Biologics for Rheumatoid Arthritis1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ixekizumab for the Treatment of Active Psoriatic Arthritis in Adult Patients
Nº 536 AUGUST /2020 Ixekizumab for the treatment of active psoriatic arthritis in adult patients with an inadequate response or intolerance to one or more disease- modifying antirheumatic drugs (DMARDs) Brasília – DF 2020 Technology: Ixekizumab (Taltz®). Indication: Active psoriatic arthritis (PsA) in adult patients with an inadequate response or intolerance to one or more disease-modifying antirheumatic drugs (DMARDs). Applicant: Eli Lilly do Brasil LTDA. Background: Psoriatic arthritis (PsA) is an inflammatory joint disease associated with psoriasis, and also a polygenic autoimmune disorder of unknown etiology, in which cytokines related to T lymphocytes play a key role as in psoriasis. The overall prevalence of PsA ranges from 0.02% to 0.25%, and 1 in 4 patients with psoriasis have psoriatic arthritis: 23.8% (95% confidence interval [CI]: 20.1%-27.6%). In the Brazilian Public Health System (SUS), patients should be provided with access to drug treatment options, including nonsteroidal anti-inflammatory drugs (NSAIDs) ibuprofen and naproxen; glucocorticoids prednisone and methylprednisolone; synthetic disease-modifying antirheumatic drugs (DMARDs) sulfasalazine, methotrexate, leflunomide and ciclosporin; biological DMARDs (DMARDs-b) adalimumab, etanercept, infliximab and golimumab; and the cytokine inhibitor anti-IL17 secukinumab. Question: Is ixekizumab effective, safe and cost-effective for the treatment of active psoriatic arthritis (PsA) in adult patients with an inadequate response or intolerance to biological DMARDs? Scientific evidence: A systematic review with a network meta-analysis aimed to investigate the comparative efficacy and safety of interleukin inhibitor class of biologics (IL-6, IL-12/23 and IL-17 inhibitors) for patients with active psoriatic arthritis. Treatment effects were evaluated based on ACR responses (ACR20, ACR50) at week 24; any adverse event (AE); serious adverse events (SAE); and tolerability (discontinuation due to AE), at week 16 or 24. -
Evaluation of Antibody Properties and Clinically Relevant Immunogenicity
Drug Safety https://doi.org/10.1007/s40264-018-00788-w ORIGINAL RESEARCH ARTICLE Evaluation of Antibody Properties and Clinically Relevant Immunogenicity, Anaphylaxis, and Hypersensitivity Reactions in Two Phase III Trials of Tralokinumab in Severe, Uncontrolled Asthma Mats Carlsson1 · Martin Braddock2 · Yuling Li3 · Jihong Wang3 · Weichen Xu3 · Nicholas White4 · Ayman Megally5 · Gillian Hunter6 · Gene Colice5 © The Author(s) 2019 Abstract Introduction Tralokinumab is a monoclonal antibody (mAb) that neutralizes interleukin (IL)-13, a cytokine involved in the pathogenesis of asthma. Objective The objectives of this study were to characterize the potential immunogenic properties of tralokinumab and report data for anti-drug antibodies (ADAs) and hypersensitivity reactions from two phase III clinical trials. Methods The oligosaccharide structure of tralokinumab, Fab-arm exchange, and ADAs were characterized by standard techniques. Hypersensitivity adverse events (AEs) were evaluated in two pivotal clinical trials of tralokinumab in severe, uncontrolled asthma: STRATOS 1 and 2 (NCT02161757 and NCT02194699). Results No galactose-α-1,3-galactose (α-Gal) epitopes were found in the Fab region of tralokinumab and only 4.5% of glycoforms contained α-Gal in the Fc region. Under non-reducing conditions, Fab-arm exchange did not take place with another immunoglobulin (Ig) G 4 mAb (mavrilimumab). However, following glutathione reduction, a hybrid antibody with monovalent bioactivity was detected. ADA incidences (titers) were as follows: STRATOS 1—every 2 weeks (Q2 W) 0.8% (26.0), every 4 weeks (Q4 W) 0.5% (26.0), placebo 0.8% (52.0); STRATOS 2—Q2 W 1.2% (39.0), placebo 0.8% (13.0). Participant-reported hypersensitivity AE rates were as follows: STRATOS 1—Q2 W 25.9%, Q4 W 25.0%, placebo 25.5%; STRATOS 2—Q2 W 13.2%, placebo 9.0%. -
