9) 48 65.7 18.8 0.08 0.19 3.9 10.6 0.00 0.00 99.27

MC-D17g-san5(1) 49 65.6 18.7 0.06 0.21 3.9 10.7 0.00 0.00 99.1

MC-D17g-san6(1-3;5;7) 50 65.9 18.7 0.09 0.17 3.9 10.8 0.00 0.00 99.5

MC-D18b-san4(1-3;6-7;9-10;12-19) 51 66.3 19.0 0.07 0.22 4.2 10.8 0.00 0.00 100.6

MC-D18b-san5(1;5-6;8) 52 66.9 18.9 0.05 0.17 4.0 10.9 0.00 0.00 100.8

MC-D18b-san6(1-5) 53 65.7 18.9 0.07 0.17 4.1 11.0 0.00 0.00 99.9

MC-D18b-san9(1-5) 54 65.9 18.9 0.07 0.16 4.2 10.8 0.00 0.00 99.9

MC-D18b-san11(1-5) 55 66.1 19.0 0.07 0.19 4.3 10.8 0.00 0.00 100.4

MC-D25a-san2(1-4;6) 56 65.8 18.8 0.07 0.15 3.9 10.8 0.00 0.00 99.5

MC-D25a-san4(1-6) 57 66.1 18.9 0.06 0.16 3.9 11.0 0.00 0.00 100.1

MC-D25a-san6(1-5) 58 65.8 19.0 0.06 0.17 4.0 10.8 0.00 0.00 99.7

MC-D25a-san7(1-6) 59 65.8 18.9 0.08 0.14 3.9 11.0 0.00 0.00 99.7

MC-D25a-san9(1-12) 60 65.5 18.7 0.06 0.16 3.9 11.1 0.00 0.00 99.5

MC-D25a-san10(1-4) 61 66.0 18.9 0.08 0.16 4.0 11.0 0.00 0.00 100.1

MC-D25a-san11(1-9) 62 65.9 18.8 0.05 0.17 3.9 11.0 0.00 0.00 99.8

MC-D25c-san1(1) 63 65.2 18.8 0.02 0.18 4.3 10.6 0.00 0.00 99.0

MC-D25c-san2(1-8) 64 65.8 18.8 0.08 0.18 4.1 10.8 0.00 0.00 99.8

MC-D25c-san5(1-5) 65 66.2 18.5 0.07 0.15 4.1 11.0 0.00 0.00 100.0

MC-D25c-san7(1-9) 66 66.0 18.5 0.07 0.20 4.0 11.0 0.00 0.00 99.8

MC-D25c-san8(1-8) 67 65.9 18.6 0.08 0.23 4.2 10.6 0.00 0.00 99.6

MC-D25c-san9(1-5) 68 66.2 18.5 0.07 0.16 4.0 11.1 0.00 0.00 100.0

MC-D25c-san10(1-2;5-9) 69 66.0 18.3 0.05 0.17 4.2 10.8 0.00 0.00 99.5

MC-D25c-san11(1-2) 70 65.7 18.7 0.06 0.17 3.9 11.0 0.00 0.00 99.5

MC-D25c-san13(2) 71 65.1 18.5 0.07 0.16 4.1 11.0 0.00 0.00 99.0

MC-D25c-san14(1) 72 65.4 18.7 0.04 0.14 4.2 10.9 0.00 0.00 99.3

MC-D25c-san15(1-2;6-7) 73 65.5 18.6 0.06 0.13 3.9 11.2 0.00 0.00 99.4

MC-D25c-san19(2;4-6;9) 74 65.5 18.6 0.08 0.18 4.0 11.0 0.00 0.00 99.4

MC-D25c-san22(1-4) 75 66.0 19.1 0.06 0.16 4.16 10.8 0.00 0.00 100.3 76 76

MC-D25c-san22b(1;4) 76 66.7 18.7 0.06 0.18 4.3 10.8 0.00 0.00 100.7

