Identification and Functional Analysis of Micro-Rnas Encoded by Kaposi’S Sarcoma-Associated Herpesvirus

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Functional Analysis of Micro-Rnas Encoded by Kaposi’S Sarcoma-Associated Herpesvirus IDENTIFICATION AND FUNCTIONAL ANALYSIS OF MICRO-RNAS ENCODED BY KAPOSI’S SARCOMA-ASSOCIATED HERPESVIRUS By MARK ATIENZA SAMOLS Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Rolf Renne Department of Molecular Biology and Microbiology CASE WESTERN RESERVE UNIVERSITY August, 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. This work is dedicated to my parents, David and Sui Bi Samols. iii Table of Contents Title Page…………………………………………………………....………...…...….…...i Signature Sheet....................................................................................................................ii Dedication Page..................................................................................................................iii Table of Contents................................................................................................................iv List of Tables.....................................................................................................................vii List of Figures ..................................................................................................................viii Preface .................................................................................................................................x Acknowledgements............................................................................................................xi List of Abbreviations........................................................................................................xii Abstract..............................................................................................................................1 Chapter 1............................................................................................................................3 Introduction Kaposi’s sarcoma-associated herpesvirus as an agent for disease...........................3 KSHV latency and latency proteins.........................................................................8 MicroRNAs are a novel class of cellular regulators..............................................10 MicroRNAs exist in many organisms and have multiple functions......................12 Cellular differentiation and development can be controlled by miRNAs.............16 MicroRNA biogenesis...........................................................................................17 MicroRNA target determination and recognition .................................................25 MicroRNAs and viruses.........................................................................................28 Methods to identify and molecularly clone viral miRNAs....................................33 Identification of viral miRNA targets and functions.............................................37 iv Does KSHV encode miRNAs? What could their role be for the virus?................39 Chapter 2..........................................................................................................................40 Cloning and Identification of a MicroRNA Cluster Within the Latency-Associated Region of Kaposi’s Sarcoma-Associated Herpesvirus Abstract..................................................................................................................40 Cloning of small RNAs from KSHV-infected cells..............................................41 Identification of 11 KSHV encoded candidate miRNAs.......................................42 KSHV encoded candidate miRNAs fold into hairpin structures...........................49 Addendum..............................................................................................................53 Chapter 3..........................................................................................................................57 Identification of Cellular Genes Targeted by KSHV-Encoded MicroRNAs Abstract..................................................................................................................57 Author Summary....................................................................................................58 Introduction............................................................................................................59 Results....................................................................................................................63 Ectopic expression of KSHV miRNAs in 293 cells..............................................63 Expression profiling revealed 81 gene expression changes in miRNA expressing cells..........................................................................................67 qRT-PCR and bio-statistical analyses validate potential targets...........................73 Protein levels of THBS1 are greatly reduced in the presence of KSHV miRNAs.....................................................................................................88 KSHV miRNAs repress THBS1 in BJAB cells....................................................88 THBS1 is targeted by multiple KSHV miRNAs...................................................88 v Decreased THBS1 protein levels translate into reduced TGF-β activity..............92 Discussion..............................................................................................................95 Materials and Methods.........................................................................................101 Chapter 4........................................................................................................................108 Conclusions and Future Directions KSHV miRNAs may function to aid pathogenesis..............................................108 What do viral miRNAs regulate?.........................................................................110 Expression of viral miRNAs................................................................................112 Viral miRNAs and evolutionary conservation.....................................................119 Viral miRNAs and cancer....................................................................................124 Future directions for KSHV miRNA study.........................................................129 What’s next for viral microRNAs?......................................................................139 Appendix.........................................................................................................................141 Protocols microRNA cloning...............................................................................................141 Northern Blot.......................................................................................................148 2-D PAGE............................................................................................................152 Silver Stain...........................................................................................................156 microRNA target cloning.....................................................................................157 Luciferase