Antiviral Drugs Proposed for COVID-19: Action Mechanism and Pharmacological Data

Total Page:16

File Type:pdf, Size:1020Kb

Antiviral Drugs Proposed for COVID-19: Action Mechanism and Pharmacological Data European Review for Medical and Pharmacological Sciences 2021; 25: 4163-4173 Antiviral drugs proposed for COVID-19: action mechanism and pharmacological data F. ROMMASI1, M.J. NASIRI2, M. MIRSAIEDI3 1Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran 2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran 3Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA Abstract. – OBJECTIVE: As a beta-coronavi- Key Words: rus, Coronavirus disease-2019 (COVID-19) has COVID-19, Pharmacology, Coronaviruses, Antiviral caused one of the most significant historical drugs, Viral replication. pandemics, as well as various health and med- ical challenges. Our purpose in this report is to collect, summarize, and articulate all essential information about antiviral drugs that may or Abbreviations may not be efficient for treating COVID-19. Clin- ical evidence about these drugs and their pos- WHO = World Health Organization; SARS-CoV-2 = Se- sible mechanisms of action are also discussed. vere acute respiratory syndrome coronavirus 2; SARS = MATERIALS AND METHODS: To conduct a Severe acute respiratory syndrome; MERS = Middle comprehensive review, different keywords in var- East(ern) Respiratory Syndrome; RNA =Ribonucleic ac- ious databases, including Web of Science, Sco- id; S(P) = Spike protein; Kb = Kilo base pairs; HE = pus, Medline, PubMed, and Google Scholar, were Hemagglutinin esterase; ACE 2 = Angiotensin-converting pro Pro searched relevant articles, especially the most re- enzyme-2; 3CL = 3-chymotrypsin-like protease; PL cent ones, were selected and studied. These se- = Papain-like protease; ACEi = Angiotensin-convert- lected original research articles, review papers, ing-enzyme inhibitors; ADR = Acute respiratory dis- tress syndrome; C = Maximum concentration; RdRp = systematic reviews, and even letters to the editors m were then carefully reviewed for data collection. RNA-dependent RNA-polymerase; DCGI = Drug Con- RESULTS: SARS-CoV-2 is the newest mem- troller General of India; AIDS = Acquired immunode- ber of the coronavirus family, and there are still ficiency syndrome; US FDA = United States Food and no promising therapies or particular antiviral Drug Administration; HA = Hemagglutinin; SPs = Spike compounds to fight it. After entering the body, proteins; HCV = Hepatitis C virus; ER = Endoplasmic SARS-CoV-2 penetrates the cells by attaching reticulum. to specific lung cell receptors, called angioten- sin-converting enzyme-2. Then, by employing cell division machinery, it replicates through Introduction a complex mechanism and spreads through- out the patient’s body. Various antiviral drugs, The new coronavirus disease, introduced by including anti-influenza/HIV/HCV drugs, have the World Health Organization (WHO) on Feb- been applied for treating COVID-19 patients. Due to the similarity of the structure and tran- ruary 11, 2020, as Coronavirus Disease-2019 scriptional mechanism of COVID-19 to a number (COVID-19, formerly 2019-nCoV), is the latest of viruses, some of the listed drugs have been health-medical challenge in the world. This novel beneficial against SARS-CoV-2. However, the ef- coronavirus is named Severe Acute Respiratory fectiveness of others is in an aura of ambiguity Syndrome Coronavirus 2019 (SARS-CoV-2) by and doubt. the International Virus Classification Commis- CONCLUSIONS: Some of the antiviral medi- sion1. The first case of COVID-19 was identified cations listed and discussed in this article have in Wuhan, Hubei Province, China, and has since been effective in the treatment of COVID-19 pa- tients or preventing the virus from spreading spread to almost all countries. On January 30, further. However, other drugs have to be investi- 2020, the WHO convened a meeting to introduce gated to reach a reliable conclusion about