MC-D25c-san24b(4;8) 77 66.8 19.0 0.04 0.22 4.4 10.5 0.00 0.00 100.9

MC-D25c-san11b(1-4) 78 66.34 19.0 0.07 0.18 4.3 10.7 0.00 0.00 100.6

MC-D25c-plag(san)13b(3;5-7) 79 66.7 18.9 0.09 0.16 4.2 10.8 0.00 0.00 100.8

MC-D27b-san1(2-3;5-9;11) 80 66.6 18.9 0.06 0.19 3.9 11.0 0.00 0.00 100.7

MC-D27b-san2(1-5) 81 66.7 18.9 0.04 0.18 4.0 11.0 0.00 0.00 100.8

MC-D27b-san3(1-8) 82 66.7 18.9 0.07 0.17 3.9 11.1 0.00 0.00 100.8

MC-D27b-san4(1,5,7,9,12) 83 65.8 18.8 0.07 0.19 4.0 11.0 0.00 0.00 99.9

MC-D27b-san5(4-8) 84 65.9 18.9 0.07 0.19 4.0 11.0 0.00 0.00 100.1

MC-D27b-san6(1-5;7) 85 65.7 18.9 0.08 0.18 4.0 11.1 0.01 0.00 100.0

MC-D28a-plag1(I,k,m) 86 76.1 13.3 0.94 0.55 3.8 4.6 0.00 0.00 99.3

MC-D28a-san2(a-f) 87 65.0 19.7 0.10 0.18 3.8 11.0 0.00 0.02 99.8

MC-D28a-san3(a-g) 88 65.5 19.7 0.08 0.15 3.8 11.2 0.00 0.01 100.4

MC-D28a-san4(e-n) 89 65.2 19.9 0.08 0.18 3.8 11.1 0.00 0.02 100.3

MC-D28a-san5(a-i) 90 65.4 19.8 0.07 0.18 3.9 11.0 0.00 0.02 100.3

MC-D28a-san6(a,b) 91 65.6 19.8 0.07 0.19 3.7 11.0 0.00 0.00 100.4

MC-D28a-san6(c-f) 92 65.4 19.9 0.06 0.17 3.8 11.2 0.00 0.00 100.4

MC-1D28a-san1(1-4) 93 66.8 18.0 0.05 0.14 3.9 11.1 0.00 0.00 100.0

MC-1D28a-san2(1-2;4-5) 94 67.1 17.9 0.07 0.14 3.8 10.9 0.00 0.00 100.0

MC-1D28a-san3(2-5) 95 67.6 18.2 0.09 0.15 3.9 11.0 0.00 0.00 100.9

MC-1D28a-san4(1-3) 96 67.2 17.5 0.06 0.13 3.8 10.7 0.00 0.00 99.3

MC-1D28d-san3(1-5) 97 65.9 19.0 0.08 0.16 3.7 11.4 0.00 0.00 100.3

MC-1D28d-san4(1-3) 98 65.4 19.2 0.05 0.16 3.8 11.3 0.00 0.00 99.9

MC-1D28d-san5(1-2) 99 65.7 19.3 0.06 0.23 3.8 11.1 0.00 0.00 100.1

MC-1D28e-san1(1-3) 100 66.1 18.4 0.04 0.18 4.0 11.2 0.00 0.00 99.9

MC-1D28e-san2(1-4) 101 66.3 18.2 0.07 0.18 4.0 11.1 0.00 0.00 99.9

MC-1D28e-san4(1-4) 102 66.3 18.6 0.09 0.18 4.0 11.2 0.01 0.00 100.4

MC-1D28e-san5(1-2;4) 103 66.1 19.1 0.05 0.16 4.0 11.3 0.00 0.00 100.7

MC-1D28e-san7(4;6-8) 104 66.2 19.2 0.08 0.2 4.0 11.2 0.00 0.00 100.9

MC-D28e-san2(a-b;d-g) 105 65.6 19.8 0.07 0.18 3.8 11.2 0.00 0.02 100.6

