Electricity Ten Year Statement

Total Page:16

File Type:pdf, Size:1020Kb

Electricity Ten Year Statement Electricity Ten Year Statement UK electricity transmission NOVEMBER 2012 Electricity Ten Year Statement November 2012 This is the first edition of the Electricity Ten Year Statement (ETYS), which replaces the former National Grid electricity publications namely the Seven Year Statement (SYS) and the Offshore Development Information Statement (ODIS). ETYS is produced by National Grid with the proposed NDP is a National Grid policy assistance of the two onshore Transmission and applies to the onshore electricity Owners (TOs), Scottish Power Transmission transmission system in England & Wales. (SPT) and Scottish Hydro Electric Transmission (SHE Transmission). The objective of We hope that you will agree that we have the publication is to provide clarity and met these targets, although we do recognise transparency on the potential development that this is the first edition and that future of the National Electricity Transmission publications will benefit from further input Systems (NETS). The document considers from its readership. this development through strategic network modelling and design capability, while trying In order to make the 2013 edition of to capture future uncertainty with regards to the ETYS even better and ensure that the generation mix, operation of the network we continue to add value through the and technology development. information that we provide, I encourage you to tell us what you think by writing to us at In delivering the ETYS we set ourselves [email protected]. Please various key objectives based upon your views also refer to the way forward chapter of this expressed in our April 2012 consultation: document for further information on our 2013 ETYS consultation process and how you can To provide a document with a high level provide feedback. of clarity. To ensure that there is a high degree of I hope that you find this an informative transparency around our assumptions and useful document and look forward to and the analysis that we provide. receiving your feedback. To publish an electricity document that utilises enhanced modelling capability to illustrate the development of the transmission system, taking into account the considerable future uncertainties and the interaction between the onshore and offshore network going forwards. In addition, we have included an outline of our proposed Network Development Policy (NDP) which defines how we will assess the Mike Calviou need to progress wider transmission system Director of Transmission Network Service reinforcements to meet the requirements National Grid of our customers in an economic and [email protected] efficient manner. Please note that the Page 3 Electricity Ten Year Statement November 2012 Contents Foreword /////////////////////////////////////////////////////////// 3 3.7 Wider boundaries ///////////////////////////////////////////95 Contents //////////////////////////////////////////////////////////// 4 3.7.1 B1 ////////////////////////////////////////////////////////95 Executive summary ////////////////////////////////////////////// 6 3.7.2 B2 ////////////////////////////////////////////////////// 101 Chapter 1 Introduction //////////////////////////////////////////10 3.7.3 B3 ////////////////////////////////////////////////////// 105 1.1 Background //////////////////////////////////////////////////12 3.7.4 B4 ////////////////////////////////////////////////////// 107 1.2 Methodology /////////////////////////////////////////////////13 3.7.5 B5 ////////////////////////////////////////////////////// 111 1.3 Navigation through the document //////////////////////14 3.7.6 B6 ////////////////////////////////////////////////////// 114 Chapter 2 Scenarios /////////////////////////////////////////////16 3.7.7 B7 ////////////////////////////////////////////////////// 117 2.1 Future Energy Scenarios //////////////////////////////////17 3.7.8 B7a //////////////////////////////////////////////////// 121 2.2 ETYS background and scenarios ///////////////////////18 3.7.9 B8 ////////////////////////////////////////////////////// 125 2.3 Demand ///////////////////////////////////////////////////////19 3.7.10 B9 //////////////////////////////////////////////////// 129 2.4 Generating capacity ////////////////////////////////////////22 3.7.11 B10 /////////////////////////////////////////////////// 132 2.5 Plant margins ////////////////////////////////////////////////28 3.7.12 B11 /////////////////////////////////////////////////// 135 2.6 Renewables //////////////////////////////////////////////////33 3.7.13 B12 /////////////////////////////////////////////////// 139 2.7 Interconnectors /////////////////////////////////////////////42 3.7.14 B13 /////////////////////////////////////////////////// 142 2.8 Non-GB generation /////////////////////////////////////////43 3.7.15 SC1 ////////////////////////////////////////////////// 145 2.9 Embedded generation /////////////////////////////////////44 3.7.16 B14 /////////////////////////////////////////////////// 148 Chapter 3 Network capability and future requirements /48 3.7.17 B14e ///////////////////////////////////////////////// 151 3.1 Introduction //////////////////////////////////////////////////49 3.7.18 B15 /////////////////////////////////////////////////// 154 3.2 Background //////////////////////////////////////////////////50 3.7.19 B16 /////////////////////////////////////////////////// 157 3.3 Co-ordinating the overall transmission network /////51 3.7.20 B17 /////////////////////////////////////////////////// 161 3.4 Design criteria for the NETS //////////////////////////////52 3.8 National Grid (NDP) process /////////////////////////// 164 3.5 East Coast local boundaries /////////////////////////////65 3.9 Development consents ////////////////////////////////// 195 3.5.3 EC1 //////////////////////////////////////////////////////67 3.10 Technologies ///////////////////////////////////////////// 197 3.5.4 EC3 //////////////////////////////////////////////////////70 3.11 Potential development of integrated 3.5.5 EC5 //////////////////////////////////////////////////////73 offshore network //////////////////////////////////////// 198 3.5.6 EC6 //////////////////////////////////////////////////////76 3.12 European interconnection ///////////////////////////// 202 3.5.7 EC7 //////////////////////////////////////////////////////78 3.13 Areas of future interest ///////////////////////////////// 206 3.6 North Wales local boundaries ////////////////////////////81 Chapter 4 System operation ///////////////////////////////// 208 3.6.3 NW1 /////////////////////////////////////////////////////83 4.1 Introduction //////////////////////////////////////////////// 209 3.6.4 NW2 /////////////////////////////////////////////////////86 4.2 System operability //////////////////////////////////////// 213 3.6.5 NW3 /////////////////////////////////////////////////////89 4.3 System design and operation challenges /////////// 215 3.6.6 NW4 /////////////////////////////////////////////////////92 4.4 Opportunities ////////////////////////////////////////////// 234 Chapter 5 Way forward /////////////////////////////////////// 238 5.1 Introduction //////////////////////////////////////////////// 239 5.2 Stakeholder engagement /////////////////////////////// 240 5.3 Timetable for 2013 engagement /////////////////////// 241 5.4 Continuous development /////////////////////////////// 242 Page 5 Executive summary The purpose of the ETYS is to illustrate the future development of the National Electricity Transmission System (NETS) under a range of plausible energy scenarios and to provide information to assist customers in identifying opportunities to connect to the NETS. To meet these aims this document details a range of potential future energy mixes, the subsequent development of the transmission system under these scenarios and the challenges this presents with regard to the operation of the system. The UK has legislation in place setting limits on Generation, demand and the evolution of the emissions of greenhouse gases as far ahead regulatory policies are captured by considering as 2050. There is also legislation mandating a the future energy scenarios outlined above. These minimum level of renewable energy in 2020. scenarios provide the basis for technical analysis A single forecast of energy demand does not to identify transmission network development give a sufficiently rich picture of possible future needs. A credible range of potential developments developments so National Grid now carries and opportunities are identified and assessed to out analysis based on different scenarios that ensure an economic and efficient transmission between them cover a wide range of possible system is maintained. energy futures. As a means to assess and report transmission A significant part of these energy scenarios is system capability it is useful to consider the the future power generation and demand mix. transmission system split by boundaries. The scenarios used to underpin our network Boundaries separate the system across multiple development present significant challenges in parallel transmission routes. The boundary terms of transmission planning, in light of the capability is an expression of the maximum uncertainties surrounding the energy landscape power transfer that can be securely transferred as the UK makes the transition to a low carbon across the transmission routes. A review of the economy in 2020 and onwards. boundary capabilities is provided in this document and for each boundary the
Recommended publications
  • Offshore Wind and Hydrogen: Solving the Integration Challenge
    OFFSHORE WIND AND HYDROGEN SOLVING THE INTEGRATION CHALLENGE OSW-H2: SOLVING THE INTEGRATION CHALLENGE 1 ACKNOWLEDGMENTS The study was jointly supported by the Offshore Wind Industry Council (OWIC) and Offshore Renewable Energy (ORE) Catapult, and delivered by ORE Catapult. The Offshore Wind Industry Council is a senior Government and industry forum established in 2013 to drive the development of the UK’s world- leading offshore wind sector. OWIC is responsible for overseeing implementation of the UK Offshore Wind Industrial Strategy. ORE Catapult is a not-for-profit research organisation, established in 2013 by the UK Government as one of a network of Catapults in high growth industries. It is the UK’s leading innovation centre for offshore renewable energy and helps to create UK economic benefit in the sector by helping to reduce the cost of offshore renewable energy, and support the growth of the industry. AUTHORS: ANGELIKI SPYROUDI KACPER STEFANIAK DAVID WALLACE STEPHANIE MANN GAVIN SMART ZEYNEP KURBAN The authors would like to thank a number of organisations and stakeholders for their support through Steering Committee and Expert Group meetings or individually. They include, in alphabetical order: Atkins (David Cole), BEIS (Tasnim Choudhury, Simone Cooper Searle, David Curran, Rose Galloway – Green, Fiona Mettam, Alan Morgan, Allan Taylor, Mark Taylor, Rita Wadey, Alex Weir) Committee on Climate Change (Mike Hemsley, David Joffe, Julia King), Crown Estate Scotland (Mark McKean), EDF Energy (David Acres), Energy Systems Catapult (Nick
    [Show full text]
  • Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
    Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore.