their the pandemic as an international health emergen- effectiveness or ineffectiveness. cy2. However, the prevalence of coronaviruses in Corresponding Authors: Mohammad Javad Nasiri, Ph.D, MPH; e-mail: [email protected] Foad Rommasi, B.sc.; e-mail: [email protected] 4163 F. Rommasi, M.J. Nasiri, M. Mirsaiedi the world has not been unprecedented. In the last SARS-CoV-2 is a beta coronavirus, and its ge- two decades, SARS and Middle East Respiratory nome length is about 26-32 Kilo base pairs (kb). Syndrome (MERS), respectively in 2003 and The genetic material of this virus is bound to 2014, have been epidemics of coronavirus3. The nucleocapsid proteins, and the envelope protein reproduction number of the 2019-nCoV is esti- structures surround it. Structural proteins, in- mated between 2 and 3, while its fatality rate is cluding spike proteins (SP), protein membranes predicted around 0.5-1.5%4. The most significant (M), small membrane protein (SM), and another symptoms in COVID-19 patients are fever, dry membrane glycoprotein called hemagglutinin cough, loss of sense of taste, lethargy, and short- esterase (HE), are encoded by the viral RNA10,11. ness of breath5. Anosmia is also one of the most The schematic structure of 2019-nCoV is illus- critical symptoms in recent COVID-19 patients6. trated in Figure 1. It is stated that COVID-19 is more contagious When SARS-CoV-2 enters the body and than other coronaviruses, and its transmission comes in contact with the host cell membrane, rate is higher than the closely related strain, some changes occur in the structure of the virus. SARS-CoV-10 7. There are some similarities be- The human TMPRSS2 protein alters the confor- tween SARS-CoV-1 and SARS-CoV-2, including mation of the spike glycoprotein in the virus. genome length, receptor type, and the ability to As a result of this modification, the virus can stimulate cytokine storms8. attach to the Angiotensin-Converting Enzyme-2 The coronaviruses are ribonucleic acid (RNA) (ACE2) cell receptor, leading to accumulation viruses, which have a positive single-strand RNA. of clathrin beneath that area and penetration of This genus of viruses causes disease in humans the virus into the cell. ACE2 receptor has been and a wide range of animals9. The “Corona” term detected on the cell surface of several tissues, means crown in Latin, and the reason for their including stomach, liver, and lung12. The virus naming as coronaviruses is the observation of the can also trigger inflammatory responses called crown-like protein structures on these viruses Acute Respiratory Distress Syndrome (ARDS) under an electronic microscope. that can lead to a deadly severe condition and Coronaviruses are categorized into four sub- even death13. Two substantial protease enzymes, groups: alpha, beta, gamma, and delta. The first 3-chymotrypsin-like protease (3CLpro) and pa- two groups originate from mammals and can pain-like protease (PLPro) have essential roles cause zoonotic diseases in humans, while the in its viral replication process after it enters the last two groups emanate from birds and pigs. host cell via ACE2 receptors14. Expression of Figure 1. Schematic structure of COVID-19 and various proteins in its composition. 4164 Antiviral drugs proposed for COVID-19: action mechanism and pharmacological data several genes, such as AHCYL2, ZNF385B etc., Favipiravir appears to have a strong correlation with the ex- Favipiravir (under the brand name Avigan), pression of ACE2 and TMPRSS2 protein recep- also known as the T705 therapeutic compound, tors in human healthy and normal lung cells15. is a synthetic agent and antiviral product that was Various antiviral agents and adjuvant drugs first synthesized and marketed as an anti-influ- have been administered to treat COVID-19, and enza drug in Japan. The agent was discovered some of them could get emergency approval in in the biochemical section of the Toyoma labora- different countries. Other drugs, such as An- tory while studying