Early to Mid-Cretaceous Tectonics and Unconformities of the Wessex Basin (Southern England)

Total Page:16

File Type:pdf, Size:1020Kb

Early to Mid-Cretaceous Tectonics and Unconformities of the Wessex Basin (Southern England) Journal of the Geological Society, London, Vol. 149, 1992, pp. 443454, 12 figs. Printed in Northern Ireland Early to mid-Cretaceous tectonics and unconformities of the Wessex Basin (southern England) A. H. RUFFELL Department of Geology, Queen’s University, Belfast, Northern Ireland BT7 INN, UK Abstract: Sediment distribution patterns, time-subsidence plots, seismic data and outcropanalysis of the Lower Cretaceous (?Ryazanian-Albian) of the Wessex Basin, southern England, suggest that a number of unconformablehorizons exist and that there is no single ‘late Cimmerian unconformity’ surface. A tectonic change, from areally restricted deposition in the Weald and Channel sub-basins to extensive sedimentation across the whole of southern England, began in the mid-Aptian. This change ended with transgression of basement ‘highs’ in the early Albian of the Dorset area,and later Albian of the Devon and London Platform basin margin areas: its onset can be linked to the Austrian tectonic phase of Europe. The onset of marine deposition in the Aptian is coincident with periodic transgression of the margins of the Wessex Basin throughout the Aptian-Albian. Mid-late Aptian and early/mid-Albian transgressions were preceded by periods of erosion. The Aptian-Albian Lower Greensand is characterized by transgressive- regressive phases, suggesting a short-term controlling process (third-order eustatic changes or intra-plate mechanisms). Tectonic changes in the mid-Aptian include uplift followed by widespread subsidence. This change coincides with a time of plate reorganization in the European and North Atlantic areas. The Mesozoic Wessex Basin of southern England is a structur- (Drummond 1970; Stoneley 1982). Thus structures such as the ally complexbasin (Whittaker 1985), where a predominant ‘mid-Dorset Swell’ (Drummond 1970, 1982) may also be re- east-west pattern of extensional faults is cut by a seriesof lated to basement faults. northwest-southeast oriented faults (Karner et al.1987). These Chadwick (1 985) described the mid-Cretaceous develop- structurescontrolled the accumulation and preservation of ment of the Wessex Basinwith referenceto the ‘late Cimmerian thickMesozoic sedimentary successions within the basin Unconformity’, and produced a map of the older Jurassic and (Chadwick 1986). Major faults commonly form the marginsof Cretaceous formations that subcrop beneath the unconformity the upstanding basement blocks that surround much of the surface. In certain places within the Weald sub-basin(see Figs 1 basin, as well as intra-basinal highs (e.g. the Isleof Wight & 3) no obvious mid-Cretaceous unconformityis apparent, yet Monocline; Fig. 1). Inversion of the Mesozoic basins occurred onthe basin margins a number of discreteunconformities in the latest Mesozoic (late Cretaceous) to mid-Cenozoic occur. Chadwick (1985) took the oldest Cretaceous deposit (?Oligocene) interval, when these formerly upstanding Meso- above the unconformity surface (the oldest commonly being zoic massifs and highs became the sites of accumulation of early Aptian, the youngest late Albian), as his datum. The thick successions of Cenozoic clastic detritus (Karner et al. unconformity was also represented as a widely variable time 1987). gap by Karner et al.(1987), this being explainedby differential Numerous authors have published analyses (based on out- erosion priorto transgression of the basin margins. However, a crop, borehole and seismic data) of the Mesozoic-Cenozoic number of Aptian-Albian unconformities are known to occur development of the Wessex Basin, andsurrounding areas. above the lowest horizon mapped by Chadwick (1985) as the Theseinclude Stoneley (1982), Chadwick (1985,1986), ‘late Cimmerian Unconformity’ (Hesselboet al. 1990a; Ruffell Sellwood et al. (1986) and Karner et al.