Animal-Derived Surfactants: Where Are We? the Evidence from Randomized, Controlled Clinical Trials
Journal of Perinatology (2009) 29, S38–S43 r 2009 Nature Publishing Group All rights reserved. 0743-8346/09 $32 www.nature.com/jp REVIEW Animal-derived surfactants: where are we? The evidence from randomized, controlled clinical trials R Ramanathan Division of Neonatal Medicine, Department of Pediatrics, Women’s and Children’s Hospital and Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA production of a surface-active agent, namely, surfactant. Surfactant Animal-derived surfactants, as well as synthetic surfactants, have been is the first drug developed specifically for treatment of preterm extensively evaluated in the treatment of respiratory distress syndrome neonates with RDS. Surfactant therapy has become the standard of (RDS) in preterm infants. Three commonly available animal-derived care in the management of RDS. Human surfactant is primarily surfactants in the United States include beractant (BE), calfactant (CA) and composed of dipalmitoylphosphatidylcholine (DPPC) and poractant alfa (PA). Multiple comparative studies have been performed surfactant proteins (SP), SP-A, SP-B, SP-C and SP-D. Among these using these three surfactants. Prospective as well as retrospective studies four surfactant proteins, two hydrophobic proteins, SP-B and SP-C, comparing BE and CA have shown no significant differences in clinical or play a crucial role in the adsorption and spread of the DPPC at the economic outcomes. Randomized, controlled clinical trials have shown that air–liquid interphase in the lungs. In addition, an antioxidant treatment with PA is associated with rapid weaning of oxygen and phospholipid, plasmalogen, has been shown to work synergistically ventilatory pressures, fewer additional doses, cost benefits and survival with surfactant-associated hydrophobic proteins in the spreading of advantage when compared with BE or CA.
[Show full text]