the effects of several active giotensin-Converting-Enzyme inhibitors (ACEi), chemical compounds against the influenza virus. have also been used to treat COVID-19. However, The precursor of this drug is a substance called no clear correlation was reported between mor- A/PR/8/34, which was later named T1105. The tality rate and ACEi drugs in hypertension pa- anti-influenza effects of T1105 and its chemical tients with COVID-1916. Due to the possibility of derivatives were observed during their synthesis. secondary infection in these patients, antibiotics Favipiravir is also a derivative of the precursor have been applied as various protocols. The 10th T1105, formed by modifying and binding some day upon hospitalization is the most common day conjugates to the pyrazine moiety of T110518,19. for the onset and diagnosis of secondary infec- Favipiravir has desirable pharmacological charac- tions17. So far, no fully effective drug compound teristics. For instance, it has high bioavailability has been discovered against this virus. The anti- (~94%) and biocompatibility, efficiently binds to viral drugs, usually nucleoside analogues or in- about 54% of plasma proteins, and its maximum tracellular proteases, block the virus by prevent- concentration (Cm) peaks about two hours upon ing its entry into the cell or by interfering with utilization. Its Tmax and half-life increase after its replication inside the cell. In this study, we continuous administration of the drug. Drug ex- aimed to review famous antiviral drugs that have cretion is through renal elimination and is mainly already been used or could be effective against impacted by aldehyde oxidase and xanthine ox- SARS-CoV-2. The names of antiviral agents and idase. The hydroxylated form of Favipiravir is other terms that are described in this article are usually excreted renally. The cytochrome p450 summarized in Figure 2. complex enzyme does not metabolize Favipira- Figure 2. Schematic and straightforward overview of various terms discussed in this review article. 4165 F. Rommasi, M.J. Nasiri, M. Mirsaiedi vir, while CYP2C8, a member of this complex, is revealed it to be effective against other viruses, affected by Favipiravir. The half-life of this drug including the Nipah virus27, hepatitis C28, and is short and about 2.5 hours19,20.
Recommended publications
  • COVID-19) Pandemic on National Antimicrobial Consumption in Jordan
    antibiotics Article An Assessment of the Impact of Coronavirus Disease (COVID-19) Pandemic on National Antimicrobial Consumption in Jordan Sayer Al-Azzam 1, Nizar Mahmoud Mhaidat 1, Hayaa A. Banat 2, Mohammad Alfaour 2, Dana Samih Ahmad 2, Arno Muller 3, Adi Al-Nuseirat 4 , Elizabeth A. Lattyak 5, Barbara R. Conway 6,7 and Mamoon A. Aldeyab 6,* 1 Clinical Pharmacy Department, Jordan University of Science and Technology, Irbid 22110, Jordan; [email protected] (S.A.-A.); [email protected] (N.M.M.) 2 Jordan Food and Drug Administration (JFDA), Amman 11181, Jordan; [email protected] (H.A.B.); [email protected] (M.A.); [email protected] (D.S.A.) 3 Antimicrobial Resistance Division, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland; [email protected] 4 World Health Organization Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt; [email protected] 5 Scientific Computing Associates Corp., River Forest, IL 60305, USA; [email protected] 6 Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; [email protected] 7 Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield HD1 3DH, UK * Correspondence: [email protected] Citation: Al-Azzam, S.; Mhaidat, N.M.; Banat, H.A.; Alfaour, M.; Abstract: Coronavirus disease 2019 (COVID-19) has overlapping clinical characteristics with bacterial Ahmad, D.S.; Muller, A.; Al-Nuseirat, respiratory tract infection, leading to the prescription of potentially unnecessary antibiotics. This A.; Lattyak, E.A.; Conway, B.R.; study aimed at measuring changes and patterns of national antimicrobial use for one year preceding Aldeyab, M.A.