(1987). Previous evalu- & Wach 1991), and further unconformable horizonsbelow are ations of thetectonic evolution of the WessexBasin have demonstrated here. placed great importance on the early to mid-Cretaceousinter- val, and the development of the ‘late Cimmerian Unconfor- Methodology mity’ (Chadwick 1985; Karner et al. 1987). This surface of un- conformity was linked by Karner etal. (1987) to the How best may the numberof unconformities, which may exist, post-Hercynian tectonic development of the northwest Euro- be definedwithin the basin, andhow may theybe characterized? pean region, and specifically to the ‘Austrian’ (Glennie 1986) The methods of study are outlined below as: (I) sediment dis- tectonic movements.The stratigraphyof the Lower Cretaceous tribution patterns from boreholes and isopach mapping; (ii) sediments is shown in Fig. 2, with a summaryof known tectonic time - subsidence plots and sediment accumulation (and pre- events from Glennie (1986). servation) patterns from outcrop and borehole sections; (iii) Stoneley (1982), Chadwick (1985) and Karner et al. (1987) seismic data; (iv) outcrop analysis. all give accounts of Mesozoic extensional faulting within the Wessex Basin, and subsequent compressionand basin inversion Sediment distribution patterns duringthe late Cretaceous-earlyCenozoic. Such compres- sional structures (e.g. the Purbeck-Isle of Wight monocline) The formal group-status divisionsof the Lower Cretaceous of are offset in an en echelon mannerwhich was relatedby Drum- southern England (sensu Rawson et al. 1978; Stewart 1981; mond (1970, 1982) to strike-slip motion of underlying base- Simpson 1985) are the smallest scale at which isopach maps ment faults. Mid-Cretaceous sediments in Dorset were sub- can be made, as borehole logs from hydrocarbon and water jected to minor inversion along northwest-southeast trends explorationrarely allow more detailed correlation. Gross 443 Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/149/3/443/4891976/gsjgs.149.3.0443.pdf by guest on 03 October 2021 444 A. H. RUFFELL P I l 1O"W 0" O" 55"N rz, TROUGH SEA 50"N WESTERN APPROACHES TROUGH PARIS BAY OF Area of Map C l BISCAY ; I I I I C 2"W 1 "W 0" l"E LONDON PLATFORM HUMBLY GROVE D ,,O Fig. 1. Location maps. (a) Location of WEALD WINCHESTER 0 SUB-BASIN study area, with other basin successions mentioned in text. (b) Aptian-Albian MID-DORSET (Lower Greensand) outcrops in south SWELL eastern England and France with outcrops (1-15) utilized in sequence 0 BOREHOLE stratigraphic study of Aptian-Albian W WlLMlNGHAM A ARRETON sediments (Fig. 12). (c) Tectonic features V lNGN \ of the Cretaceous of the Wessex Basin. 0 25 50 km Lines of seismic sections: A, Fig. 9; B, Fig. 10; C, Fig. 11. Major boreholes l I I mentioned in text. facies changes occurwithin all the groups studied (Casey 1961; (Fig. 3). A single transgression cannot explain the complex Owen 1975; Allen 1989 and references therein),making distribution of mid-Cretaceous sediments on themargins of the attemptsat decompaction difficult, as different lithologies Wessex Basin, as erosion occurred prior to each transgressive follow different compaction trends. The spacing of boreholes phase (e.g. Hesselbo et al. 1990b). In boreholes sunk to the within the basin is not dense enoughto allow mapping of large- north of the Isle of Wight Monocline (Figs 1 & 4), which was an scale facies changes, so only present-day (compacted) thick- area of positive relief in the early to mid-Cretaceous, the base- nesses are discussed in this section. These maps demonstrate Gault Carstone Formationis the first deposit to be preserved. that the basin depocentre remained around the core of the This rests unconformably on Jurassic strata (Fig. S), and the present-day Weald anticline(Fig. 3) for much of the time base of this formation might be taken as the 'late Cimmerian' or represented by the Wealden (?RyazanianNalanginianto 'Austrian' unconformity. In contrast, on the crest of the Lon- BarremiadearlyAptian) and Lower Greensand (Atherfield don Platform the first transgressive deposit is the Upper Gault Clay and Hythe Beds Formations: early Aptian). Inthe mid- to Clay, whilst on the flanks of the platform in the northern mar- late Aptian, deposition commenced on formerly upstanding gins of the Wessex Basin (Fig. 1) the first transgressive deposit fault blocks within and on massifs surrounding the Wessex preserved varies from early Aptian to early Albian in age. The Basin. These deposits are patchily preserved as the Sandgate, thin sedimentarycover on such areas gives some indication (e.g. Folkestone and CarstoneBeds of the Lower Greensand and the horizons of phosphatic nodules containing remanie Lower Gault Clay (Owen 1975). The Upper Gault Clay is the ammonites) of previous, now eroded transgressive phases. By first deposit to cover all topographic highs around the basin