Collaborations on Imaging – the Medimmune’S Innovative Way
Collaborations on Imaging – The Medimmune’s Innovative Way Jerry Wu, PhD, Medimmune Developments in Healthcare Imaging – Connecting with Industry 18th October 2017 Contents 1 A brief overview of Medimmune 2 Scientific collaborations 3 Scientific Interest Group for Imaging 2 A brief overview of Medimmune Global Biologics Research and Development Arm of ~2,200 Employees in the US and UK Robust pipeline of 120+ Biologics in Research & Development with 40+ projects in Clinical Stage Development California Gaithersburg Cambridge 3 Medimmune – Biologics arm of AstraZeneca Late-stage Discovery and Early Development Development Innovative Medicines and Early Development Unit (Small Molecules) Global Internal and Collaboration and Medicines external combinations Development Market opportunities MedImmune (Biologics) 4 Current therapeutic areas Respiratory, Inflammation and Cardiovascular and Infectious Disease Oncology Autoimmunity Metabolic Disease Neuroscience Main Therapeutic Areas Opportunity-driven Protein Biologics Small Molecules Immuno-therapies Devices Engineering 5 RESPIRATORY, INFLAMMATION AND AUTOIMMUNITY ONCOLOGY (RIA) Medimmune R&D pipeline INFECTIOUS DISEASE (ID), NEUROSIENCE AND CARDIOVASCULAR AND METABOLIC DISEASE (CVMD) GASTROINTESINAL DISEASE PHASE 1 PHASE 2 PHASE 2 PIVOTAL/PHASE 3 Durvalumab + MEDI-573 Durvalumab MEDI-565 MEDI0562 MEDI4276 Durvalumab MEDI0680 Metastatic ≥2nd Line Advanced Solid Tumors Solid Tumors Solid Tumors Stage III NSCLC Solid Tumors Breast Cancer Bladder Cancer Durvalumab/AZD5069/ Durvalmab + MEDI0680 -
Study Protocol
2016N278580_02 CONFIDENTIAL GlaxoSmithKline group of companies 201789 TITLE PAGE Division: Worldwide Development Information Type: Protocol Amendment Title: A Phase 1/2, Double-Blind, Placebo-Controlled Study of the Pharmacokinetics, Safety and Tolerability of GSK3196165 in Combination with Methotrexate Therapy, in Japanese Subjects with Active Moderate-Severe Rheumatoid Arthritis Despite Treatment with Methotrexate. Compound Number: GSK3196165 Development Phase I/II Effective Date: 19- MAY-2017 Protocol Amendment Number: 02 Author(s): PPD Revision Chronology: GlaxoSmithKline Date Version Document Number 2016N278580_00 17-AUG-2016 Original 2016N278580_01 26-SEP-2016 Amendment Number 01 Revision contents: This amendment addresses PMDA modifications requested during the clinical trial notification process. It includes an additional Inclusion Criterion for FVC in Section 5.1; additional Exclusion Criterion and Stopping Criterion for HBV-DNA for subjects with positive anti-HBs antibody in Section 5.2 and Section 5.4; addition of a preventive dose of co-trimoxazole in Section 4.6.1 and Section 6.10.2.2; addition of HBV-DNA test at Screening and addition of footnote for clarification in Section 7.1; addition of “past week’s pain” in Section 12.6.2.1; correction of analysis populations in Section 9.3.1; and deletion of unapproved contraception methods in Japan in Section 12.2. 2016N278580_02 19-MAY-2017 Amendment Number 02 Revision contents: Change of Inclusion Criterion for CRP in Section 5.1. Copyright 2017 the GlaxoSmithKline group of companies. All rights reserved. Unauthorised copying or use of this information is prohibited. 1 2016N278580_02 CONFIDENTIAL 201789 SPONSOR SIGNATORY: Kihito Takahashi Date Vice President, Head of Development and Medical Affairs Division, GlaxoSmithKline K.K. -
First Analysis of the Severe Paediatric Asthma Collaborative in Europe Registry