    [Show full text]
  • Antioxidant Potential of Antiviral Drug Umifenovir
    molecules Article Antioxidant Potential of Antiviral Drug Umifenovir Elena V. Proskurnina 1,*, Dmitry Yu. Izmailov 2, Madina M. Sozarukova 3, Tatiana A. Zhuravleva 2, Irina A. Leneva 4 and Artem A. Poromov 4 1 Research Centre for Medical Genetics, ul. Moskvorechye 1, Moscow 115522, Russia 2 Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky prospekt 27-1, Moscow 119234, Russia; [email protected] (D.Y.I.); [email protected] (T.A.Z.) 3 Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prospekt 31, Moscow 119991, Russia; [email protected] 4 Department of Experimental Virology, Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi pereulok 5a, Moscow 105064, Russia; [email protected] (I.A.L.); [email protected] (A.A.P.) * Correspondence: [email protected]; Tel.: +7-(499)-612-8193 Received: 21 February 2020; Accepted: 28 March 2020; Published: 30 March 2020 Abstract: Free radical reactions play an important role in biological functions of living systems. The balance between oxidants and antioxidants is necessary for the normal homeostasis of cells and organisms. Experimental works demonstrate the role of oxidative stress that is caused by influenza virus as well as the toxic effects of some antiviral drugs. Therefore, antiviral drugs should be characterized by its pro- and antioxidant activity, because it can affect its therapeutic efficiency. The aim of the study was to quantify the antioxidant capacity and propose the mechanism of the antioxidant effect of the antiviral drug Umifenovir (Arbidol®). The kinetic chemiluminescence with the 2,2’-azobis (2-amidinopropane) dihydrochloride + luminol system was used to quantify the antioxidant capacity of Umifenovir relative to the standard compound Trolox.
    [Show full text]
  • Genotype 3-Hepatitis C Virus' Last Line of Defense
    ISSN 1007-9327 (print) ISSN 2219-2840 (online) World Journal of Gastroenterology World J Gastroenterol 2021 March 21; 27(11): 990-1116 Published by Baishideng Publishing Group Inc World Journal of W J G Gastroenterology Contents Weekly Volume 27 Number 11 March 21, 2021 FRONTIER 990 Chronic renal dysfunction in cirrhosis: A new frontier in hepatology Kumar R, Priyadarshi RN, Anand U REVIEW 1006 Genotype 3-hepatitis C virus’ last line of defense Zarębska-Michaluk D 1022 How to manage inflammatory bowel disease during the COVID-19 pandemic: A guide for the practicing clinician Chebli JMF, Queiroz NSF, Damião AOMC, Chebli LA, Costa MHM, Parra RS ORIGINAL ARTICLE Retrospective Study 1043 Efficacy and safety of endoscopic submucosal dissection for gastric tube cancer: A multicenter retrospective study Satomi T, Kawano S, Inaba T, Nakagawa M, Mouri H, Yoshioka M, Tanaka S, Toyokawa T, Kobayashi S, Tanaka T, Kanzaki H, Iwamuro M, Kawahara Y, Okada H 1055 Study on the characteristics of intestinal motility of constipation in patients with Parkinson's disease Zhang M, Yang S, Li XC, Zhu HM, Peng D, Li BY, Jia TX, Tian C Observational Study 1064 Apolipoprotein E polymorphism influences orthotopic liver transplantation outcomes in patients with hepatitis C virus-induced liver cirrhosis Nascimento JCR, Pereira LC, Rêgo JMC, Dias RP, Silva PGB, Sobrinho SAC, Coelho GR, Brasil IRC, Oliveira-Filho EF, Owen JS, Toniutto P, Oriá RB 1076 Fatigue in patients with inflammatory bowel disease in Eastern China Gong SS, Fan YH, Lv B, Zhang MQ, Xu Y, Zhao J Clinical
    [Show full text]
  • Remdesivir Targets a Structurally Analogous Region of the Ebola Virus and SARS-Cov-2 Polymerases
    Remdesivir targets a structurally analogous region of the Ebola virus and SARS-CoV-2 polymerases Michael K. Loa,1, César G. Albariñoa, Jason K. Perryb, Silvia Changb, Egor P. Tchesnokovc,d, Lisa Guerreroa, Ayan Chakrabartia, Punya Shrivastava-Ranjana, Payel Chatterjeea, Laura K. McMullana, Ross Martinb, Robert Jordanb,2, Matthias Göttec,d, Joel M. Montgomerya, Stuart T. Nichola, Mike Flinta, Danielle Porterb, and Christina F. Spiropouloua,1 aViral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329; bGilead Sciences Inc., Foster City, CA 94404; cDepartment of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; and dLi Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved September 7, 2020 (received for review June 14, 2020) Remdesivir is a broad-spectrum antiviral nucleotide prodrug that remdesivir-selected EBOV lineages; this mutation resulted in a has been clinically evaluated in Ebola virus patients and recently nonconservative amino acid substitution at residue 548 (F548S) in received emergency use authorization (EUA) for treatment of the fingers subdomain of the EBOV L RdRp. We examined this COVID-19. With approvals from the Federal Select Agent Program mutation in several contexts: a cell-based minigenome, a cell-free and the Centers for Disease Control and Prevention’s Institutional biochemical polymerase assay, as well as in a full-length infectious Biosecurity Board, we characterized the resistance profile of recombinant EBOV. In the context of the infectious virus, the F548S remdesivir by serially passaging Ebola virus under remdesivir se- substitution recapitulated the reduced susceptibility phenotype to lection; we generated lineages with low-level reduced susceptibil- remdesivir, and potentially showed a marginal decrease in viral fit- ity to remdesivir after 35 passages.