determining the age of these remanie deposits, and tracing their Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/149/3/443/4891976/gsjgs.149.3.0443.pdf by guest on 03 October 2021 CRETACEOUSUNCONFORMITIES, WESSEX BASIN 445 REGIONAL EVENTS REGIONAL ERA GROUP FORMATION APTUN - EARLY Ma STAGE TETHYS ATLANTICTETHYS PERIOD CHANNELWEAL1 CHANNEL WEALD ALBIANAMMONITE ZONES UPPER GREENSAN UPPER GAULT. UPPER GREENSAND mammrllalum LOWER GAULT y CARSTONE ' 0 / MID- SANDRO~K FOLKESTONE ATLANTIC 2 BEDS lardeturcata 50 SPREADINGALPINE OROGENY ERRUGINOUSSANDGATE SANDS HYTHE SANDS PLATEAU ATHERFIELDCLAY lamb! EASALTS - W CLOSURE m+ UPPER VECTIS WEALD Wlkld,e"S#S loo SEA.FLOOR z5 yI CLAY SPREADING 2 ROTATION NEWFOUNDLAND c > OFlsERlA -IBERIA d manlomdes OQ AUSTRIAN 9 > LOWER ClMMERlAN - WEALDWESSEX 150 TECTONICS bowerbad! ~~~~$~~ CLAY Fig. 2. Tectonic history
Recommended publications
  • The Rock Cycle Compressed and Cemented to Form What the Original Rocks on Earth Were Like
    | The Rock Cycle compressed and cemented to form what the original rocks on Earth were like. sedimentary rock, such as sandstone. IMMG has some excellent examples of Soluble material can be precipitated from these extraterrestrial visitors in our The continual set of processes affecting water to form sedimentary rocks such as meteorite exhibit. rocks is called the rock cycle. All existing limestone and gypsum. Sedimentary rocks rocks on Earth have been changed over can also be exposed at the surface and Various examples of the three different time by various geologic processes. Earth undergo erosion, providing materials for types of rocks are listed below. Specimens was formed about 4.6 billion years ago, and future sedimentary rocks. of some of these rocks can be found the oldest known rock unit is found in throughout the museum. Canada, dated at just over 4 billion years If sedimentary rocks become buried deep old. This rock material was altered by heat within the crust, they can be subjected to How many can you find? and pressure into the metamorphic rock high heat and pressure along with physical gneiss. stresses such as compression or extension, Igneous which transforms them into metamorphic rocks such as schist or gneiss Originally all of Earth’s crustal rocks had Basalt Gabbro Diorite an igneous origin. They start as semi- (“metamorphic” simply means “changed molten magma in the upper mantle and form”). Sometimes igneous rocks can be Rhyolite Syenite Andesite either rise to the surface as extrusive lava metamorphosed by similar processes (like Granite Granodiorite Obsidian (like basalt) in volcanoes and oceanic rifts, granite into gneiss).
    [Show full text]
  • Exhumation Processes
    Exhumation processes UWE RING1, MARK T. BRANDON2, SEAN D. WILLETT3 & GORDON S. LISTER4 1Institut fur Geowissenschaften,Johannes Gutenberg-Universitiit,55099 Mainz, Germany 2Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 3Department of Geosciences, Pennsylvania State University, University Park, PA I 6802, USA Present address: Department of Geological Sciences, University of Washington, Seattle, WA 98125, USA 4Department of Earth Sciences, Monash University, Clayton, Victoria VIC 3168,Australia Abstract: Deep-seated metamorphic rocks are commonly found in the interior of many divergent and convergent orogens. Plate tectonics can account for high-pressure meta­ morphism by subduction and crustal thickening, but the return of these metamorphosed crustal rocks back to the surface is a more complicated problem. In particular, we seek to know how various processes, such as normal faulting, ductile thinning, and erosion, con­ tribute to the exhumation of metamorphic rocks, and what evidence can be used to distin­ guish between these different exhumation processes. In this paper, we provide a selective overview of the issues associated with the exhuma­ tion problem. We start with a discussion of the terms exhumation, denudation and erosion, and follow with a summary of relevant tectonic parameters. Then, we review the charac­ teristics of exhumation in differenttectonic settings. For instance, continental rifts, such as the severely extended Basin-and-Range province, appear to exhume only middle and upper crustal rocks, whereas continental collision zones expose rocks from 125 km and greater. Mantle rocks are locally exhumed in oceanic rifts and transform zones, probably due to the relatively thin crust associated with oceanic lithosphere.