assays.................................................................................................161 Bibliography...................................................................................................................167 vi List of Tables Table 2-1............................................................................................................................44 Distribution of cloned small RNA molecules Table 2-2............................................................................................................................56 Conversion table for KSHV miRNA nomenclature Table 3-1............................................................................................................................71 List of changed genes with 100% cross validation Table 3-2............................................................................................................................75 Fold changes for selected genes Table 3-3............................................................................................................................77 Seed matching data using an ad hoc scanning algorithm Table 3-4..........................................................................................................................104 List of primers for the cloning on miRNA expression and sensor constructs Table 4-1..........................................................................................................................123 Summary of patient and cell line characteristics and subtyping vii List of Figures Figure 1-1.............................................................................................................................7 Schematic representation of the genome structure of KSHV Figure 1-2...........................................................................................................................20
Recommended publications
  • Transcriptional Regulation of RKIP in Prostate Cancer Progression
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Sciences Transcriptional Regulation of RKIP in Prostate Cancer Progression Submitted by: Sandra Marie Beach In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences Examination Committee Major Advisor: Kam Yeung, Ph.D. Academic William Maltese, Ph.D. Advisory Committee: Sonia Najjar, Ph.D. Han-Fei Ding, M.D., Ph.D. Manohar Ratnam, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: May 16, 2007 Transcriptional Regulation of RKIP in Prostate Cancer Progression Sandra Beach University of Toledo ACKNOWLDEGMENTS I thank my major advisor, Dr. Kam Yeung, for the opportunity to pursue my degree in his laboratory. I am also indebted to my advisory committee members past and present, Drs. Sonia Najjar, Han-Fei Ding, Manohar Ratnam, James Trempe, and Douglas Pittman for generously and judiciously guiding my studies and sharing reagents and equipment. I owe extended thanks to Dr. William Maltese as a committee member and chairman of my department for supporting my degree progress. The entire Department of Biochemistry and Cancer Biology has been most kind and helpful to me. Drs. Roy Collaco and Hong-Juan Cui have shared their excellent technical and practical advice with me throughout my studies. I thank members of the Yeung laboratory, Dr. Sungdae Park, Hui Hui Tang, Miranda Yeung for their support and collegiality. The data mining studies herein would not have been possible without the helpful advice of Dr. Robert Trumbly. I am also grateful for the exceptional assistance and shared microarray data of Dr.
    [Show full text]
  • Supporting Information
    Supporting Information Mulders et al. 10.1073/pnas.0905780106 SI Materials and Methods in Opti-MEM (Invitrogen) to myoblasts, in both cases at a final Animals. Hemizygous DM500 mice, derived from the DM300– oligo concentration of 200 nM. Fresh medium was supplemented 328 line (1), express a transgenic human DM1 locus, which bears after 4 hours. After 24 h, medium was changed. RNA was a repeat segment that has expanded to Ϸ500 CTG triplets, isolated 48 h after transfection. because of intergenerational triplet-repeat instability. For the isolation of immortal DM500 myoblasts, DM500 mice were RNA Isolation. Typically, RNA from cultured cells was isolated crossed with H-2Kb-tsA58 transgenic mice (2). Homozygous using the Aurum Total RNA mini kit (guanidine-HCl/ HSALR20b mice express a (CUG)250 segment in the context of mercaptoethanol-based lysis, silica membrane binding; Bio- a human skeletal actin transcript (3). All animal experiments Rad), according to the manufacturer’s protocol. RNA from were approved by the Institutional Animal Care and Use Com- muscle tissue was isolated using TRIzol reagent (Invitrogen). mittees of the Radboud University Nijmegen and the University Alternative methods to isolate RNA from cultured cells in- of Rochester Medical Center. volved: (i) use of the TRIzol reagent, according to the manu- facturer’s protocol; (ii) an oligo(dT) affinity column (Nucleo- Cell Culture. An immortal mouse myoblast cell culture expressing Trap mRNA mini kit; Macherey-Nagel) for the isolation of hDMPK (CUG)500 transcripts was derived from GPS tissue poly(A) RNA; or (iii) a TRIzol procedure preceded by a isolated from DM500 mice additionally expressing 1 copy of the proteinase K digestion of the whole cell lysate (7): in short, cells H-2Kb-tsA58 allele (4).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Extensive Genomic and Transcriptional Diversity Identified Through Massively Parallel DNA and RNA Sequencing of Eighteen Korean Individuals
    ARTICLES Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals Young Seok Ju1,2,9, Jong-Il Kim1,3–5,9, Sheehyun Kim1,2,9, Dongwan Hong1,8, Hansoo Park1,6, Jong-Yeon Shin1,5, Seungbok Lee1,4, Won-Chul Lee1,4, Sujung Kim5, Saet-Byeol Yu5, Sung-Soo Park5, Seung-Hyun Seo5, Ji-Young Yun5, Hyun-Jin Kim1,4, Dong-Sung Lee1,4, Maryam Yavartanoo1,4, Hyunseok Peter Kang1, Omer Gokcumen6, Diddahally R Govindaraju6, Jung Hee Jung2, Hyonyong Chong2,7, Kap-Seok Yang2, Hyungtae Kim2, Charles Lee6 & Jeong-Sun Seo1–5,7 Massively parallel sequencing technologies have identified a broad spectrum of human genome diversity. Here we deep sequenced and correlated 18 genomes and 17 transcriptomes of unrelated Korean individuals. This has allowed us to construct a genome- wide map of common and rare variants and also identify variants formed during DNA-RNA transcription. We identified 9.56 million genomic variants, 23.2% of which appear to be previously unidentified. From transcriptome sequencing, we discovered 4,414 transcripts not previously annotated. Finally, we revealed 1,809 sites of transcriptional base modification, where the transcriptional landscape is different from the corresponding genomic sequences, and 580 sites of allele-specific expression. Our findings suggest that a considerable number of unexplored genomic variants still remain to be identified in the human genome, and that the integrated analysis of genome and transcriptome sequencing is powerful for understanding the diversity and functional aspects of human genomic variants. Massively parallel sequencing technologies have revolutionized traits has actually been explained18, presumably because, in part, of our understanding of human genome architecture.