    [Show full text]
  • Immunomodulators Under Evaluation for the Treatment of COVID-19
    Immunomodulators Under Evaluation for the Treatment of COVID-19 Last Updated: August 4, 2021 Summary Recommendations See Therapeutic Management of Hospitalized Adults with COVID-19 for the COVID-19 Treatment Guidelines Panel’s (the Panel) recommendations on the use of the following immunomodulators for patients according to their disease severity: • Baricitinib with dexamethasone • Dexamethasone • Tocilizumab with dexamethasone Additional Recommendations There is insufficient evidence for the Panel to recommend either for or against the use of the following immunomodulators for the treatment of COVID-19: • Colchicine for nonhospitalized patients • Fluvoxamine • Granulocyte-macrophage colony-stimulating factor inhibitors for hospitalized patients • Inhaled budesonide • Interleukin (IL)-1 inhibitors (e.g., anakinra) • Interferon beta for the treatment of early (i.e., <7 days from symptom onset) mild to moderate COVID-19 • Sarilumab for patients who are within 24 hours of admission to the intensive care unit (ICU) and who require invasive mechanical ventilation, noninvasive ventilation, or high-flow oxygen (>0.4 FiO2/30 L/min of oxygen flow) The Panel recommends against the use of the following immunomodulators for the treatment of COVID-19, except in a clinical trial: • Baricitinib with tocilizumab (AIII) • Interferons (alfa or beta) for the treatment of severely or critically ill patients with COVID-19 (AIII) • Kinase inhibitors: • Bruton’s tyrosine kinase inhibitors (e.g., acalabrutinib, ibrutinib, zanubrutinib) (AIII) • Janus kinase inhibitors other than baricitinib (e.g., ruxolitinib, tofacitinib) (AIII) • Non-SARS-CoV-2-specific intravenous immunoglobulin (IVIG) (AIII). This recommendation should not preclude the use of IVIG when it is otherwise indicated for the treatment of complications that arise during the course of COVID-19.
    [Show full text]
  • Potential Drug Candidates Underway Several Registered Clinical Trials for Battling COVID-19
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2020 doi:10.20944/preprints202004.0367.v1 Potential Drug Candidates Underway Several Registered Clinical Trials for Battling COVID-19 Fahmida Begum Minaa, Md. Siddikur Rahman¥a, Sabuj Das¥a, Sumon Karmakarb, Mutasim Billahc* aDepartment of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi-6205, Bangladesh bMolecular Biology and Protein Science Laboratory, University of Rajshahi, Rajshahi-6205, Bangladesh cProfessor Joarder DNA & Chromosome Research Laboratory, University of Rajshahi, Rajshahi-6205, Bangladesh *Corresponding Author: Mutasim Billah, Professor Joarder DNA & Chromosome Research Laboratory, University of Rajshahi, Rajshahi, Bangladesh Corresponding Author Mail: [email protected] ¥Co-second author Abstract The emergence of new type of viral pneumonia cases in China, on December 31, 2019; identified as the cause of human coronavirus, labeled as "COVID-19," took a heavy toll of death and reported cases of infected people all over the world, with the potential to spread widely and rapidly, achieved worldwide prominence but arose without the procurement guidance. There is an immediate need for active intervention and fast drug discovery against the 2019-nCoV outbreak. Herein, the study provides numerous candidates of drugs (either alone or integrated with another drugs) which could prove to be effective against 2019- nCoV, are under different stages of clinical trials. This review will offer rapid identification of a number of repurposable drugs and potential drug combinations targeting 2019-nCoV and preferentially allow the international research community to evaluate the findings, to validate the efficacy of the proposed drugs in prospective trials and to lead potential clinical practices. Keywords: COVID-19; Drugs; 2019-nCoV; Clinical trials; SARS-CoV-2 Introduction A new type of viral pneumonia cases occurred in Wuhan, Hubei Province in China, on December 31, 2019; named "COVID-19" on January 12, 2020 by the World Health Organization (WHO) [1].
