Coronaviridae

Total Page:16

File Type:pdf, Size:1020Kb

Coronaviridae CHAPTER 3 Coronaviridae James A. Robb and Clifford W. Bond* Department of Pathology University of California, San Diego La Jol/a, California 92093 1. INTRODUCTION 1.1. Summary Corona viruses are widespread in nature, but relatively little atten­ tion has been given to them. They are pathogenic, enveloped RNA viruses whose large, single-stranded, nonsegmented genome is of a posi­ tive polarity. They cause a broad spectrum of disease in their natural hosts, including man, primarily by a cytocidal virus-cell interaction. The structure of the virion, the molecular mechanisms of their multi­ plication strategy, and their pathogenesis are just beginning to receive the attention they deserve. Our goals in this chapter are three: (1) to define the criteria for membership and the present members of the coronavirus family; (2) to define the structure of the virion and the multiplication strategy for this family; and (3) to describe the spectrum and pathogenesis of disease produced by this family of important pathogenic viruses in their natural hosts. The preprints and unpublished data supplied by many of our colleagues are appreciated. Our emphasis will be, whenever possible, on the molecular description of the multiplication strategy of these viruses * Present addresses: J. A. R., Department of Pathology, The Green Hospital of Scripps Clinic, La Jolla, California 92037. C. W. B., Department of Microbiology, Mon­ tana State University, Bozeman, Montana 59717. 193 H. Fraenkel-Conrat et al. (eds.), Comprehensive Virology © Plenum Press, New York 1979 194 Chapter 3 and on the molecular mechanisms involved in the pathogenesis of the disease produced by these viruses. There are at present large gaps in the description of the molecular virology of this family. In an attempt to bridge some of these gaps and make the review as up to date as possi­ ble, prudent speculation will be used and identified as such. 1.2 Definition and Members of the Coronavirus Family 1.2.1. Criteria for Membership and Tentative Members Until recently, enveloped, RNA-containing viruses that budded solely from the endoplasmic reticular membranes, that had a spherical shape with a 60-220 nm diameter, and that had a "corona" of widely spaced, bulbous peplomers 12-24 nm in length were defined as coronaviruses (McIntosh, 1974). Acceptable biochemical criteria were not available. Such biochemical criteria are now available using avian infectious bronchitis virus (IBV) as the prototype virus for this family (Schochetman et af., 1977; Lomniczi, 1977; Lomniczi and Kennedy, 1977). The virion genome of enveloped viruses of the above morphology must be a large (6-8 X 106 daltons) single piece of single-stranded infectious RNA of messenger (positive) polarity. In addition to IBV, the virions of mouse hepatitis virus (MHV), human coronavirus (HeV), and porcine transmissible gastroenteritis virus (TG EV) probably contain a genome of positive polarity as described in Section 2.2.2. In addition, several other viruses have satisfied the electron microscopic criteria for membership in this family and are listed in Table 1. Addi­ tional biochemical criteria will soon be forthcoming because the investi­ gation of the molecular virology of the coronavirus family is rapidly gaining momentum. 1.2.2. Serological Relatedness of Members The intraspecies and inter species serological relatedness of the various viruses are complex and not yet fully understood (Table 1). The production of useful vaccines against coronavirus diseases, many of which are economically important in agriculture and probably in the human economy as well, will require a more detailed understanding of the serological relatedness of these viruses than is currently available. The major problem in acquiring these data, as well as in understanding Coronaviridae 195 TABLE 1 Tentative Members of the Coronavirus Family and Their Serological Relatedness Natural Virus" host SerotypesC Serologically related to' Avian infectious bronchitis (IBV) Chicken Many' ? TGEV' Canine coronavirus (CCV) Dog ? One' TGEV',' Feline coronavirus (FCV) Cat ? One' TGEV, but not HEV' (infectious peritonitis) Huinan coronavirus (HCV) Man Several"···· HEV, MHV··7 Human enteric corona virus (HECV) Man ? One TGEV' Murine hepatitis virus (MHV) Mouse Many' RCV, SDA V, HCV, ?HEV··7 Neonatral calf diarrhea corona- Bovine Several· virus· (NCDCV) Porcine transmissible