MC-D28e-plag3-(a,b) 106 65.8 19.8 0.06 0.2 3.9 11.0 0.00 0.01 100.9

MC-D28e-san4(a;e-g) 107 65.7 19.8 0.08 0.19 3.8 11.2 0.00 0.01 100.7

MC-D28e-san5(a-j) 108 65.3 19.8 0.07 0.18 3.8 11.1 0.00 0.01 100.3

MC-D28e-san6(a-c;e-g) 109 65.4 19.9 0.10 0.19 3.8 11.2 0.00 0.03 100.7

MC-D28e-plag7-(I,j) 110 64.9 19.9 0.08 0.3 4.0 11.0 0.00 0.09 100.3

MC-D28e-san8(b;d-f) 111 65.4 19.9 0.10 0.19 3.8 11.1 0.00 0.03 100.6

MC-D28e-san9(a-i) 112 65.2 19.8 0.07 0.21 3.9 11.04 0.00 0.05 100.3

MC-D29a-san1(2) 113 66.8 18.9 0.03 0.14 3.9 11.2 0.00 0.00 100.9

MC-D29a-san2(1-3) 114 66.5 18.6 0.04 0.19 4.0 11.2 0.00 0.00 100.6

MC-D29a-san3(2-3) 115 66.9 18.6 0.08 0.18 3.9 11.3 0.00 0.00 100.9 77 77

MC-D29a-san4(1;5-10) 116 66.5 18.7 0.09 0.17 4.0 11.3 0.00 0.00 100.8

MC-D29a-san5(1-2) 117 66.1 18.7 0.06 0.15 3.9 11.5 0.00 0.00 100.3

MC-D29a-san1(c,d) 118 65.4 20.0 0.08 0.18 3.8 11.2 0.00 0.00 100.7

MC-D29a-san2(a-c) 119 65.7 19.8 0.08 0.18 3.8 11.1 0.00 0.00 100.7

MC-D29a-san2-d 120 65.3 19.9 0.11 0.21 4.0 10.9 0.00 0.02 100.5

MC-D29a-san3(a;e) 121 65.5 19.9 0.10 0.17 3.8 11.3 0.00 0.00 100.8

MC-D29a-san5(f-h) 122 65.6 20.0 0.09 0.18 3.8 11.1 0.00 0.05 100.7

MC-D30a-san3(a,b) 123 65.5 19.8 0.07 0.2 3.8 11.0 0.00 0.03 100.4

MC-D30a-san3-c 124 65.3 19.6 0.07 0.2 3.8 10.8 0.00 0.02 99.8

JLB11-san1(1-3;5;12;15;18-19;21) 125 65.6 18.7 0.13 0.11 4.5 10.2 0.01 0.00 99.2

JLb11-plag3(8) 126 65.2 17.9 1.71 0.34 4.8 9.5 0.01 0.00 99.4

78 78

Table A8: Olivine crystal compositions Rounded up when needed. o Mineral Name Xtl # Rim or High or SiO2 TiO2 Al2O3 FeO MnO MgO CaO Cr2O3 NiO2 Total T ( C) Core Low Mg MC-1D12b-olv1(3-4) 1 High 36.5 0.00 0.00 27.4 0.40 34.5 0.17 0.00 0.01 99.4 1080.7

MC-1D12b-olv1(5-6) 1 Low 36.2 0.00 0.00 28.6 0.45 33.9 0.19 0.00 0.03 99.5 1080.7

MC-D12b-olv2(4) 2 Low 35.8 0.00 0.00 30.8 0.48 32.0 0.21 0.00 0.02 99.4 1080.7

MC-D12b-olv2(1-3) 2 High 36.3 0.00 0.00 28.6 0.45 33.9 0.19 0.00 0.04 99.5 1080.7