    [Show full text]
  • Research Ethics
    Q1 Performance In Initiating 2018 2019 Research Ethics Integrated Date of First Date Site Non- Reasons for Committee Research First Participant Date Site Date Site Date Site Date Site Ready To Name of Trial Participant HRA Approval Date Confirmed By Confirmation Reasons for Delay Comments delay correspond Reference Application System Recruited? Invited Selected Confirmed Start Recruited Sponsor Status to: Number Number E - Staff MEOF-002 - Methoxyflurane AnalGesia for Paediatric availability issues 70 Day Target Date Not Met. Contracting and Site 17/SC/0039 220282 Yes 10/01/2018 28/07/2017 28/07/2017 18/04/2017 05/09/2017 12/09/2017 Please Select... 25/10/2017 Both InjuriEs (MAGPIE) Staffing Delays H - Contracting delays 70 Day Target Date Not Met. Draft CTA received D - Sponsor Delays 23.10.2017; Sponsor took CTA with them from the SIV on 31.10.2017. Fully executed CTA was still Metronidazole Versus lactic acId for Treating bacterial 17/LO/1245 208149 Yes 29/11/2017 20/09/2017 20/09/2017 12/09/2017 30/10/2017 09/11/2017 Please Select... 13/11/2017 awaited on 13.11.2017, when C&C was issued. Sponsor vAginosis–VITA Green light received from Sponsor on 17.11.2017. F - No patients Study difficult to recruit to because only c.8.5% of seen potential participants are eligible. 17/LO/1363 226980 Safety and Efficacy of Two TAVI Systems Yes 29/11/2017 24/10/2017 24/10/2017 31/10/2017 18/09/2017 27/10/2017 Please Select... 23/11/2017 J - Other 70 Day Target Date Met Neither Sponsor and site agreed that the study would CTLA4 Ig (Abatacept) for prevention of abnormal start in Jan 2018 due to the potential participant.'s 14/SW/1061 131169 glucose tolerance and diabetes in relatives at risk for No 22/09/2017 22/09/2017 13/11/2017 18/09/2017 05/12/2017 Please Select..
    [Show full text]
  • TITLE PAGE COVID-19 Treatment
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2020 doi:10.20944/preprints202003.0378.v1 Peer-reviewed version available at International Journal of Antimicrobial Agents 2020; doi:10.1016/j.ijantimicag.2020.106080 TITLE PAGE COVID-19 Treatment: Close to a Cure? – A Rapid Review of Pharmacotherapies for the Novel Coronavirus 1. Yang Song, PharmD, BCPS Department of Pharmacy Services CHI Franciscan Health-St. Joseph Medical Center Tacoma, WA 98405 [email protected] 2. Min Zhang, PharmD, BCPS Department of Pharmacy Services Boston Medical Center Boston, MA 02118 3. Ling Yin, PharmD, PhD, BCPS, BCOP Department of Pharmacy Services AdventHealth Celebration Cancer Institute Celebration, FL 34747 4. Kunkun Wang, PharmD Department of Pharmacy Services Fairbanks Memorial Hospital Fairbanks, AK 99701 5. Yiyi Zhou, PharmD Department of Pharmacy Services Beijing United Family Hospital Beijing, China 100016 6. Mi Zhou, MM Department of Pharmacy Services Children’s Hospital of Soochow University Suzhou, China 215000 7. Yun Lu, PharmD, MS Associate Clinical Professor, University of Minnesota Department of Pharmacy Services Hennepin County Medical Center Minneapolis, MN 55415 1 © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2020 doi:10.20944/preprints202003.0378.v1 Peer-reviewed version available at International Journal of Antimicrobial Agents 2020; doi:10.1016/j.ijantimicag.2020.106080 Abstract Currently, there is no specific treatment for COVID-19 proven by clinical trials. WHO and CDC guidelines therefore endorse supportive care only. However, frontline clinicians have been applying several virus- based and host-based therapeutics in order to combat SARS-CoV-2.