    [Show full text]
  • System Plan 2018 – Electricity and Gas in Denmark 2 System Plan 2018
    SYSTEM PLAN 2018 – ELECTRICITY AND GAS IN DENMARK 2 SYSTEM PLAN 2018 CONTENTS 1. A holistic approach to electricity and gas planning ......................................3 1.1 Energinet’s objectives and the political framework .............................................. 3 1.2 New organisation ............................................................................................................. 4 1.3 Analysis and planning .................................................................................................... 5 1.4 Research and development .......................................................................................... 8 1.5 Environmental reporting ..............................................................................................10 1.6 Energy efficiency ............................................................................................................11 2. Electricity .........................................................................................................16 2.1 Security of electricity supply ......................................................................................17 2.2 Resources to safeguard balance and technical quality ......................................22 2.3 Cooperation with other countries ..............................................................................24 2.4 Cooperation with other grid operators ....................................................................29 2.5 Planning for conversion and expansion of electrical installations
    [Show full text]
  • Firmness Deadlines
    List of Bidding Zone borders and/or their subsets and their corresponding day-ahead firmness deadlines List of Bidding Zone borders and/or their subsets of interconnectors Day-ahead firmness List of responsible TSOs deadline Austria (AT) Czechia (CZ) <> D-1 10:00 APG CEPS Austria (AT) Hungary (HU) <> D-1 10:00 APG MAVIR Austria (AT) Italy (NORD) <> D-1 11:00 APG TERNA Austria (AT) Slovenia (SI) <> D-1 11:00 APG ELES Belgium (BE) France (FR) <> D-1 11:00 ELIA RTE Belgium (BE) Netherlands (NL) <> D-1 11:00 ELIA TenneT TSO B.V. Belgium (BE) Great Britain (GB) <> D-1 11:00 ELIA, Nemo Link NGESO, Nemo Link Croatia (HR) Hungary (HU) <> D-1 10:00 HOPS MAVIR Croatia (HR) Slovenia (SI) <> D-1 11:00 HOPS ELES Czechia (CZ) Germany (DE) <> D-1 10:00 CEPS 50Hertz Czechia (CZ) Germany (DE) <> D-1 10:00 CEPS TenneT TSO GmbH Czechia (CZ) Poland (PL) <> D-1 10:00 CEPS PSE Denmark (DK1) Denmark (DK2) <> D-1 11:00 Energinet Energinet Denmark (DK1) Germany (DE) <> D-1 11:00 Energinet TenneT TSO GmbH Denmark (DK2) Germany (DE) <> D-1 11:00 Energinet 50Hertz France (FR) Germany (DE) <> D-1 11:00 RTE Amprion, Transnet BW 1 | P a g e List of Bidding Zone borders and/or their subsets of interconnectors Day-ahead firmness List of responsible TSOs deadline France (FR) Italy (NORD) <> D-1 11:00 RTE TERNA France (FR) Spain (ES) <> D-1 11:00 RTE REE Germany (DE) Amprion, Netherlands (NL) <> D-1 11:00 TenneT TSO GmbH TenneT TSO B.V.