MC-D12b-olv3(1-5) 3 37.8 0.00 0.00 25.5 0.35 36.3 0.21 0.00 0.05 100.2 1080.7

MC-D12b-olv-4 4 36.8 0.00 0.00 26.3 0.39 35.6 0.19 0.00 0.03 99.4 1080.7

MC-D12b-olv5 5 Low 36.4 0.00 0.00 28.2 0.42 34.1 0.20 0.00 0.02 99.2 1080.7

MC-D12b-olv5 5 High 37.0 0.00 0.00 25.9 0.38 36.1 0.21 0.00 0.04 99.7 1080.7

MC-D12b(b)-olv1(1;4-5) 6 Low 36.8 0.00 0.00 27.7 0.41 35.0 0.18 0.00 0.05 100.2 1080.7

MC-D12b(b)-olv1(2-3) 6 High 37.2 0.00 0.00 25.4 0.38 36.4 0.20 0.00 0.04 99.7 1080.7

MC-D12b(b)-olv2(2) 7 Low 36.8 0.00 0.00 29.9 0.49 32.8 0.16 0.00 0.04 100.2 1080.7

MC-D12b(b)-olv2(1,3) 7 Int. 37.1 0.00 0.00 28.0 0.44 34.3 0.18 0.00 0.02 100.0 1080.7

MC-D12b(b)-olv2(4-5) 7 High 37.7 0.00 0.00 25.4 0.36 36.7 0.18 0.00 0.09 100.4 1080.7

MC-D12b(b)-olv3(2) 8 35.9 0.00 0.00 29.7 0.43 33.3 0.17 0.00 0.04 99.6 1080.7

MC-D12b(b)-olv4(1) 9 36.6 0.00 0.00 25.4 0.38 36.5 0.19 0.00 0.03 99.1 1080.7

MC-D12c-bio1(d) 10 Rim 36.9 0.05 0.02 28.6 0.50 33.4 0.15 0.00 0.00 99.5 1090.9

MC-D12c-bio1(e) 10 Core 36.2 0.03 0.05 30.9 0.61 31.2 0.15 0.00 0.00 99.1 1090.9

MC-D12c-bio1(f) 11 36.6 0.06 0.06 29.3 0.52 32.5 0.14 0.00 0.00 99.2 1090.9

MC-D12c-plag2(k-m) 12 36.7 0.03 0.03 28.5 0.49 33.2 0.14 0.00 0.00 99.2 1090.9

MC-D12c-plag2(o) 13 36.5 0.08 0.12 29.0 0.46 33.4 0.13 0.00 0.00 99.6 1090.9

MC-D12c-plag2(p) 14 36.0 0.03 0.02 32.3 0.54 30.1 0.13 0.00 0.00 99.0 1090.9

MC-D12c-plag3(l,m) 15 36.4 0.03 0.05 29.2 0.53 32.7 0.12 0.00 0.00 99.0 1090.9

MC-D12c-plag3(n,o) 16 36.8 0.05 0.03 28.6 0.48 33.5 0.14 0.00 0.00 99.6 1090.9

MC-D12c-plag4(f) 17 36.6 0.04 0.02 29.6 0.51 32.7 0.14 0.00 0.00 99.6 1090.9

MC-D12c-plag6(l) 18 37.4 0.05 0.01 29.1 0.51 33.4 0.13 0.00 0.00 100.5 1090.9

MC-D12c-plag6(j,k) 19 36.6 0.06 0.03 30.3 0.61 31.9 0.16 0.00 0.00 99.6 1090.9

MC-D12c-plag6(m) 20 36.0 0.07 0.03 32.9 0.71 30.2 0.12 0.00 0.00 100.0 1090.9

MC-D12c-olv7(a-c) 21 36.9 0.03 0.02 28.5 0.46 33.7 0.15 0.00 0.00 99.8 1090.9

MC-D12c-olv7(e) 22 36.6 0.07 0.03 28.9 0.51 33.7 0.16 0.00 0.00 99.9 1090.9

MC-D12c-olv7(g,h) 23 37.0 0.03 0.03 28.8 0.49 33.5 0.14 0.00 0.00 99.9 1090.9

MC-D12c-olv7(j,k) 24 36.9 0.12 0.04 28.4 0.46 33.8 0.14 0.00 0.00 99.9 1090.9

MC-D12cplag9(g-i) 25 36.9 0.09 0.02 28.8 0.48 33.2 0.15 0.00 0.00 99.6 1090.9

MC-D12c-plag9(j) 26 Core 36.5 0.02 0.02 30.0 0.53 32.5 0.13 0.00 0.00 99.7 1090.9