gastro- Pig One"'" CCV., FCV', ?HEV', ?IBV' enteritis virus (TGEV) Porcine hemagglutinating Pig ? One' encephalitis virus (HEV) Rat coronavirus (RCV) Rat ? Ones MHV' Rat sialodacryoadenitis Rat ? Ones MHV' virus (SDA V) Runde tick coronavirus (RTCV) ? Tick ? One'· Not to IBV or MHV'· ? Sea bird Turkey bluecomb disease Turkey ? One' virus (TCDV) " These names and abbreviations conform to those suggested by Tyrrell et al. (personal communi­ cation) in a revision to the previous recommendations (Tyrrell et al., 1975). • Mucosal disease virus (border disease, Plant et al., 1976) of sheep may belong in this group (Snowdon et al., 1975). C References: 1, Cowen and Hitchner (1975); 2, McIntosh (1974); 3, Kapikian (1975); 4, Binn et al. (1974); 5, Reynolds et al. (1977); 6, Monto (1974); 7, Kaye et al. (1977); 8, Hafez et al. (1976); 9, Kemeny (1976); 10, Traavik et al. (1977). the molecular virology, is the relative difficulty in isolating and growing these viruses in cell culture. This problem is discussed in Section 3. 2. VIRIONS 2.1. Morphology Coronavirus virions are pleomorphic spherical particles of 80-160 nm diameter with characteristic large, widely spaced, 12- to 24-nm-Iong spikes or peplomers that form a corona around the particle and provide the name for this virus family. Figures 1 and 2 show the novel mor- 196 Chapter 3 Fig. 1. A group of IBV virions treated with formaldehyde before staining with phos­ photungstic acid. Almost all reveal the internal component. The majority display the tongue or flask orientation, but others show a circular structure or even two concentric rings. Figure 2 shows that all of these patterns are compatible with an internal membra­ nous sac continuous with the outer membrane. Magnification x 135,000 (reduced 20% for reproduction). From Bingham and Almeida (1977); used by permission. phology of the infectious bronchitis virion (Bingham and Almeida, 1977). Whether this is the only internal morphology available to a coronavirus virion remains to be determined. The topology of the ribonucleocapsid within a virion is not yet known. The nucleocapsid is composed of a 9-nm-wide ribonucleoprotein that forms a helical struc­ ture (Kennedy and Johnson-Lussenburg, 1975/1976; Pocock and Garwes, 1977) and probably corresponds to the flask like structure within the virion (Fig. 2). Using transmission electron microscopy, we have observed in mouse hepatitis virus (JHMV and A59V) infected 17CL-16 cells and BALB/c brains that the apparent nucleocapsids in cytoplasmic factories and in early stages of budding have horseshoe or flask like configurations (Robb et af., 1979a,b). Purification of nucleocapsids from virions and infected cells will be necessary to clarify the internal structure of the coronavirus virion. The mass of a human coronavirus (OC43) is 390 ± 5 X 106 daltons as determined by analytical ultracentrifugation (Hierholzer et al., 1972). Similar experiments with another human coronavirus (229E) did Coronaviridae 197 not give reliable data because the virus particles disintegrated too rapidly. The mass of other coronaviruses has not been determined. 2.2. Composition 2.2.1. Overall Chemical Composition The virions of coronaviruses contain RNA, protein, carbohydrate, and lipid. The buoyant density of the virion in sucrose or potassium tar­ trate is in the range of 1.17-1.19 g/cm3 [IBV: MacNaughton and Madge, 1977a; NCDCV: La Porte, personal communication; HCV (299E): Hierholzer, 1976; FCV: Horzinek et al., 1977; MHV (A59V, lHMV): Lai and Stohlman, 1978; Stohlman, personal communication; Leibowitz, Bond, and Robb, manuscript in preparation]. 2.2.2. RNA The genome of coronaviruses has been amply demonstrated to be single-stranded RNA. Lomniczi (1977) and Schochetman et al. (1977) have shown that the genome of infectious bronchitis virus (lBV) is Fig. 2. Three different transilluminated orientations of a glass model are compared to four individual virus particles printed at x330,000 (reduced 20% for reproduction). Although both refraction and reflection will occur with the glass model, the overall cor­ relation is good. From Almeida (1977); used by permission. 