ORIGINAL ARTICLE ASTHMA First analysis of the Severe Paediatric Asthma Collaborative in Europe registry Norrice M. Liu1, Karin C.L. Carlsen2,3, Steve Cunningham4, Grazia Fenu5, Louise J. Fleming 6, Monika Gappa7, Bülent Karadag8, Fabio Midulla9, Laura Petrarca9, Marielle W.H. Pijnenburg10, Tonje Reier-Nilsen3, Niels W. Rutjes11, Franca Rusconi 12 and Jonathan Grigg 1 Affiliations: 1Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK. 2Dept of Paediatrics, Faculty of Medicine, University of Oslo, Oslo, Norway. 3Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway. 4Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK. 5Paediatrics Pulmonology Unit, Anna Meyer Children’s Hospital, Florence, Italy. 6National Heart and Lung Institute, Imperial College, London, UK. 7Children’s Hospital, Evangelisches Krankenhaus Duesseldorf, Düsseldorf, Germany. 8Division of Pediatric Pulmonology, Marmara University, Istanbul, Turkey. 9Dept of Maternal Science, Sapienza University of Rome, Rome, Italy. 10Dept of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC- Sophia Children’s Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands. 11Dept of Paediatric Respiratory Medicine, Emma Children’s Hospital/Amsterdam UMC, Amsterdam, The Netherlands. 12Epidemiology Unit, Anna Meyer Children’s University Hospital, Florence, Italy. Correspondence: Jonathan Grigg, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK. E-mail: [email protected] ABSTRACT New biologics are being continually developed for paediatric asthma, but it is unclear whether there are sufficient numbers of children in Europe with severe asthma and poor control to recruit to trials needed for registration. To address these questions, the European Respiratory Society funded the Severe Paediatric Asthma Collaborative in Europe (SPACE), a severe asthma registry. -
Institutional Review Board Informed Consent Document for Research
Institutional Review Board Informed Consent Document for Research Study Title: PrecISE: Precision Interventions for Severe and/or Exacerbation-Prone Asthma Network Version Date: 11/01/2019 Version: 1.0 Part 1 of 2: MASTER CONSENT Name of participant: __________________________________________ Age: ___________ You are being invited to take part in a research study. This study is a multi-site study, meaning that subjects will be recruited from several different locations. Because this is a multi-site study this consent form includes two parts. Part 1 of this consent form is the Master Consent and includes information that applies to all study sites. Part 2 of the consent form is the Study Site Information and includes information specific to the study site where you are being asked to enroll. Both parts together are the legal consent form and must be provided to you. If you are the legally authorized representative of a person who is being invited to participate in this study, the word “you” in this document refers to the person you represent. As the legally authorized representative, you will be asked to read and sign this document to give permission for the person you represent to participate in this research study. This consent form describes the research study and helps you decide if you want to participate. It provides important information about what you will be asked to do during the study, about the risks and benefits of the study, and about your rights as a research participant. By signing this form, you are agreeing to participate in this study. -
Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis
REVIEW published: 09 July 2021 doi: 10.3389/fimmu.2021.686155 Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis † † Jie Huang 1 , Xuekun Fu 1 , Xinxin Chen 1, Zheng Li 1, Yuhong Huang 1 and Chao Liang 1,2* 1 Department of Biology, Southern University of Science and Technology, Shenzhen, China, 2 Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both Edited by: existing and emerging targets, including the proteins, small molecular metabolites, and Trine N. Jorgensen, epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that Case Western Reserve University, result in inflammation and the development of new drugs for blocking the various United States modulators in RA. Reviewed by: Åsa Andersson, Keywords: rheumatoid arthritis, targets, proteins, small molecular metabolites, epigenetic regulators Halmstad University, Sweden Abdurrahman Tufan, Gazi University, Turkey *Correspondence: INTRODUCTION Chao Liang [email protected] Rheumatoid arthritis (RA) is classified as a systemic poly-articular chronic autoimmune joint † disease that primarily affects hands and feet. -
Rheumatoid Arthritis) – Forecast and Market Analysis to 2023
REFERENCE CODE GDHC509DFR | PUBLICAT ION DATE DECEMBER 2014 MAVRILIMUMAB (RHEUMATOID ARTHRITIS) – FORECAST AND MARKET ANALYSIS TO 2023 MAVRILIMUMAB (RHEUMATOID ARTHRITIS) – FORECAST AND MARKET ANALYSIS TO 2023 Executive Summary The table below presents the key metrics for The major driver for the growth of Mavrilimumab in Mavrilimumab in the 10MM Rheumatoid Arthritis the RA market over the forecast period is: (RA) pharmaceutical markets (US, France, Potential to be a first-in-class therapy. Germany, Italy, Spain, UK, Japan, Australia, China, India) in 2023. Major barrier to the growth of Mavrilimumab in the RA market over the forecast period is: Mavrilimumab: Key Metrics in the 10 Major Pharmaceutical Markets Crowded market, with multiple new entrants Level of Key Events (2013–2023) targeting the same patient population of TNF- Impact Launch of AstraZeneca’s mavrilimumab in inadequate responders. ↑↑ 2020 across the 6MM 2023 Market Sales The figure below illustrates the global US $306.0m Mavrilimumab sales by region during the forecast 5EU $60.4m period. Japan N/A Australia N/A Sales for Mavrilimumab by Region, 2023 China N/A 2023 India N/A Total: $366.3m Total $366.3m 16% Source: GlobalData 10MM = US, France, Germany, Italy, Spain, UK, Japan, Australia, China, and India 6MM = US, France, Germany, Italy, Spain, and UK US 5EU = France, Germany, Italy, Spain, and UK N/A = Not Available 5EU Sales for Mavrilimumab in the Rheumatoid Arthritis Market 84% GlobalData estimates sales of Mavrillimumab at Source: GlobalData the end of the forecast period in 2023, in the US & 5EU at $366.3 million increasing from $145.3 million in 2020. -
Targeting GM-CSF in Rheumatoid Arthritis A.B
Targeting GM-CSF in rheumatoid arthritis A.B. Avci1, E. Feist2, G.R. Burmester2 1Department of Internal Medicine, ABSTRACT well-known as a haemopoietic growth Rheumatology, Akdeniz University, Granulocyte-macrophage colony-stim- factor used to treat neutropenia follow- Faculty of Medicine, Antalya, Turkey; ulating factor (GM-CSF) is well-known ing chemotherapy. It was a long-time 2Department of Rheumatology and as a haemopoietic growth factor. How- concern that targeted therapies against Clinical Immunology, Charite-University Medicine Berlin, Berlin, Germany. ever, it is also essential in regulating this cytokine could cause severe side functions of mature myeloid cells such effects such as neutropenia or pulmo- Ali Berkant Avci, MD, Assoc. Prof. Eugen Feist, PD Dr as macrophages. Preclinical studies nary alveolar proteinosis. Therefore, Gerd-Rüdiger Burmester, Prof. Dr. and observations of flares of arthritis in during the early development phase Please address correspondence to: patients following GM-CSF treatment of compounds targeting GM-CSF or Ali Berkant Avci, MD, supported its important contribution to its receptor special attention was paid Akdeniz Üniversitesi Hastanesi, the pathogenesis of rheumatoid arthritis to this potential adverse event reveal- İç Hastalıkları AD Romatoloji BD, (RA). As the most advanced compound, ing no evidence for such an associated Kampüs 07059 Konyaaltı/Antalya, mavrilimumab, a monoclonal antibody risk profile. On the other hand the so Turkey. against GM-CSF receptor, has already far available results clearly showed E-mail:[email protected] completed phase II trials with a long rapid and sustained effects on disease Received and accepted on June 29, 2016. term of follow-up period of 74 weeks. -
