RESEARCH ARTICLE Surprisal analysis of genome-wide transcript profiling identifies differentially expressed genes and pathways associated with four growth conditions in the microalga Chlamydomonas Kenny A. Bogaert1, Sheeba S. Manoharan-Basil2, Emilie Perez2, Raphael D. Levine3,4, a1111111111 Francoise Remacle1*, Claire Remacle2* a1111111111 a1111111111 1 Theoretical Physical Chemistry, UR MOLSYS, University of Liège, Liège, Belgium, 2 Genetics and Physiology of Microalgae, UR InBios, University of Liège, Liège, Belgium, 3 The Fritz Haber Research Center a1111111111 for Molecular Dynamics, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel, a1111111111 4 Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America *
[email protected] (CR);
[email protected] (FR) OPEN ACCESS Citation: Bogaert KA, Manoharan-Basil SS, Perez Abstract E, Levine RD, Remacle F, Remacle C (2018) Surprisal analysis of genome-wide transcript The usual cultivation mode of the green microalga Chlamydomonas is liquid medium and profiling identifies differentially expressed genes light. However, the microalga can also be grown on agar plates and in darkness. Our aim is to and pathways associated with four growth analyze and compare gene expression of cells cultivated in these different conditions. For conditions in the microalga Chlamydomonas. PLoS ONE 13(4): e0195142. https://doi.org/10.1371/ that purpose, RNA-seq data are obtained from Chlamydomonas samples of two different labs journal.pone.0195142 grown in four environmental conditions (agar@light, agar@dark, liquid@light, liquid@dark). Editor: Sara Amancio, Universidade de Lisboa The RNA seq data are analyzed by surprisal analysis, which allows the simultaneous meta- Instituto Superior de Agronomia, PORTUGAL analysis of all the samples.