    [Show full text]
  • The Value of Economic Dispatch a Report to Congress Pursuant To
    THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 Prepared by United States Department of Energy November 7, 2005 ii THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 Prepared by United States Department of Energy November 7, 2005 iii iv TABLE OF CONTENTS Table of Contents i List of Acronyms iii Section 1 -- Introduction and Summary 1 Industry Changes 1 Study Method and Overview 2 Summary of Findings 3 Section 2 -- Economic Dispatch 9 What is Economic Dispatch? 9 “Economic” Dispatch vs. “Efficient” Dispatch 11 Security-Constrained Unit Commitment 12 Grid Conditions that Constrain Economic Dispatch 13 Resource Considerations that Constrain Economic Dispatch 14 Security-Constrained Economic Dispatch 15 Current Practices in Building the Economic Dispatch Resource Stack 16 Figure 1 – Building the Economic Dispatch Stack 17 What’s Left for Economic Merit Order Dispatch? 19 Current Practices for Optimizing Dispatch 20 Variations in Economic Dispatch Practices 22 Figure 2 – Map of ISOs and RTOs 26 How Large Should a Dispatch Area Be? 27 Economic Dispatch and Reliability 29 Section 3 – The Benefits of Economic Dispatch 31 Congressional Intent and Study Definitions 31 Overview of Prior Studies and Other Materials Reviewed 32 Review of RTO Studies 33 Review of IPP Studies 34 Findings from Review of Prior Studies and Submitted Materials 36 Table 1 – Studies and Documents Reviewed to Assess Benefits of Economic Dispatch 38 Table 2 – Summary of Economic Dispatch Benefits from RTO Studies 40 Table 3 – Summary of Economic Dispatch Benefits from IPP Studies 42 Section 4 – Which Resources Get Into the Economic Dispatch Stack? 43 Conditions That Could Exclude a Resource from the Dispatch Stack 45 i v Section 5 – Proposed Modifications to Economic Dispatch and Suggestions for Future Work 49 Proposals for Modifying Economic Dispatch 49 Recommendations for Future Work 51 References 54 Appendix A – U.S.
    [Show full text]
  • Ginet, Svenska Kraftnät and Statnett
    Explanatory document concerning the proposal from the Transmission system operators Ener- ginet, Svenska kraftnät and Statnett for the deter- mination of LFC blocks within the Nordic synchro- nous area in accordance with Article 141(2) of the Commission Regulation (EU) 2017/1485 of 2 Au- gust 2017 establishing a guideline on electricity transmission system operation 1 Content 1. Introduction ................................................................................................................ 3 2. Legal requirements and interpretation ............................................................................ 3 2.1 Legal references and requirements ..................................................................... 3 2.2 Interpretation and scope of the proposal ............................................................. 4 3. Proposal for LFC blocks in the Nordic Synchronous Area ................................................... 5 3.1 Current status in the Nordic synchronous system ................................................. 5 3.2 Assessment of prerequisites for the proposal........................................................ 6 3.3 Process to form a block with three parties............................................................ 7 3.4 Expected impact of the proposed load-frequency control structure .......................... 8 3.5 Public consultation ............................................................................................ 8 4. Timescale for implementation ......................................................................................
    [Show full text]
  • NORTH-SOUTH 400Kv INTERCONNECTION DEVELOPMENT
    NORTH-SOUTH 400kV INTERCONNECTION DEVELOPMENT OUTLINE AND UPDATE OF EIRGRID’S CONSIDERATION OF THE TRANSMISSION TECHNOLOGY OPTIONS AS PRESENTED TO THE INDEPENDENT EXPERT GROUP DECEMBER 2017 A European Project of Common Interest EXECUTIVE SUMMARY The Minister for Communications, Climate Action and Environment has appointed an independent expert group (IEG) to examine the technical feasibility and cost of undergrounding the North-South Interconnector, taking into account the most recent developments in technology and experience gained from existing projects abroad. This report sets out EirGrid’s position on these matters. EirGrid is proposing that the proposed interconnector be implemented by means of a single circuit 400 kV overhead line. The proposed overhead line will be approximately 137 km in length (103 km in Ireland and 34 km in Northern Ireland) and will form a second high capacity tie-line between the networks of Ireland and Northern Ireland. Planning approval for the part of the proposal located in Ireland has been received from An Bord Pleanála. This report replicates and updates the evaluation of the technology options that was submitted to An Bord Pleanála by EirGrid during the planning process. EirGrid’s evaluation of the technology options was carried out in the knowledge that the proposed second North South Interconnector will be of the highest strategic importance for the island of Ireland, with a power carrying capacity equivalent to 23% of the island’s peak demand. It will form an internal reinforcement of the single ‘all-island’ network and will operate like any other transmission circuit in the meshed network. HVDC technology was considered as an option.