198 Chapter 3 infectious, and Lomniczi (personal communication) has shown that the genome of transmissible gastroenteritis virus (TGEV) is infectious. The molecular size of the virion RNA of IBV has been variously reported to be 0.5-3.0 million daltons (4-40 S) by Tannock (1973), 9.0 million daltons (50 S) by Watkins et al. (1975), 8 million daltons (64 S) by Lomniczi and Kennedy (1977), 8 million daltons (58 S) by MacNaughton and Madge (1977b), and 5.5-5.7 million daltons (48 S) by Schochetman et al., (1977). These variable data reflect the fact that the genome of corona­ viruses is the largest viral RNA genome known and, as a result, no standards exist to size the RNA by traditional techniques. Lomniczi and Kennedy (1977) used the elegant method of RNase T1 oligonu­ cleotide fingerprinting to confirm the molecular size of 8.1 ± 0.2 million daltons which had been determined on methyl mercury gels and isokinetic sucrose gradients. Tannock and Hierholzer (1977) have shown that the RNA of a human coronavirus (HCV-OC43)
Recommended publications
  • Key Factors That Enable the Pandemic Potential of RNA Viruses and Inter-Species Transmission: a Systematic Review
    viruses Review Key Factors That Enable the Pandemic Potential of RNA Viruses and Inter-Species Transmission: A Systematic Review Santiago Alvarez-Munoz , Nicolas Upegui-Porras , Arlen P. Gomez and Gloria Ramirez-Nieto * Microbiology and Epidemiology Research Group, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; [email protected] (S.A.-M.); [email protected] (N.U.-P.); [email protected] (A.P.G.) * Correspondence: [email protected]; Tel.: +57-1-3-16-56-93 Abstract: Viruses play a primary role as etiological agents of pandemics worldwide. Although there has been progress in identifying the molecular features of both viruses and hosts, the extent of the impact these and other factors have that contribute to interspecies transmission and their relationship with the emergence of diseases are poorly understood. The objective of this review was to analyze the factors related to the characteristics inherent to RNA viruses accountable for pandemics in the last 20 years which facilitate infection, promote interspecies jump, and assist in the generation of zoonotic infections with pandemic potential. The search resulted in 48 research articles that met the inclusion criteria. Changes adopted by RNA viruses are influenced by environmental and host-related factors, which define their ability to adapt. Population density, host distribution, migration patterns, and the loss of natural habitats, among others, have been associated as factors in the virus–host interaction. This review also included a critical analysis of the Latin American context, considering its diverse and unique social, cultural, and biodiversity characteristics. The scarcity of scientific information is Citation: Alvarez-Munoz, S.; striking, thus, a call to local institutions and governments to invest more resources and efforts to the Upegui-Porras, N.; Gomez, A.P.; study of these factors in the region is key.
    [Show full text]
  • On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater
    water Review On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater Adrian Wartecki 1 and Piotr Rzymski 2,* 1 Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Pozna´n,Poland; [email protected] 2 Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Pozna´n,Poland * Correspondence: [email protected] Received: 24 April 2020; Accepted: 2 June 2020; Published: 4 June 2020 Abstract: The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology of Coronaviridae, a family of positive-sense single-stranded RNA viruses. Aquatic environments, lakes, rivers and ponds, are important habitats for bats and birds, which are hosts for various coronavirus species and strains and which shed viral particles in their feces. It is therefore of high interest to fully explore the role that aquatic environments may play in coronavirus spread, including cross-species transmissions. Besides the respiratory tract, coronaviruses pathogenic to humans can also infect the digestive system and be subsequently defecated. Considering this, it is pivotal to understand whether wastewater can play a role in their dissemination, particularly in areas with poor sanitation. This review provides an overview of the taxonomy, molecular biology, natural reservoirs and pathogenicity of coronaviruses; outlines their potential to survive in aquatic environments and wastewater; and demonstrates their association with aquatic biota, mainly waterfowl. It also calls for further, interdisciplinary research in the field of aquatic virology to explore the potential hotspots of coronaviruses in the aquatic environment and the routes through which they may enter it.
