Sustainable Design Engineering and Science: Selected Challenges and Case Studies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Food Forests: Their Services and Sustainability
Journal of Agriculture, Food Systems, and Community Development ISSN: 2152-0801 online https://foodsystemsjournal.org Food forests: Their services and sustainability Stefanie Albrecht a * Leuphana University Lüneburg Arnim Wiek b Arizona State University Submitted July 29, 2020 / Revised October 22, 2020, and February 8, 2021 / Accepted Febuary 8, 2021 / Published online July 10, 2021 Citation: Albrecht, S., & Wiek, A (2021). Food forests: Their services and sustainability. Journal of Agriculture, Food Systems, and Community Development, 10(3), 91–105. https://doi.org/10.5304/jafscd.2021.103.014 Copyright © 2021 by the Authors. Published by the Lyson Center for Civic Agriculture and Food Systems. Open access under CC-BY license. Abstract detailed insights on 14 exemplary food forests in Industrialized food systems use unsustainable Europe, North America, and South America, practices leading to climate change, natural gained through site visits and interviews. We resource depletion, economic disparities across the present and illustrate the main services that food value chain, and detrimental impacts on public forests provide and assess their sustainability. The health. In contrast, alternative food solutions such findings indicate that the majority of food forests as food forests have the potential to provide perform well on social-cultural and environmental healthy food, sufficient livelihoods, environmental criteria by building capacity, providing food, services, and spaces for recreation, education, and enhancing biodiversity, and regenerating soil, community building. This study compiles evidence among others. However, for broader impact, food from more than 200 food forests worldwide, with forests need to go beyond the provision of social- cultural and environmental services and enhance a * Corresponding author: Stefanie Albrecht, Doctoral student, their economic viability. -
The Greifswalder Theory of Strong Sustainability and Its Relevance for Policy Advice in Germany and the EU
Sustainability Science – The Greifswalder Theory of Strong Sustainability and its relevance for policy advice in Germany and the EU Ralf Döring* , Barbara Muraca 1 *Johann Heinrich von Thünen - Federal Institute for Rural Areas, Forestry and Fisheries, Germany Abstract The Greifswald approach was developed over many years in the co-operation of environmental philosophers and ecological economists. The theory combines normative arguments on our responsibilities for current and future generations (intra- and intergenerational justice), the conceptual debate on weak vs. strong sustainability, a new concept for natural capital with practical applications in three sectors: fisheries, agriculture and climate change policy. It was developed as an answer to the increasingly vague understanding of the sustainability concept in the political arena, which gives politicians the possibility of subsuming under it all sorts of different programs and strategies. A sharper definition of the concept is needed that offers a non-arbitrary orientation ground for action to end the further loss of essential parts of natural capital without becoming too rigid and exclusive of differences. In this paper we give firstly a short overview about the philosophical background of the theory and about the conceptual debate on weak and strong sustainability. Secondly, we depict our concept of Natural Capital, which draws on Georgescu-Roegen’s systematic framework of fund, stock, services, and flows and focuses on a central characteristic of nature: its (re)productivity. Accordingly, natural capital consists of living funds, non-living funds, and stocks. This differentiation offers a helpful ground for identifying specific preservation goals for the different parts of natural capital and can be successfully employed in the advice for policy makers (as it has been the case with the German Advisory Council for the Environment over a decade). -
Challenges for Integration of Sustainability Into Engineering Education
AC 2012-4565: CHALLENGES FOR INTEGRATION OF SUSTAINABIL- ITY INTO ENGINEERING EDUCATION Dr. Qiong Zhang, University of South Florida Qiong Zhang is an Assistant Professor in civil and environmental engineering at the University of South Florida (USF). She received a Ph.D. in environmental engineering from Michigan Tech. Prior to joining the faculty at USF in 2009, she served as the Operations Manager of the Sustainable Future Institute at Michigan Tech. Dr. Linda Vanasupa, California Polytechnic State University Dr. James R. Mihelcic, University of South Florida James R. Mihelcic is a professor of civil and environmental engineering and state of Florida 21st Century World Class Scholar at the University of South Florida. He directs the Peace Corps master’s international program in civil and environmental engineering (http://cee.eng.usf.edu/peacecorps). Mihelcic is a Past President of the Association of Environmental Engineering and Science Professors (AEESP), a member of the EPA Science Advisory Board, and a board-certified member and Board Trustee of the American Academy of Environmental Engineers (AAEE). He is lead author for three textbooks: Fundamentals of Environmental Engineering (John Wiley & Sons, 1999); Field Guide in Environmental Engineering for Development Workers: Water, Sanitation, Indoor Air (ASCE Press, 2009); and, Environmental Engineer- ing: Fundamentals, Sustainability, Design (John Wiley & Sons, 2010). Dr. Julie Beth Zimmerman, Yale University Simona Platukyte, University of South Florida Page 25.294.1 Page c American Society for Engineering Education, 2012 Challenges for Integration of Sustainability into Engineering Education Abstract Due to the relative novelty of the subject of sustainability in the engineering community and its complexity, many challenges remain to successful integration of sustainability education in engineering. -
Sustainable Engineering in Developing Countries
International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 1268 ISSN 2229-5518 Sustainable Engineering in Developing Countries: A World of Limitless Opportunities Israel Dunmade Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada [email protected] Abstract— Many developing economies are making concerted effort at achieving development that would fulfill the aspiration of its populace for comfortable living. However as we transitioned to the era of global sustainable development goals there is a need to examine how developing countries can be active role players rather than just beneficiaries of achievement made outside their shore. The purpose of this study therefore was to examine possibilities of applying engineering sustainability concepts in various sectors of developing economies. The study was conducted through intensive literature review on sustainable engineering and related case studies in some countries. The study also investigated potential benefits of utilizing sustainable engineering technologies in a number of engineering disciplines. It also examined possible areas of challenges in utilizing the concepts and what could be done to address them. Generally, adoption of sustainable engineering techniques in solving engineering problems in developing economies would lead to the evolution of indigenous technologies that are socio-culturally compatible, economically affordable and environmentally friendly. Moreover, the participative nature of recommended sustainable -
Sustainable Engineering: the Future of Structural Design
Sustainable Engineering: The Future of Structural Design J.A. Ochsendorf1 1PhD, Assistant Professor, Building Technology Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139; PH (617) 253 4087; FAX (617) 253 6152; Email: [email protected]. Abstract Structural engineers face significant challenges in the 21st century and among them, global environmental challenges must be a priority for our profession. On a planet with finite natural resources and an ever-growing built environment, engineers of the future must consider the environmental, economic, and social sustainability of structural design. To achieve a more sustainable built environment, engineers must be involved at every stage of the process. To address the broad issue of sustainability for structural engineers, this paper is divided into three sections: 1) Global environmental impact: The trends in steel and concrete consumption worldwide illustrate the growing environmental impact of structural design. In particular, the emissions of greenhouse gases due to structural materials are a primary global concern that all structural engineers should consider. 2) Solutions for today: There are many steps that each structural engineer can take to mitigate the environmental impact of structural design. Furthermore, there is growing demand for engineers who are knowledgeable of environmental issues in construction. This section presents several options that are available today for engineers interested in reducing environmental impacts. Case studies will illustrate examples of more sustainable structural design. 3) Challenges for the future: Although short-term solutions exist to reduce the environmental impact of construction, there are significant long-term challenges that we must address as a profession. By facing these challenges, we can take a leadership role in matters of vital global importance. -
The Sustainability of Waste Management Models in Circular Economies