Immunfarmakológia Immunfarmakológia
Gergely: Immunfarmakológia Immunfarmakológia Prof Gergely Péter Az immunpatológiai betegségek döntő többsége gyulladásos, és ennek következtében általában szövetpusztulással járó betegség, melyben – jelenleg – a terápia alapvetően a gyulladás csökkentésére és/vagy megszűntetésére irányul. Vannak kizárólag gyulladásgátló gyógyszereink és vannak olyanok, amelyek az immunreakció(k) bénításával (=immunszuppresszió révén) vagy emellett vezetnek a gyulladás mérsékléséhez. Mind szerkezetileg, mind hatástanilag igen sokféle csoportba oszthatók, az alábbi felosztás elsősorban didaktikus célokat szolgál. 1. Nem-szteroid gyulladásgátlók (‘nonsteroidal antiinflammatory drugs’ NSAID) 2. Kortikoszteroidok 3. Allergia-elleni szerek (antiallergikumok) 4. Sejtoszlás-gátlók (citosztatikumok) 5. Nem citosztatikus hatású immunszuppresszív szerek 6. Egyéb gyulladásgátlók és immunmoduláns szerek 7. Biológiai terápia 1. Nem-szteroid gyulladásgátlók (NSAID) Ezeket a vegyületeket, melyek őse a szalicilsav (jelenleg, mint acetilszalicilsav ‘aszpirin’ használatos), igen kiterjedten alkalmazzák a reumatológiában, az onkológiában és az orvostudomány szinte minden ágában, ahol fájdalom- és lázcsillapításra van szükség. Egyes felmérések szerint a betegek egy ötöde szed valamilyen NSAID készítményt. Szerkezetük alapján a készítményeket több csoportba sorolhatjuk: szalicilátok (pl. acetilszalicilsav) pyrazolidinek (pl. fenilbutazon) ecetsav származékok (pl. indometacin) fenoxiecetsav származékok (pl. diclofenac, aceclofenac)) oxicamok (pl. piroxicam, meloxicam) propionsav -
The Two Tontti Tudiul Lui Hi Ha Unit
THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int . -
Antibodies to Watch in 2021 Hélène Kaplona and Janice M
MABS 2021, VOL. 13, NO. 1, e1860476 (34 pages) https://doi.org/10.1080/19420862.2020.1860476 PERSPECTIVE Antibodies to watch in 2021 Hélène Kaplona and Janice M. Reichert b aInstitut De Recherches Internationales Servier, Translational Medicine Department, Suresnes, France; bThe Antibody Society, Inc., Framingham, MA, USA ABSTRACT ARTICLE HISTORY In this 12th annual installment of the Antibodies to Watch article series, we discuss key events in antibody Received 1 December 2020 therapeutics development that occurred in 2020 and forecast events that might occur in 2021. The Accepted 1 December 2020 coronavirus disease 2019 (COVID-19) pandemic posed an array of challenges and opportunities to the KEYWORDS healthcare system in 2020, and it will continue to do so in 2021. Remarkably, by late November 2020, two Antibody therapeutics; anti-SARS-CoV antibody products, bamlanivimab and the casirivimab and imdevimab cocktail, were cancer; COVID-19; Food and authorized for emergency use by the US Food and Drug Administration (FDA) and the repurposed Drug Administration; antibodies levilimab and itolizumab had been registered for emergency use as treatments for COVID-19 European Medicines Agency; in Russia and India, respectively. Despite the pandemic, 10 antibody therapeutics had been granted the immune-mediated disorders; first approval in the US or EU in 2020, as of November, and 2 more (tanezumab and margetuximab) may Sars-CoV-2 be granted approvals in December 2020.* In addition, prolgolimab and olokizumab had been granted first approvals in Russia and cetuximab saratolacan sodium was first approved in Japan. The number of approvals in 2021 may set a record, as marketing applications for 16 investigational antibody therapeutics are already undergoing regulatory review by either the FDA or the European Medicines Agency.