    [Show full text]
  • Plug-In Electric Vehicles Automated Charging Control
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Dallinger, David; Kohrs, Robert; Mierau, Michael; Marwitz, Simon; Wesche, Julius Working Paper Plug-in electric vehicles automated charging control Working Paper Sustainability and Innovation, No. S4/2015 Provided in Cooperation with: Fraunhofer Institute for Systems and Innovation Research ISI Suggested Citation: Dallinger, David; Kohrs, Robert; Mierau, Michael; Marwitz, Simon; Wesche, Julius (2015) : Plug-in electric vehicles automated charging control, Working Paper Sustainability and Innovation, No. S4/2015, Fraunhofer-Institut für System- und Innovationsforschung ISI, Karlsruhe, http://nbn-resolving.de/urn:nbn:de:0011-n-3279201 This Version is available at: http://hdl.handle.net/10419/107069 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence.
    [Show full text]
  • National Grid Media Centre
    Investors Home Press Releases Media Contacts Home / Press Releases / National Grid and Energinet name suppliers for UK’s first ever power cable to Denmark 23 Jul 2019 472-mile link will be the longest in the world and enable the sharing of renewable energy between the UK and Denmark. Viking Link has the capacity to power one and a half million UK homes. Construction expected to be completed by end of 2023. National Grid and Energinet have today announced their chosen cable and converter station suppliers for Viking Link, the UK’s first ever subsea electricity interconnector to Denmark. Viking Link is a joint venture between National Grid Ventures, part of National Grid, and Danish system operator. Energinet. The 1.4 GW high voltage direct current interconnector, which will be the longest in the world when completed, will stretch 472 miles from the Lincolnshire coast to Western Denmark. The project will consist of two parallel HVDC (High Voltage Direct Current) cables which will be manufactured and installed by Prysmian Powerlink S.r.l. and NKT HV Cables AB. Prysmian will deliver four of the five cable lots and NKT will deliver the onshore cable lot in Denmark. Industrial manufacturing company Siemens will be supplying and installing equipment for two converter station sites in Lincolnshire, UK and Revsing, Denmark. The three contracts have a combined value of 1.1bn euros (£990mn). Viking Link will now move from development to the construction phase, with work in the UK and Denmark beginning next summer. Construction on Viking Link is expected to be completed by the end of 2023.
    [Show full text]
  • Revisiting the Merit-Order Effect of Renewable Energy Sources
    Revisiting the Merit-Order Effect of Renewable Energy Sources Marcus Hildmann, Andreas Ulbig and Goran¨ Andersson Abstract An on-going debate in the energy economics and power market community has raised the question if energy- only power markets are increasingly failing due to growing feed-in shares from subsidized renewable energy sources (RES). The short answer to this is: No, they are not failing. Energy-based power markets are, however, facing several market distortions, namely from the gap between the electricity volume traded at day-ahead markets versus the overall electricity consumption as well as the (wrong) regulatory assumption that variable RES generation, i.e., wind and photovoltaic (PV), truly have zero marginal operation costs. In this paper we show that both effects over-amplify the well-known merit-order effect of RES power feed-in beyond a level that is explainable by underlying physical realities, i.e., thermal power plants being willing to accept negative electricity prices to be able to stay online due to considerations of wear & tear and start-stop constraints. We analyze the impacts of wind and PV power feed-in on the day-ahead market for a region that is already today experiencing significant feed-in tariff (FIT)-subsidized RES power feed-in, the EPEX German- Austrian market zone (≈ 20% FIT share). Our analysis shows that, if the necessary regulatory adaptations are taken, i.e., increasing the day-ahead market’s share of overall load demand and using the true marginal costs of RES units in the merit-order, energy- based power markets can remain functional despite high RES power feed-in.