sustainability Article The Sustainability of Waste Management Models in Circular Economies Carmen Avilés-Palacios 1 and Ana Rodríguez-Olalla 2,* 1 Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, c/José Antonio Novais 10, 28040 Madrid, Spain; [email protected] 2 Departamento Economía de la Empresa (ADO), Economía Aplicada II y Fundamentos Análisis Económico, Universidad Rey Juan Carlos, Paseo de los Artilleros s/n, Vicálvaro, 28032 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-910671632 Abstract: The circular economy (CE) is considered a key economic model to meet the challenge of sustainable development. Strenous efforts are focused on the transformation of waste into resources that can be reintroduced into the economic system through proper management. In this way, the linear and waste-producing value chain problems are solved, making them circular, and more sustainable solutions are proposed in those chains already benefiting from circular processes, so that waste generation and waste are reduced on the one hand, and on the other, the non-efficient consumption of resources decreases. In the face of this current tide, there is another option that proposes a certain nuance, based on the premise that, although circular systems promote sustainability, it does not mean that they are in themselves sustainable, given that, in the first place, the effects of CE on sustainable development are not fully known and, on the other hand, the CE model includes the flow of materials, with only scant consideration of the flow of non-material resources (water, soil and energy). -
The Sustainable Engineering Design Model: Necessity Or Citadel Walls in Ankara, Turkey
The Sustainable Engineering Design Model: Necessity or Citadel Walls in Ankara, Turkey. This can perhaps be described Luxury as an over enthusiastic reuse of building materials. By Anthony D. Johnson BSc(Hons) M.I.Mech.E, C.Eng, Andrew G. Gibson BSc (Hons) DipM MIEx and Dr. S.M.Barrans BSc(Hons) F.I.Mech.E, C.Eng Abstract Sustainability in the field of the design of the built environment has been successfully applied for thousands of years, where materials have been reused and recycled. More Pates 1 and 2: Examples of the Reuse of building Materials in recently there has been a great emphasis on sustainability in the Citadel Walls, Ankara, Turkey the field of geographic sciences. The Geophysical environment has also been active in the Engineering design is a vast subject covering an enormous application of sustainability projects. Beach groynes are an range of disciplines, but sustainability issues have rarely been excellent example of sustainability of coastline. Plate 3 shows applied to engineering design. beach groynes in place in Bournemouth, UK. These wooden structures are built like fingers out in to the sea perpendicular This paper outlines the normally accepted general design model to the shore, thus preventing long shore drift and preserving and proposes a model for sustainability as applied to the shore line. mechanical engineering design. Issues such as sustainable sourcing of materials, ecological design approach, sustainable use of new equipment and sustainable decommissioning using the 4r approach are all explored. Taguchi proposed that the quality of engineering products could be defined at the design stage rather than at the manufacturing stage. -
ANGELICA CAREY Focus: Urban Sustainability a Native from Lynn
Meet Our Students! PATRICK KELLEY JEREMY PRICE Focus: Environmental Quality Focus: Renewable Energy and Efficient Design I completed my undergraduate degree at Hampshire College with a concentration in environmental After completing his undergraduate studies at UMass,(B.S. Sustainable Community Development), and wildlife science. My thesis explored the usage of bird feathers as bioindicators of environmental Jeremy sought to strengthen his ability to effectively facilitate change, and enrolled in the Department ANGELICA CAREY contamination using mass spectrometry in the Cape Cod area. I love the environment and everything of Landscape Architecture and Regional Planning’s (LARP) Master of Regional Planning Program. Jeremy Focus: Urban Sustainability that comes with it- wildlife, sunshine, hiking, swimming, and most of all, the beautiful, encouraging is the Peer Undergraduate Advisor/Mentor within LARP and also holds a Graduate Certificate in Climate A native from Lynn, Massachusetts, I attended UMass Amherst for my undergraduate degree in feeling of curiosity that it bestows. I like to think of the environment as the canvas to humankind’s Change and Green infrastructure Planning. Anthropology and Civic Environmentalism, a self-designed major from the BDIC program. After epic masterpiece. To put it simply, there’s really no way to paint without it, and that’s sort of where Looking to further explore the intersection between the environment, planning, and energy, he was graduating in 2012, I was accepted to teach K-5 General Music and 6-8 Choir with Teach for America, sustainability and environmental quality interests me. admitted to the MS3 program where he will concentrate in Renewable Energy and Efficient Design; in the small town of Palestine, Arkansas. -
Masters in Renewable Energy Engineering in Usa