    [Show full text]
  • Meta-Analyses of Expression Profiling Data in the Postmortem
    META-ANALYSES OF EXPRESSION PROFILING DATA IN THE POSTMORTEM HUMAN BRAIN by Meeta Mistry B.Sc., McMaster University, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Bioinformatics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2012 © Meeta Mistry, 2012 Abstract Schizophrenia is a severe psychiatric illness for which the precise etiology remains unknown. Studies using postmortem human brain have become increasingly important in schizophrenia research, providing an opportunity to directly investigate the diseased brain tissue. Gene expression profiling technologies have been used by a number of groups to explore the postmortem human brain and seek genes which show changes in expression correlated with schizophrenia. While this has been a valuable means of generating hypotheses, there is a general lack of consensus in the findings across studies. Expression profiling of postmortem human brain tissue is difficult due to the effect of various factors that can confound the data. The first aim of this thesis was to use control postmortem human cortex for identification of expression changes associated with several factors, specifically: age, sex, brain pH and postmortem interval. I conducted a meta-analysis across the control arm of eleven microarray datasets (representing over 400 subjects), and identified a signature of genes associated with each factor. These genes provide critical information towards the identification of problematic genes when investigating postmortem human brain in schizophrenia and other neuropsychiatric illnesses. The second aim of this thesis was to evaluate gene expression patterns in the prefrontal cortex associated with schizophrenia by exploring two methods of analysis: differential expression and coexpression.
    [Show full text]
  • Biological Models of Colorectal Cancer Metastasis and Tumor Suppression
    BIOLOGICAL MODELS OF COLORECTAL CANCER METASTASIS AND TUMOR SUPPRESSION PROVIDE MECHANISTIC INSIGHTS TO GUIDE PERSONALIZED CARE OF THE COLORECTAL CANCER PATIENT By Jesse Joshua Smith Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University In partial fulfillment of the requirements For the degree of DOCTOR OF PHILOSOPHY In Cell and Developmental Biology May, 2010 Nashville, Tennessee Approved: Professor R. Daniel Beauchamp Professor Robert J. Coffey Professor Mark deCaestecker Professor Ethan Lee Professor Steven K. Hanks Copyright 2010 by Jesse Joshua Smith All Rights Reserved To my grandparents, Gladys and A.L. Lyth and Juanda Ruth and J.E. Smith, fully supportive and never in doubt. To my amazing and enduring parents, Rebecca Lyth and Jesse E. Smith, Jr., always there for me. .my sure foundation. To Jeannine, Bill and Reagan for encouragement, patience, love, trust and a solid backing. To Granny George and Shawn for loving support and care. And To my beautiful wife, Kelly, My heart, soul and great love, Infinitely supportive, patient and graceful. ii ACKNOWLEDGEMENTS This work would not have been possible without the financial support of the Vanderbilt Medical Scientist Training Program through the Clinical and Translational Science Award (Clinical Investigator Track), the Society of University Surgeons-Ethicon Scholarship Fund and the Surgical Oncology T32 grant and the Vanderbilt Medical Center Section of Surgical Sciences and the Department of Surgical Oncology. I am especially indebted to Drs. R. Daniel Beauchamp, Chairman of the Section of Surgical Sciences, Dr. James R. Goldenring, Vice Chairman of Research of the Department of Surgery, Dr. Naji N.