MC-D12c-plag9(k,m) 26 Rim 36.6 0.05 0.05 29.0 0.47 33.1 0.12 0.00 0.00 99.4 1090.9

MC-3D12c-olv3(4-5) 27 36.3 0.04 0.07 30.1 0.50 33.7 0.15 0.01 0.03 100.8 1090.9

MC-3D12c-olv4(4) 28 37.7 0.04 0.11 28.1 0.41 34.0 0.16 0.00 0.04 100.5 1090.9

MC-3D12c-olv6(3) 29 36.4 0.06 0.01 30.0 0.55 33.3 0.16 0.06 0.02 100.6 1090.9

MC-D12h-1plag_pyx2(I,j) 30 Core 37.0 0.03 0.04 28.9 0.46 33.6 0.14 0.00 0.00 100.1 1043.8

MC-D12h-1plag_pyx2(k) 30 Rim 36.1 0.11 0.01 33.1 0.67 29.9 0.08 0.00 0.00 100.0 1043.8

MC-D12h-1plag_pyx2(l,m) 31 Core 38.3 0.01 0.05 22.5 0.37 38.7 0.17 0.00 0.00 100.2 1043.8

MC-D12h-1plag_pyx2(n) 31 Rim 37.8 0.01 0.02 23.7 0.33 37.5 0.17 0.00 0.00 99.5 1043.8

MC-D12h-1plag3(g,h) 32 38.1 0.03 0.04 23.8 0.34 37.8 0.17 0.00 0.00 100.3 1043.8

MC-D12h-1plag3(I,j) 33 38.0 0.03 0.03 23.6 0.39 37.6 0.17 0.00 0.00 99.8 1043.8

MC-D12h-1plag3(k) 34 38.0 0.03 0.03 23.6 0.37 38.0 0.20 0.00 0.00 100.2 1043.8

MC-D12h-1-olv1(1-4) 35 38.3 0.05 0.05 22.9 0.37 37.3 0.29 0.02 0.04 99.4 1043.8

MC-D12h-1-olv2(1-4) 36 38.5 0.01 0.04 23.4 0.40 37.0 0.23 0.03 0.03 99.6 1043.8

MC-D12h-1-olv3(1-3;6) 37 38.1 0.01 0.03 22.8 0.36 37.7 0.24 0.00 0.04 99.2 1043.8

MC-D12h-2-olv2(a-d) 38 37.0 0.03 0.03 26.4 0.42 35.0 0.14 0.00 0.00 99.0 1043.8

MC-D12h-2-olv3(e,f) 39 37.1 0.02 0.03 26.9 0.44 34.4 0.17 0.00 0.00 99.1 1043.8 79 79

MC-D12h-2-olv3(j) 40 37.6 0.05 0.04 23.8 0.33 37.1 0.16 0.00 0.00 99.1 1043.8

MC-2D12h-2-olv1(1;3-4) 41 37.3 0.03 0.04 24.0 0.39 38.0 0.18 0.02 0.05 100.0 1043.8

MC-2D12h-2-olv2(1-3) 42 37.0 0.03 0.07 25.1 0.39 37.0 0.17 0.02 0.03 99.8 1043.8

MC-2D12h-2-olv4(1-5;7-8) 43 37.3 0.03 0.09 24.3 0.37 37.8 0.18 0.01 0.05 100.0 1043.8