    [Show full text]
  • Sedimentological Constraints on the Initial Uplift of the West Bogda Mountains in Mid-Permian
    www.nature.com/scientificreports OPEN Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian Received: 14 August 2017 Jian Wang1,2, Ying-chang Cao1,2, Xin-tong Wang1, Ke-yu Liu1,3, Zhu-kun Wang1 & Qi-song Xu1 Accepted: 9 January 2018 The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Published: xx xx xxxx Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid- Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confrmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large- scale intracontinental orogeny in the region. The Central Asia Orogenic Belt (CAOB) is the largest accretionary orogen on Earth, which was formed by the amalgamation of multiple micro-continents, island arcs and accretionary wedges1–5.
    [Show full text]
  • Paleozoic Petroleum Systems on the NCS – Fake, Fiction Or Reality?
    Extended Abstract Paleozoic Petroleum Systems on the NCS – Fake, Fiction or Reality? What is presently Known & What Implications May such Source Rock Systems Have – Today - in terms of Exploration? SWOT Prof. Dr. Dag A. Karlsen, Univ of Oslo The Jurassic source rock systems continue to form the backbone for exploration on the Norwegian Continental Shelf NCS), with hitherto only 5 oil accumulations proven to be from Cretaceous source rocks, and with Triassic source rock contributions mainly occurring in the Barents Sea. At the “other end of the stratigraphy” we have the Paleozoic rocks. Paleozoic source rocks were recognized early in Scandinavia, e.g. the Alum shale, which we today know to have generated petroleum during the Caledonian Orogeny (Foreland Basin), bitumen found now in odd-ball places in Sweden e.g. at Østerplane and at the Silje Crater Lake and also in Norway. It took until 1995 until we could, via geochemical analytical work on migrated bitumen from the Helgeland Basin (6609/11-1), with some certainty point to migrated oil from a possible Devonian source (affinity to Beatrice & the Orkney shales). Also around 1995, we could suggest bitumen from the 7120/2-1, later realized as one of the wells in the Alta Discovery v.200m dolomite Ørn/Falk Fm) to be of a non-Mesozoic origin, and possibly from a Paleozoic source, and geologist at RWE-Dea and later Lundin started to consider the Paleozoic reservoir systems at Loppa High and also the possibility of Triassic and Permian source rocks as a play model. Why did it take the scientific and exploration environment in Norway so long time to consider source rock systems outside the Jurassic as important? Part of the reason is the great success of the Jurassic Plays on the NCS.
    [Show full text]
  • Proceedings of the Ussher Society
    Proceedings of the Ussher Society Research into the geology and geomorphology of south-west England Volume 6 Part 3 1986 Edited by G.M Power The Ussher Society Objects: To promote research into the geology and geomorphology of south- west England and the surrounding marine areas; to hold Annual Conferences at various places in South West England where those engaged in this research can meet formally to hear original contributions and progress reports and informally to effect personal contacts; to publish, proceedings of such Conferences or any other work which the Officers of the Society may deem suitable. Officers: Chairman Dr. C.T. Scrutton Vice-Chairman Dr. E. B. Selwood Secretary Mr M.C. George Treasurer Mr R.C. Scrivener Editor Dr. G.M. Power Committee Members Dr G. Warrington Mr. C. R. Morey Mr. C.D.N. Tubb Mr. C. Cornford Mr D. Tucker Membership of the Ussher Society is open to all on written application to the Secretary and payment of the subscription due on January lst each year. Back numbers may be purchased from the Secretary to whom correspondence should be directed at the following address: Mr M. C. George, Department of Geology, University of Exeter, North Park Road, Exeter, Devon EX4 4QE Proceedings of the Ussher Society Volume 6 Part 3 1986 Edited by G.M. Power Crediton, 1986 © Ussher Society ISSN 0566-3954 1986 Typeset, printed and bound bv Phillips & Co., The Kyrtonia Press, 115 High Street, Crediton, Devon EXl73LG Set in Baskerville and Printed by Photolithography Proceedings of the Ussher Society Volume 6, Part 3, 1986 Papers D.L.