    [Show full text]
  • Minutes SDAC Joint Steering Committee Meeting 04/06/2020,13:30 – 17:00 CET, Conference Call
    Minutes SDAC Joint Steering Committee Meeting 04/06/2020,13:30 – 17:00 CET, conference call Present parties 50Hertz Cropex EPEX Spot Litgrid PSE Terna Admie EirGrid (TSO) ESO MAVIR REE TGE Amprion Eirgrid (SEMO PX) EXAA Nasdaq REN Transelectrica APG ElecLink Fingrid Nemo Link RTE Transnet BW AST Elering GME NGIC SEPS TTG BritNed ELES HEnEx OKTE SONI (SEMO PX) TTN BSP Elia HOPS OMIE SONI (TSO) ČEPS EMCO Nord Pool HUPX OPCOM Statnett Creos Energinet IBEX OTE Svk Attending by phone Not present Present chairs, TF leaders, PMOs, observers BMTF leader/PMO Entso-e MRC OPSCOM leader MSD TSO co-leader OST Swissgrid EC JSC Secretary MRC OPSCOM PMO MSD PMO PCR chair & PMO TSO co-chair EMS MEPSO MSD NEMO co-leader NEMO co-chair Procedures TF leader Attending by phone Not present Meeting agenda # Topic For 1 Welcome, practicalities 1.1 Confirm quorum Inf 1.2 Adoption of the agenda Dec 1.3 Approval of minutes of past meetings/calls (incl. part for publication) Dec 1.4 Review open action points Inf 2 Strategy/governance – decisions required 2.1 Way forward Central Settlement Entity Inf 3 Important points to highlight and decisions requested by TFs 3.1 Status extension projects and communication towards EC Dec 3.2 MRC OPSCOM Dec 3.3 MSD Dec 3.4 Procedures TF Inf 3.5 BMTF Dec 3.6 JSC members questions to reports in back-up section Dis 4 Important points for SDAC from ENTSO-E/ NC/ NRAs/ ACER/ EC 4.1 Preparations for next TCG and MESC Inf 4.2 EC consultation on first light amendment of some relevant regulations incl.
    [Show full text]
  • Minutes SDAC Joint Steering Committee Meeting 28/10/2020,11:00 – 17:00 CET, Conference Call
    Minutes SDAC Joint Steering Committee Meeting 28/10/2020,11:00 – 17:00 CET, conference call Present parties 50Hertz Cropex EPEX Spot Litgrid PSE Terna Admie EirGrid (TSO) ESO MAVIR REE TGE Amprion Eirgrid (SEMO PX) EXAA Nasdaq REN Transelectrica APG ElecLink Fingrid Nemo Link RTE Transnet BW AST Elering GME NGIC/NGIFA2 SEPS TTG BritNed ELES HEnEx OKTE SONI (SEMO PX) TTN BSP Elia HOPS OMIE SONI (TSO) ČEPS EMCO Nord Pool HUPX OPCOM Statnett Creos Energinet IBEX OTE Svk Attending by phone Not present Present chairs, TF leaders, PMOs, observers BMTF leader/PMO Entso-e MRC OPSCOM leader MSD TSO co-leader OST Swissgrid EC JSC Secretary MRC OPSCOM PMO MSD PMO PCR chair & PMO TSO co-chair EMS MEPSO MSD NEMO co-leader NEMO co-chair Procedures TF leader Attending by phone Not present Meeting agenda # Topic For 1 Welcome, practicalities 1.1 Confirm quorum Inf 1.2 Adoption of the agenda Dec 1.3 Approval of minutes of past meetings/calls (incl. part for publication) Dec 1.4 Review open action points Inf 2 Strategy/governance 2.1 Exit plan for GB parties Dec 2.2 DAOA: clarification re. approval of updated operational procedures Dec 2.3 15 min MTU implementation project Dec 2.4 Assessment on synergies between regions and SDAC Inf 3 Important points to highlight and decisions requested by TFs 3.1 BMTF Dec 3.2 MRC OPSCOM – PART 1 Dec Lunch break 3.3 Confirm quorum Inf 3.4 MRC OPSCOM – PART 2 Inf 3.5 Interim Coupling Project Inf 3.6 MSD (20 min) Inf 3.7 Intraday auctions (IDA) Inf 3.8 CCP default – status reporting Inf 3.9 JSC members questions to reports in back-up section Dis 4 Important points for SDAC from ENTSO-E/ NC/ NRAs/ ACER/ EC 4.1 Joint SDAC & SIDC governance: “lean” implementation proposal Dis 4.2 Feedback from 22/09 TCG and 23/09 MESC Inf 5 Any other business 5.1 SDAC communication plan Inf 5.2 Qualified electronic signature – status investigation outcome Inf 5.3 Next meetings Inf 1 List of decisions # Topic Decision 1.2 Adoption of the The meeting agenda is approved.
    [Show full text]