MC-D14e-olv1(1-6;8-9) 44 39.5 0.00 0.00 17.1 0.22 42.9 0.23 0.00 0.08 99.9 1092.5

MC-D14e-olv2(1;3-5) 45 39.7 0.00 0.00 17.1 0.23 42.9 0.24 0.00 0.07 100.2 1092.5

MC-D14e-olv3(1-8) 46 39.6 0.00 0.00 17.3 0.22 42.9 0.24 0.00 0.06 100.3 1092.5

MC-D14e-olv4(1-7) 47 39.7 0.00 0.00 17.2 0.23 43.0 0.26 0.00 0.07 100.4 1092.5

MC-D14e-olv5(1-6) 48 39.2 0.00 0.00 19.3 0.27 40.8 0.22 0.00 0.10 99.9 1092.5

MC-D14e-olv6(1-5) 49 39.1 0.00 0.00 20.0 0.28 40.6 0.25 0.00 0.09 100.2 1092.5

MC-D14e-olv7(1;3;5-7;9) 50 High 38.9 0.00 0.00 20.9 0.31 39.6 0.23 0.00 0.09 100.1 1092.5

MC-D14e-olv7(2,8) 50 Low 38.5 0.00 0.00 23.2 0.37 38.0 0.22 0.00 0.04 100.2 1092.5

MC-D14e-olv8(4,6) 51 High 39.4 0.00 0.00 17.5 0.23 42.7 0.22 0.00 0.14 100.2 1092.5

MC-D14e-olv8(1-3;5) 51 Low 39.0 0.00 0.00 19.5 0.27 40.9 0.21 0.00 0.11 100.0 1092.5

MC-D14e-olv9(1;5-7) 52 Low 39.3 0.00 0.00 18.0 0.25 42.3 0.21 0.00 0.15 100.2 1092.5

MC-D14e-olv9(2-4) 52 High 39.7 0.00 0.00 16.0 0.20 43.6 0.23 0.00 0.18 99.9 1092.5

MC-D14f1-olv1(7,12,16- 53 High 38.6 0.00 0.00 22.0 0.31 38.6 0.23 0.00 0.05 99.8 1029.3 19;25-26) MC-D14f1-olv1(1-5;8- 53 Low 38.2 0.00 0.00 23.9 0.35 37.1 0.23 0.00 0.05 99.9 1029.3 11;13-15;20-24) MC-D14f1-olv2(1-6) 54 38.5 0.00 0.00 22.1 0.31 38.7 0.24 0.00 0.08 100.0 1029.3

MC-D14f1-olv3(1-4) 55 38.6 0.00 0.00 21.9 0.30 38.8 0.25 0.00 0.09 99.8 1029.3

MC-D14f2-olv1 56 38.5 0.00 0.00 22.5 0.32 38.5 0.24 0.00 0.04 100.1 1029.3

MC-D14f2-olv2 57 38.2 0.00 0.00 23.3 0.33 38.0 0.26 0.00 0.05 100.1 1029.3

MC-D14f2-olv3 58 39.0 0.00 0.00 20.7 0.29 40.0 0.22 0.00 0.08 100.3 1029.3

MC-D14f2-olv4(2,4) 59 Low 38.6 0.00 0.00 30.9 0.28 39.7 0.24 0.00 0.10 99.9 1029.3

MC-D14f2-olv4(1) 59 Int 39.1 0.00 0.00 19.1 0.25 41.4 0.23 0.00 0.08 100.2 1029.3

MC-D14f2-olv4(3) 59 High 39.2 0.00 0.00 17.7 0.19 42.3 0.24 0.00 0.09 99.7 1029.3

MC-D14f2-olv5(1-6) 60 39.0 0.00 0.00 18.9 0.26 41.4 0.22 0.00 0.12 100.0 1029.3

MC-D14f2-olv6(1-8) 61 39.0 0.00 0.00 18.5 0.27 41.6 0.22 0.00 0.08 99.6 1029.3

MC-D27b-olv1(2-13) 62 30.6 0.00 0.00 63.2 3.36 2.8 0.15 0.00 0.00 100.1 994.5

JLB3-olv1(1-5) 63 39.0 0.00 0.00 19.7 0.25 41.2 0.17 0.00 0.07 100.5 1103.3

JLB10b-olv1(14;16) 64 High 39.1 0.00 0.00 19.1 0.33 40.5 0.21 0.00 0.01 99.2 1108.0