    [Show full text]
  • Structural and Stratigraphic Evolution of the Mid North Sea High Region of the UK Continental Shelf
    Downloaded from http://pg.lyellcollection.org/ by guest on March 31, 2020 Accepted Manuscript Petroleum Geoscience Structural and Stratigraphic Evolution of the Mid North Sea High Region of the UK Continental Shelf Rachel E. Brackenridge, John R. Underhill, Rachel Jamieson & Andrew Bell DOI: https://doi.org/10.1144/petgeo2019-076 This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: https://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins- of-the-uk-continental-shelf Received 30 May 2019 Revised 25 November 2019 Accepted 23 January 2020 © 2020 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/). Published by The Geological Society of London for GSL and EAGE. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics To cite this article, please follow the guidance at https://www.geolsoc.org.uk/~/media/Files/GSL/shared/pdfs/Publications/AuthorInfo_Text.pdf?la=en Manuscript version: Accepted Manuscript This is a PDF of an unedited manuscript that has been accepted for publication. The manuscript will undergo copyediting, typesetting and correction before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Although reasonable efforts have been made to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version.
    [Show full text]
  • North Sea Geology
    Technical Report TR_008 Technical report produced for Strategic Environmental Assessment – SEA2 NORTH SEA GEOLOGY Produced by BGS, August 2001 © Crown copyright TR_008.doc Strategic Environmental Assessment - SEA2 Technical Report 008 - Geology NORTH SEA GEOLOGY Contributors: Text: Peter Balson, Andrew Butcher, Richard Holmes, Howard Johnson, Melinda Lewis, Roger Musson Drafting: Paul Henni, Sheila Jones, Paul Leppage, Jim Rayner, Graham Tuggey British Geological Survey CONTENTS Summary...............................................................................................................................3 1. Geological history and petroleum geology including specific SEA2 areas ......................5 1.1 Northern and central North Sea...............................................................................5 1.1.1 Geological history ........................................................................................5 1.1.1.1 Palaeozoic ....................................................................................5 1.1.1.2 Mesozoic ......................................................................................5 1.1.1.3 Cenozoic.......................................................................................8 1.1.2 Petroleum geology.......................................................................................9 1.1.3 Petroleum geology of SEA2 Area 3 .............................................................9 1.2 Southern North Sea...............................................................................................10
    [Show full text]
  • Alisocysta Margarita Zone, 213-14, 220 Angulata Zone, 244
    Index Acadian Orogeny, 198 bed forms accommodation space migration, 44 and accumulation rates, 104 wave-modified, 52 condensed sections, 81 Beinn Iaruinn Quartzite, 262, 264 and cyclothems, 69 Belemnite Bed, 238, 244-5, 251 depositional response, 267 Belgium, 213 ooid shoals, 66 berthierine, 98-100 overprinting, 71 Binnein Quartzite, 266 and oxygen conditions, 82 biostratigraphic zones acritarchs, 206 Kimmeridge Clay, 87 Agat, 150, 159-61 Portlandian, 111 aggradation Turonian, 181, 183 Kimmeridge Clay, 83 biostratigraphical control, 2 Palaeocene, 223 biostratigraphical gaps, 111, 113 shelf margins, 37 bioturbation, 70, 91, 131 tidal flats, 71 Birnbeck Limestone Formation, 67, 69-70 albaniZone, 109, 115, 118, 123, 137 Bituminous Shales, 84, 238, 239 algaenans, 90 black shales, 77, 80, 82 Alisocysta margarita Zone, 213-14, 220 Black Ven Marls, 244, 248 allocycles, 72 Blea Wyke Sandstone Formation, 239, 248 Allt Goibhre Formation, 262, 264 Blue Lias, 82, 244-5,248 Alpine tectonics, 224 Blyth-Acklington dyke, 225 Alum Shales, 239 bone-beds, 98 Amazon Fan, 159 environments, 103 ammonites, 41-2, 48, 56, 109, 178 geochemistry, 101 biostratigraphy, 181, 231 bottom currents, 150, 159 amorphous organic matter, 77, 89-90 bottom water, volume, 82-3 Anglo-Paris Basin, 218 Boulonnais, 83, 85 anguiformis Zone, 131, 133, 139 brachiopods, 206 angulata Zone, 244 Branscombe Hardground, 193 anoxia, 81-2, 218 Breathitt Group, 36 and uranium, 235 British Tertiary Igneous Province, 224-6 apatite, 100-1,103 Bronnant Fault, 205 Apectodinium hyperacanthum Zone,