    [Show full text]
  • Karla Alejandra Vizcarra Zevallos Análise Da Função De Genes
    Karla Alejandra Vizcarra Zevallos Análise da função de genes candidatos à manutenção da inativação do cromossomo X em humanos Dissertação apresentada ao Pro- grama de Pós‐Graduação Inter- unidades em Biotecnologia USP/ Instituto Butantan/ IPT, para obtenção do Título de Mestre em Ciências. São Paulo 2017 Karla Alejandra Vizcarra Zevallos Análise da função de genes candidatos à manutenção da inativação do cromossomo X em humanos Dissertação apresentada ao Pro- grama de Pós‐Graduação Inter- unidades em Biotecnologia do Instituto de Ciências Biomédicas USP/ Instituto Butantan/ IPT, para obtenção do Título de Mestre em Ciências. Área de concentração: Biotecnologia Orientadora: Profa. Dra. Lygia da Veiga Pereira Carramaschi Versão corrigida. A versão original eletrônica encontra-se disponível tanto na Biblioteca do ICB quanto na Biblioteca Digital de Teses e Dissertações da USP (BDTD) São Paulo 2017 UNIVERSIDADE DE SÃO PAULO Programa de Pós-Graduação Interunidades em Biotecnologia Universidade de São Paulo, Instituto Butantan, Instituto de Pesquisas Tecnológicas Candidato(a): Karla Alejandra Vizcarra Zevallos Título da Dissertação: Análise da função de genes candidatos à manutenção da inativação do cromossomo X em humanos Orientador: Profa. Dra. Lygia da Veiga Pereira Carramaschi A Comissão Julgadora dos trabalhos de Defesa da Dissertação de Mestrado, em sessão pública realizada a ........./......../.........., considerou o(a) candidato(a): ( ) Aprovado(a) ( ) Reprovado(a) Examinador(a): Assinatura: ..............................................................................
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Specific Gene Expression Differences in Response to Injury
    Human and Murine Kidneys Show Gender- and Species- Specific Gene Expression Differences in Response to Injury Han Si1, Ramandeep S. Banga1, Pinelopi Kapitsinou1, Manjunath Ramaiah1, Janis Lawrence1, Ganesh Kambhampati1, Antje Gruenwald1, Erwin Bottinger4, Daniel Glicklich1, Vivian Tellis2, Stuart Greenstein2, David B. Thomas3, James Pullman3, Melissa Fazzari5, Katalin Susztak1* 1 Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, New York, United States of America, 2 Department of Surgery, Montefiore Medical Center, Bronx, New York, United States of America, 3 Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America, 4 Department of Medicine/Nephrology, Mount Sinai School of Medicine, New York, United States of America, 5 Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America Abstract The incidence of End Stage Renal Disease (ESRD) is approximately 50% higher in men than women. In order to understand the molecular basis of this gender disparity, we examined sex specific gene expression patterns in control and diseased, human and murine kidney samples. Using the Affymetrix platform we performed comprehensive gene expression analysis on 42 microdissected human kidney samples (glomeruli and tubules). We identified 67 genes with gender biased expression in healthy human kidneys and 24 transcripts in diseased male and female human kidneys. Similar analysis performed in mice using male and female control and doxorubicin induced nephrotic syndrome kidneys identified significantly larger number of differentially expressed transcripts. The majority of genes showing gender biased expression either in diseased human and murine kidneys were different from those differentially expressed in healthy kidneys.
    [Show full text]
  • Co-Expression Network of Neural-Differentiation Genes Shows
    Maschietto et al. BMC Medical Genomics (2015) 8:23 DOI 10.1186/s12920-015-0098-9 RESEARCH ARTICLE Open Access Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia Mariana Maschietto1,2†, Ana C Tahira1,2†, Renato Puga3, Leandro Lima4, Daniel Mariani4, Bruna da Silveira Paulsen5, Paulo Belmonte-de-Abreu6, Henrique Vieira4, Ana CV Krepischi7, Dirce M Carraro8, Joana A Palha9,10, Stevens Rehen5,11 and Helena Brentani1,2,12,13* Abstract Background: Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls. Methods: We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples. Results: We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation.
    [Show full text]
  • WO 2013/022995 A2 14 February 2013 (14.02.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/022995 A2 14 February 2013 (14.02.2013) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ G01N 33/53 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/050030 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 8 August 2012 (08.08.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, English (25) Filing Language: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 61/521,333 8 August 201 1 (08.08.201 1) US ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/523,763 15 August 201 1 (15.08.201 1) US NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, 61/526,623 23 August 201 1 (23.08.201 1) u s SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/529,762 31 August 201 1 (3 1.08.201 1) u s TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 61/534,352 13 September 201 1 (13.09.201 1) u s ZW.
    [Show full text]