JLB10b-olv1(2-3;5-8) 64 Low 39.1 0.00 0.00 20.8 0.30 38.8 0.21 0.00 0.03 99.3 1108.0

80 80

Table A9: Petrology analysis Analysis of thin sections from the Mono Craters, Mono Lake Islands (NI=Negit Island; PI=Paoha Island), and June Lake Basalts. Abbreviations: Sam=Sample; Xtl=Crystals; Bt=Biotite; Cpx=Clinopyroxene; Hbl=Hornblende; Ilm=Ilmenite; Mag=Magnetite; Ol=Olivine; Opx=Orthopyroxene; Pl=Plagioclase; Sa=Sanidine; Gl=Glassy Matrix; Mic=Microcrystalline Matrix; TD=Trachydacite; R=Rhyolite; TA=Trachyandesite; D=Dacite; A=Andesite; TBT=Tholeiitic Basaltic Trachyandesite; TBA=Tholeiitic Basaltic Andesite. Dom Sa SiO Roc % % % % % % % % % % % Gl % Su e m# 2 k xtl Bt Cpx Hbl Ilm Mag Ol Opx Pl Sa Mic m Typ e MLI- 2 64. TD 7.6 0 0.4 0.1 0 0 0 0 6.5 0.6 62.4 30 100 NI 7 MLI- 1 64. TD 1.7 0 0 0.1 0 0 0 0 1.6 0 97.3 1 100 PI 1 MLI- 2 71. R 4.0 0. 0.1 0 0 0 0 0 2.5 0.8 76.0 20 100 PI 1 6 MLI- 5 69. R 1.0 0. 0 0.2 0 0 0 0 0.4 0 79.0 20 100 PI 6 4 MLI- 7 63. TD 0.2 0 0 0 0 0 0 0.1 0.1 0 98.8 1 100 PI 5 MC-3 F 76. R 0.0 0 0 0 0 0 0 0 0 0 100. 0 100 5 0 MC-3 G 76. R 0.2 0. 0 0.06 0.05 0.05 0 0 0 0 99.8 0 100 8 1 MC-5 A 76. R 0.2 0. 0 0.05 0.05 0.05 0 0 0 0 99.8 0 100 2 1 MC- B 60. TA 12. 0 0.05 0 0 0.1 0.1 0 12 0.6 57.7 30 100 10 5 4 MC- C 75. R 0.3 0 0.2 0 0 0.1 0 0 0 0 99.7 0 100 10 3 MC- F 67. D 14. 0 1 0 0.1 0.1 0 0.1 13 0 65.7 20 100 10 1 3 MC- C 66. D 4.6 0 0.6 0 0 0 0 0 4 0 90.4 5 100 11 2 MC- D 66. D 10. 0 0.2 0 0.05 0.05 0 0 10 0 86.7 3 100 11 7 3 MC- F 76. R 3.4 0. 0 0.1 0 0.1 0 0 3 0.1 96.6 0 100 11 7 1 MC- B 57. TA 18. 0 2.6 0 0.05 0.05 0.3 0.1 14 1.4 61.5 20 100 12 4 5 MC- B 57. TA 9.0 0 0.6 0 0 0 0.2 0.2 6 2 71.0 20 100 12 B 4 MC- C 57. A 6.1 0 1.4 0.4 0 0 0.7 0 3.6 0 73.9 20 100 12 5 MC- G 76. R 18. 0 4 0.3 0 0 0 0 7 7 81.7 0 100 12 3 3 MC- H- 66. D 8.4 0 0.7 0 0 0 0.2 0 7.5 0 51.6 40 100 12 1 7 MC- H- 66. D 11. 