    [Show full text]
  • Dinantian Carbonate Development and Related Prospectivity of the Onshore Northern Netherlands
    Dinantian carbonate development and related prospectivity of the onshore Northern Netherlands Nynke Hoornveld, 2013 Author: Nynke Hoornveld Supervisors: Bastiaan Jaarsma, EBN Utrecht Prof. Dr. Jan de Jager, VU University Amsterdam Master Thesis: Solid Earth, (450199 and 450149) 39 ECTS. VU University Amsterdam 01-06-2013 Dinantian carbonate development and related prospectivity of the onshore Northern Netherlands Nynke Hoornveld, 2013 Contents Contents……………………………………………………………………………………………………………………………………………..2 Abstract…………………………………………………………………………………………….………………………………………………..3 Introduction…………………………………………………………………………………………………………….…………………….……4 Geological History of the Netherlands relating to Dinantian development…………………………..……………..7 Tectonic history…………………………………………………………………………………………………………………………..9 Stratigraphy of the Carboniferous…………………………………………………………………………………………….16 Stratigraphic Nomenclature of the Netherlands……………………………………………………………….………23 Methods……………………………………………………………………………………………………………………………………….…..26 Seismic interpretation…………………………………………………………………………………………………………….…27 Time-depth conversion…………………………………………………………………………………………………….……...35 Well correlation……………………………………………………………………………………………………………………..…38 Carbonate production, precipitation and geometries, with a focus on the Dinantian……….………40 Results………………………………………………………………………………………………………………………………….…………..57 Well information, evaluation and reservoir development………………………………………………………..58 Geometry of the Dinantian carbonate build-ups in the Dutch Northern onshore…………..……….75 The geological history
    [Show full text]
  • Layer Cake Geology
    LAYER CAKE GEOLOGY John R. Wagner Department of Earth Sciences Clemson University Clemson, S.C. 29634-1908 Level: Grades 4 - 6 Can be modified for use with Grades 2 - 3. Estimated Time Required: 50 - 60 minutes Anticipated Learning Outcomes • Students will understand the mechanisms by which folds and faults occur within the earth's crust. • Students will recognize the difference in behavior between brittle and ductile rocks. • Students will predict the structure likely to result from application of various forces to layered rocks. • Students will interpret "core samples" to determine rock structures beneath the land surface. • Students will learn the meaning of the following geologic terms: fold, fault, brittle, ductile, fracture, and core samples. Background No prior knowledge of geology is required. However, the teacher should introduce the two basic concepts of layered rock: superposition (oldest layer at bottom, youngest at top) and original horizontality (sediments deposited in horizontal layers until some force changes their tilt or orientation). Materials • Multiple-layer cake prepared according to the following instructions: 1. Use moist pound cake (or other dense, coherent cake) mix. (One mix is sufficient for whole class activity if layers are made thin enough.) 2. Bake four to six thin cakes, (each between 0.5 and 2.0 cm thick), each a different color (mix in food coloring before baking). Use square or rectangular pans. 3. Stack the cakes in any order. Apply icing (of any kind) between the layers but not on the top or sides of the cake. • Knife for cutting cake • Three transparent plastic tubes (diameter between 1 and 2 centimeters) at least as long as the cake is high.