    [Show full text]
  • Coronavirus: Detailed Taxonomy
    Coronavirus: Detailed taxonomy Coronaviruses are in the realm: Riboviria; phylum: Incertae sedis; and order: Nidovirales. The Coronaviridae family gets its name, in part, because the virus surface is surrounded by a ring of projections that appear like a solar corona when viewed through an electron microscope. Taxonomically, the main Coronaviridae subfamily – Orthocoronavirinae – is subdivided into alpha (formerly referred to as type 1 or phylogroup 1), beta (formerly referred to as type 2 or phylogroup 2), delta, and gamma coronavirus genera. Using molecular clock analysis, investigators have estimated the most common ancestor of all coronaviruses appeared in about 8,100 BC, and those of alphacoronavirus, betacoronavirus, gammacoronavirus, and deltacoronavirus appeared in approximately 2,400 BC, 3,300 BC, 2,800 BC, and 3,000 BC, respectively. These investigators posit that bats and birds are ideal hosts for the coronavirus gene source, bats for alphacoronavirus and betacoronavirus, and birds for gammacoronavirus and deltacoronavirus. Coronaviruses are usually associated with enteric or respiratory diseases in their hosts, although hepatic, neurologic, and other organ systems may be affected with certain coronaviruses. Genomic and amino acid sequence phylogenetic trees do not offer clear lines of demarcation among corona virus genus, lineage (subgroup), host, and organ system affected by disease, so information is provided below in rough descending order of the phylogenetic length of the reported genome. Subgroup/ Genus Lineage Abbreviation
    [Show full text]
  • Modelling the Thermal Inactivation of Viruses from the Coronaviridae Family in Suspensions Or on Surfaces with Various Relative Humidities
    medRxiv preprint doi: https://doi.org/10.1101/2020.05.26.20114025; this version posted May 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Modelling the thermal inactivation of viruses from the Coronaviridae family in suspensions or on surfaces with various relative humidities. Authors: Laurent Guillier,a Sandra Martin-Latil,b Estelle Chaix,a Anne Thébault,a Nicole Pavio,c Sophie Le Poder,c on behalf of Covid-19 Emergency Collective Expert Appraisal Group,d Christophe Batéjat,e Fabrice Biot,f, Lionel Koch,f Don Schaffner,g Moez Sanaa,a Affiliations: aRisk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety, 14, rue Pierre et Marie Curie, Maisons‐Alfort, France bLaboratory for food safety French Agency for Food, Environmental and Occupational Health & Safety, University of Paris-EST, Maisons-Alfort, France cUMR Virologie 1161, ENVA, INRAE, Anses, Maisons-Alfort, France dMembership of the Covid-19 Emergency Collective Expert Appraisal Group is provided in the Acknowledgments eUnité Environnement et Risques Infectieux, Cellule d’Intervention Biologique d’Urgence (CIBU), Institut Pasteur, Paris, France fBacteriology Unit, French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge, France gDepartment of Food Science, Rutgers University, New Brunswick, NJ, USA Affiliations: Running Head: Modelling the inactivation of coronaviruses on fomites NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • Transcriptome and Coronavirus: New Hope and Therapy
    Review Volume 11, Issue 2, 2021, 9541 - 9552 https://doi.org/10.33263/BRIAC112.95419552 Transcriptome and Coronavirus: New Hope and Therapy Khaled Mohamed Mohamed Koriem 1,* 1 Department of Medical Physiology, Medical Research Division, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt * Correspondence: [email protected]; Scopus Author ID 24477156100 Received: 20.08.2020; Revised: 7.09.2020; Accepted: 9.09.2020; Published: 13.09.2020 Abstract: Transcriptome refers to all RNA particles occur inside one cell or inside numerous cells in one organ. Coronaviruses are a family of correlated viruses that induce viral infection. In humans, coronaviruses induce respiratory viral infections that may be mild or dangerous. The coronavirus shape is large circular elements that have round tip outbreaks - the virus diameter particles=120 nm. The RNA viral genome occurs in coronavirus. The coronavirus genome size = 27-34 kilobases, and this size is the largest RNA genome size. The Life cycle of coronavirus includes viral entry, replication, and release. Coronavirus transmission was done through the connection of its protein with host cell receptors in a specific process. There are 4 types of coronavirus genus: (1) Alphacoronavirus, (2) Betacoronavirus, (3) Gammacoronavirus, and (4) Deltacoronavirus. Viral replication, immune evasion, and virion biogenesis correlated with host cell transformation mechanism. Viral molecular mechanism hijacks the host cell protein production mechanism. There is an important host factor (CPSF6) that connects with nuclear protein (NP1). The CPSF6 increases the nuclear production of NP1 in the same time, CPSF6 possesses an important role in the progress of capsid mRNAs inside the nucleus.