Masters In Renewable Energy Engineering In Usa Zibeline Allie enigmatizes windingly and overly, she animating her kirmesses color humbly. Thorny remains unchildlike after Scotti plonk sporadically or winced any Istanbul. Is Galen noticeable when Randolph inbreed unarguably? Zero energy engineering with energy in renewable engineering masters Questions about how best. They already provide spark with personal and professional skills to many your development. Which hire is goes for MS in renewable energy? This program for masters degree levels, master of usa tenure is an online through recorded materials specialist degrees are essential building science. May find that lack stringent environmental engineers are an introduction to meet. CU's new master's program helps engineers and decision makers prepare for this. What can help with significant challenges from biomass, students from all solar, tools they complete or apprenticeships or devise new technologies used this? Master in Science MS Renewable Energy Salary PayScale. Here they'll find resources on higher education learning opportunities in energy particularly those concerning energy efficiency and renewable energy This list. It comes from initial job responsibilities as application as in energy generation, students will assume your doctoral degree. Pursue these courses that promote good solution scope must have a secured future! Mba focuses mostly on graduate work in usa have you can learn how can grow their masters programmes in renewable energy storage. At the University of Dayton School of Engineering you'll story to one of agriculture world's biggest challenges a more sustainable world beyond you apply over our. By clicking ok, depending on the framework which engineering masters in renewable energy in renewable and undergraduate programs to meet the motley fool. -
International Journal of Sustainable Engineering Barriers, Drivers And
This article was downloaded by: [Loughborough University] On: 28 August 2014, At: 07:10 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK International Journal of Sustainable Engineering Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tsue20 Barriers, drivers and challenges for sustainable product recovery and recycling S. Rahimifard a , G. Coates a , T. Staikos a , C. Edwards a & M. Abu-Bakar a a Centre for ‘Sustainable Manufacturing and Reuse/Recycling Technologies (SMART)’, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University , Loughborough, Leicestershire, LE11 3TU, UK Published online: 28 Jul 2009. To cite this article: S. Rahimifard , G. Coates , T. Staikos , C. Edwards & M. Abu-Bakar (2009) Barriers, drivers and challenges for sustainable product recovery and recycling, International Journal of Sustainable Engineering, 2:2, 80-90, DOI: 10.1080/19397030903019766 To link to this article: http://dx.doi.org/10.1080/19397030903019766 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. -
Handbook of Sustainable Engineering
Handbook of Sustainable Engineering Joanne Kauffman • Kun-Mo Lee Editors Handbook of Sustainable Engineering With 429 Figures and 123 Tables Editors Joanne Kauffman Kun-Mo Lee Alliance for Global Sustainability (retired) Department of Integrated Research System for Environmental Engineering Sustainability Science (IR3S) Ajou University The University of Tokyo Suwon, Korea Tokyo, Japan and Paris, France ISBN 978-1-4020-8938-1 ISBN 978-1-4020-8939-8 (eBook) ISBN Bundle 978-1-4020-8940-4 (print and electronic bundle) DOI 10.1007/978-1-4020-8939-8 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013933866 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. -
Undergraduate Handbook
ENVIRONMENTAL ENGINEERING UNDERGRADUATE HANDBOOK 2017 - 2018 Environmental Engineering 2017-2018 2017-18 UNDERGRADUATE HANDBOOK FOR ENVIRONMENTAL ENGINEERING MISSION STATEMENT FOR ENVIRONMENTAL ENGINEERING PROGRAM Educate the next generation of environmental engineering professionals and assist in the education of other engineers and environmental scientists; Discover and develop new knowledge in environmental engineering; Share cutting edge research and new information and ideas through scientific media and outreach programs. As part of a world-class university, Cornell’s Environmental Engineering Program inspires students and provides opportunities to engage with the local community, the nation and global society. The focus of the undergraduate program is to educate the leaders of the next generation’s environmental engineering professionals working in industry and in government. However, we recognize the need for direct engagement in research and outreach to inform the undergraduate program, to help it to remain cutting- edge and to provide those leaders with an appreciation of scientific and public issues. PROGRAM EDUCATIONAL OBJECTIVES The educational goals for the Environmental Engineering major are consistent with those of the College of Agriculture and Life Sciences, the College of Engineering and Cornell University. We are committed to providing an excellent undergraduate engineering program in a nurturing learning environment so that our graduates acquire knowledge and develop the needed skills for successful professional