    [Show full text]
  • 2. General Index
    Downloaded from http://pygs.lyellcollection.org/ by guest on September 29, 2021 2. General Index abandoned river courses. Vale of York 40,223-32 anhydrite 50.78.79,81,86,88.143-54 Abbey Crags, Knaresborough Gorge 46,290 Anisocardiu tenera (Antiquicyprina) loweana 39, 117, 130, 131.738-9 Acadian 46,175 ff.; 50,255-65 anisotropy of vitrinites 39,515-26 acanthite 46,135 ankerite 50,87 Acanthodiacrodium cf. simplex 42,412-3 annelida, in Yorkshire Museum 41,402 Acanthodiacrodium rotundatum 45.124 antimony, trace element in galena 44,153 Acanthodiacrodium cf. tumidum 45,124 apatite 44,438 Acanthopleuroceras sp. 42, 152-3 apatite fission-track palaeotemperatures. north-west England 50,95-9 accretionary lapilli, Cwm Clwyd Tuff 39,201,206-7,209,215-6 Apatocythere (Apatocythere) simulans 45, 243 Acheulian handaxes 41,89,94-5 Apedale Fault 50. 196," 198 acid intrusions, Ordovician and Caledonian, geochemical characteristics aplites. Whin Sill 47,251 of 39,33-57 Apollo's Coppice, Shropshire 50,193 acritarchs. Arenig 42. 405 Arachinidiuin smithii 42, 213 acritarchs, Ordovician 47,271-4 Araucarites phillipsii 45,287 acritarchs,Tremadoc 38 45-55; 45,123-7 archaeology, Lincolnshire 41.75 ff. Actinocamax plenus 40,586 Arcomva unioniformis 39.117.133, 134, 138 Acton Reynald Hall, Shropshire 50,193,198,199,200,202,204 Arcow"45,19ff.' adamellite (Threlkeld Microgranite) 40,211-22 Arcow Wood Quarry 39,169,446,448,455,459,470-1 aegirine 44,356 arctic-alpine flora. Teesdale 40.206 aeolian deposition, Devensian loess 40,31 ff. Arenicolites 41,416,436-7 aeolian deposition. Permian 40,54.55 Arenobulirnina advena 45,240 aeolian sands, Permian 45, 11-18 Arenobulimina chapmani 45,240 aeolian sedimentation, Sherwood Sandstone Group 50,68-71 Arenobulirnina macfadyeni 45, 240 aeromagnetic modelling, west Cumbria 50,103-12 arfvedsonite 44,356 aeromagnetic survey, eastern England 46,313,335—41 argentopyrite 46, 134-5 aeromagnetic survey, Norfolk 46.313 Arniocreas fulcaries 42, 150-1 Africa, North, Devonian of 40,277-8 arsenic 44,431 ff.
    [Show full text]
  • Wessex Basin of Southern England - Field Trip Guide
    CENTRAL & NORTH ATLANTIC CONJUGATE MARGINS CONFERENCE DUBLIN 2012 THIRD CONJUGATE MARGINS CONFERENCE 2012 Basin development and hydrocarbon systems of the Mesozoic and Cenozoic THE WESSEX BASIN OF SOUTHERN ENGLAND - FIELD TRIP GUIDE www.conjugatemargins.ie Third Conjugate Margins Conference‐ DUBLIN 2012 The Wessex Basin of Southern England‐ Field Trip guide Basin Development & Hydrocarbon systems of the Mesozoic and Cenozoic Leaders: Professor Grant Wach, Department of Earth Sciences, Dalhousie University, Halifax, Canada Grant Wach was appointed Professor of Petroleum Geoscience at Dalhousie University in 2002. A specialist in Reservoir Characterization and Stratigraphy, his interest in complex oil reservoirs began at Syncrude, in the oil sands of Alberta. Prior to Dalhousie he was with Exxon (now ExxonMobil) and was Geoscience Research Associate at Texaco (now Chevron) involved with exploration and commercialization with business units around the globe. He has conducted research on, and led field schools and courses in exploration, development and reservoir characterization in several countries. In 2012 he was the first recipient of “Professor of the Year” award from the AAPG Foundation. Professor Wach has an Honours B.A.(Geography/Geology) from the University of Western Ontario, a M.Sc. (Geology) from South Carolina, and a D.Phil. (Geology) from the University of Oxford. He can be contacted at +1‐902‐494‐2358; [email protected]. Professor Stephen Hesselbo, Department of Earth Sciences, University of Oxford and St. Peter’s College,
    [Show full text]