    [Show full text]
  • Determining Ribavirin's Mechanism of Action Against Lassa Virus Infection
    www.nature.com/scientificreports OPEN Determining Ribavirin’s mechanism of action against Lassa virus infection Received: 28 March 2017 Paola Carrillo-Bustamante1, Thi Huyen Tram Nguyen2,3, Lisa Oestereich4,5, Stephan Accepted: 4 August 2017 Günther4,5, Jeremie Guedj 2,3 & Frederik Graw1 Published: xx xx xxxx Ribavirin is a broad spectrum antiviral which inhibits Lassa virus (LASV) replication in vitro but exhibits a minor effect on viremiain vivo. However, ribavirin significantly improves the disease outcome when administered in combination with sub-optimal doses of favipiravir, a strong antiviral drug. The mechanisms explaining these conflicting findings have not been determined, so far. Here, we used an interdisciplinary approach combining mathematical models and experimental data in LASV-infected mice that were treated with ribavirin alone or in combination with the drug favipiravir to explore different putative mechanisms of action for ribavirin. We test four different hypotheses that have been previously suggested for ribavirin’s mode of action: (i) acting as a mutagen, thereby limiting the infectivity of new virions; (ii) reducing viremia by impairing viral production; (iii) modulating cell damage, i.e., by reducing inflammation, and (iv) enhancing antiviral immunity. Our analysis indicates that enhancement of antiviral immunity, as well as effects on viral production or transmission are unlikely to be ribavirin’s main mechanism mediating its antiviral effectiveness against LASV infection. Instead, the modeled viral kinetics suggest that the main mode of action of ribavirin is to protect infected cells from dying, possibly reducing the inflammatory response. Lassa fever (LF) is a severe and often fatal hemorrhagic disease caused by Lassa virus (LASV), a member of the Arenaviridae virus family.
    [Show full text]
  • Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir
    RESEARCH ARTICLE Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir Ana I. de AÂ vila1, Isabel Gallego1,2, Maria Eugenia Soria3, Josep Gregori2,3,4, Josep Quer2,3,5, Juan Ignacio Esteban2,3,5, Charles M. Rice6, Esteban Domingo1,2*, Celia Perales1,2,3* 1 Centro de BiologõÂa Molecular ªSevero Ochoaº (CSIC-UAM), Consejo Superior de Investigaciones CientõÂficas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain, 2 Centro de InvestigacioÂn BiomeÂdica en Red de Enfermedades HepaÂticas y Digestivas (CIBERehd), Barcelona, Spain, 3 Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d a11111 ÂHebron, (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain, 4 Roche Diagnostics, S.L., Sant Cugat del ValleÂs, Spain, 5 Universitat AutoÂnoma de Barcelona, Barcelona, Spain, 6 Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, United States of America * [email protected] (ED); [email protected] (CP) OPEN ACCESS Abstract Citation: de AÂvila AI, Gallego I, Soria ME, Gregori J, Quer J, Esteban JI, et al. (2016) Lethal Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an Mutagenesis of Hepatitis C Virus Induced by excess of mutations acquired during replication in the presence of a mutagen. Here we Favipiravir. PLoS ONE 11(10): e0164691. show that favipiravir (T-705) is a potent mutagenic agent for hepatitis C virus (HCV) during doi:10.1371/journal.pone.0164691 its replication in human hepatoma cells. T-705 leads to an excess of G ! A and C ! U tran- Editor: Ming-Lung Yu, Kaohsiung Medical sitions in the mutant spectrum of preextinction HCV populations.