0 0.6 0 0 0 0.8 0 6.6 3 49.0 40 100 12 2 7 0 MC- M 74 R 17. 0 0.3 1.4 0.05 0.05 0 0 13 3 80.2 2 100 12 8 81 81 MC- P 77. R 5.7 0. 0 0 0 0.05 0 0 2.5 3 93.3 1 100 12 3 2 MC- A 76. R 0.0 0 0 0 0.01 0.01 0 0 0 0 99.9 0 100 13 8 2 8 MC- B 76. R 0.3 0 0 0.05 0.01 0.01 0 0 0.2 0 99.7 0 100 13 6 MC- A 76. R 0.2 0 0 0.1 0 0 0 0 0 0.0 99.9 0 100 14 0 5 MC- E 60 A 3.9 0 0 0 0 0.1 0.6 0 3 0.1 66.2 30 100 14 5 MC- F- 74. R 2.6 0 0 0.05 0 0 0.0 0.14 1.6 0.8 96.4 1 100 14 1 2 5 MC- F- 68. D 4.0 0 0.07 0.03 0.03 0 0.4 0 2 1.5 93.0 3 100 14 2 5 MC- A 76. R 4.7 0 0.3 0.1 0 0.05 0 0 0.9 3.3 95.4 0 100 15 8 MC- B 74. R 7.0 0 0.2 1 0 0 0 0 5.8 0 92.0 1 100 17 8 MC- G 76. R 4.2 0 0 0.4 0.1 0.05 0 0.8 0.6 2.2 95.9 0 100 17 8 MC- H 77 R 0.0 0 0 0 0 0 0 0 0 0 100. 0 100 17 0 MC- B 78. R 3.9 0 0.25 0.15 0 0.02 0 0 1.5 2 96.1 0 100 18 4 MC- A 77. R 0.2 0 0 0 0 0.1 0 0 0.1 0 99.8 0 100 20 3 MC- A 76. R 6.9 0 0 0.3 0 0 0 0.05 2.5 4.0 92.1 1 100 25 9 5 MC- C 77. R 8.3 0 0 0 0 0.25 0 0 3.8 4.2 71.8 20 100 25 1 5 MC- B 76. R 10. 0 0.6 0.4 0 0 0.6 0 1.8 7.2 89.4 0 100 27 5 6 5 MC- A 76. R 3.6 0 0 0 0 0 0 0.1 2 1.5 96.4 0 100 28 5 MC- D 76. R 10. 0 4 0 0 0 0 0 3 3 90.0 0 100 28 7 0 MC- E 76. R 3.0 0 0 0 0 0 0 0 2.5 0.5 97.0 0 100 28 3 MC- A 76. R 3.3 0 0.2 0 0.05 0.05 0 0 0.8 2.2 96.7 0 100 29 3 5 MC- A 76. R 3.2 0. 0.1 0 0.01 0.01 0 0 2.1 0.7 94.8 2 100 30 5 3 MC- B 76. R 4.2 1 0.05 0 0.05 0.05 0 0 3 0 95.9 0 100 30 3 MC- C 76. R 3.0 0 0.35 0 0.05 0.05 0 0 1.8 0.7 97.0 0 100 30 9 5 JLB 2 54. TB 8.8 0 0.4 0 0.1 0.1 0 0 8.0 0.2 90.2 1 100 3 T JLB 3 54. TB 10. 0 1.1 0.1 0 0 0.2 0 9.3 0 88.3 1 100 1 A 7 JLB 10 54. TB 22. 0 1.8 0 0 0 0 1.4 19 0 72.8 5 100 A 3 A 2 JLB 10 53. TB 13. 0 0.3 0 0 0 0 1.1 11. 0 84.9 2 100 B 7 A 1 7 JLB 11 54. TB 19. 0 1 0 0 0 0 1.2 13. 3.6 70.3 10 100 3 A 7 9