    [Show full text]
  • High-Throughput Human Primary Cell-Based Airway Model for Evaluating Infuenza, Coronavirus, Or Other Respira- Tory Viruses in Vitro
    www.nature.com/scientificreports OPEN High‑throughput human primary cell‑based airway model for evaluating infuenza, coronavirus, or other respiratory viruses in vitro A. L. Gard1, R. J. Luu1, C. R. Miller1, R. Maloney1, B. P. Cain1, E. E. Marr1, D. M. Burns1, R. Gaibler1, T. J. Mulhern1, C. A. Wong1, J. Alladina3, J. R. Coppeta1, P. Liu2, J. P. Wang2, H. Azizgolshani1, R. Fennell Fezzie1, J. L. Balestrini1, B. C. Isenberg1, B. D. Medof3, R. W. Finberg2 & J. T. Borenstein1* Infuenza and other respiratory viruses present a signifcant threat to public health, national security, and the world economy, and can lead to the emergence of global pandemics such as from COVID‑ 19. A barrier to the development of efective therapeutics is the absence of a robust and predictive preclinical model, with most studies relying on a combination of in vitro screening with immortalized cell lines and low‑throughput animal models. Here, we integrate human primary airway epithelial cells into a custom‑engineered 96‑device platform (PREDICT96‑ALI) in which tissues are cultured in an array of microchannel‑based culture chambers at an air–liquid interface, in a confguration compatible with high resolution in‑situ imaging and real‑time sensing. We apply this platform to infuenza A virus and coronavirus infections, evaluating viral infection kinetics and antiviral agent dosing across multiple strains and donor populations of human primary cells. Human coronaviruses HCoV‑NL63 and SARS‑CoV‑2 enter host cells via ACE2 and utilize the protease TMPRSS2 for spike protein priming, and we confrm their expression, demonstrate infection across a range of multiplicities of infection, and evaluate the efcacy of camostat mesylate, a known inhibitor of HCoV‑NL63 infection.
    [Show full text]
  • Remdesivir Remdesivir (Development Code GS-5734) Is a Novel Antiviral Remdesivir Drug in the Class of Nucleotide Analogs
    Remdesivir Remdesivir (development code GS-5734) is a novel antiviral Remdesivir drug in the class of nucleotide analogs. It was developed by Gilead as a treatment for Ebola virus disease and Marburg virus infections,[1] though it has subsequently also been found to show antiviral activity against other single stranded RNA viruses such as respiratory syncytial virus, Junin virus, Lassa fever virus, Nipah virus, Hendra virus, and coronaviruses (including MERS and SARS viruses).[2][3] It is being studied for 2019-nCoV and Nipah and Hendra virus infections.[4][5][6] Based on success against other coronavirus infections, Gilead provided remdesivir to physicians that treated an American patient in Snohomish County, Washington infected with the Wuhan coronavirus, 2019- Clinical data nCoV, and is providing the compound gratis, to China, to Other GS-5734 conduct a pair of trials in infected individuals with and without names severe symptoms.[7] Legal status Legal status US: Investigational New Drug Contents Identifiers Research usage IUPAC name Ebola virus (2S)-2-{(2R,3S,4R,5R)-[5-(4-Aminopyrrolo[2,1- Novel coronavirus (2019-nCoV) f][1,2,4]triazin-7-yl)-5-cyano-3,4-dihydroxy Other viruses -tetrahydro-furan-2-ylmethoxy]phenoxy-(S Mechanism of action and resistance )-phosphorylamino}propionic acid 2-ethyl- See also butyl ester References CAS 1809249-37-3 (http://w Number ww.commonchemistry. org/ChemicalDetail.asp Research usage x?ref=1809249-37-3) Laboratory tests suggests remdesivir is effective against a wide ChemSpider 58827832 (http://www. range of viruses, including SARS-CoV and MERS-CoV. The chemspider.com/Chem medication was pushed to treat the West African Ebola virus ical-Structure.5882783 epidemic of 2013–2016.
    [Show full text]