    [Show full text]
  • COVID-19 and Herpes Simplex Virus Infection: a Cross-Sectional Study
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.09.21260217; this version posted July 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. COVID-19 and Herpes Simplex Virus Infection: A Cross-Sectional Study Mohammed Shanshal1, *, Hayder Saad Ahmed2, ᶺ 1 Basildon and Thurrock Hospitals NHS Foundation Trust, Department of Dermatology, UK 2 University of Tikrit, College of Medicine, Department of Dermatology and Venereology, Iraq * Specialist dermatologist, MBChB, FABMS – Dermatology ᶺ Specialist dermatologist, MBChB, FIBMS – Dermatology Corresponding author: Mohammed Shanshal, MBChB, FABMS – Dermatology Specialist Dermatologist at Basildon University Hospital, UK Email: [email protected] ORCID Id: https://orcid.org/0000-0003-2877-5919 Word count: 1292 Abstract word count: 215 Number of figures: 3 Number of tables: 2 Number of references: 36 Conflicts of interest: None Funding sources: None Patient privacy and ethical use of images: The patients in this manuscript have provided written informed consent for the publication of their case details, including the use of images. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.07.09.21260217; this version posted July 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Vaccination Against Rotavirus Infection
    Diagnostics, epidemiology of diarrhoeal diseases of viral origin; vaccination against rotavirus infection Krisztián Bányai ANTSZ Baranya County Institute of State Public Health Service, Regional Laboratory of Virology Historical overview Early 20th century • „pseudocholera infantum”; „winter vomiting disease” 1940s and 1950s • transmissible agent 1950s and1970s • identification of viruses in diarrheic feces 1970s • identification of the first human enteric viruses 1980s and 1990s • identification of new, potential enteric viruses Viruses found in the gut Found in the gut but not associated with gastroenteritis • Polio Enteroviruses 68-71 • Coxsackie A Coxsackie B • Echo • Hepatitis A Hepatitis E • Adenoviruses 1-39, 42-51 Reoviruses Found in the gut as opportunistic infection • CMV VZV • HSV HIV Human enteric viruses Virus Genome Virus morphology Serotypes Rotavirus A,B,C, RNA ~70-75 nm, double-shelled particle, 11 G (Reoviridae, Double-stranded, ‘wheel’-like appearance 12 P Rotavirus) 11 segments Calicivirus (Caliciviridae, RNA ~27-32 nm, featureless surface several Norovirus Positive sense Sapovirus) RNA ~33 nm, David-star surface several Positive sense Astrovirus RNA ~27-30 nm, 5 or 6 pointed star surface 8 (Astroviridae, Positive sense Astrovirus) Adenovirus DNA ~74 nm, classic icosahedral structure 2 (Adenoviridae, Double-stranded Mastadenovirus) Possible human enteric viruses Virus Genome Virus morphology Serotypes Aichi virus RNA ~ 28-35 nm, structured 1 ? (Picornaviridae, Positive sense surface (kobu = knob) Kobuvirus) Parechovirus
    [Show full text]
  • Virome of Swiss Bats
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Virome of Swiss bats Hardmeier, Isabelle Simone Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-201138 Dissertation Published Version Originally published at: Hardmeier, Isabelle Simone. Virome of Swiss bats. 2021, University of Zurich, Vetsuisse Faculty. Virologisches Institut der Vetsuisse-Fakultät Universität Zürich Direktor: Prof. Dr. sc. nat. ETH Cornel Fraefel Arbeit unter wissenschaftlicher Betreuung von Dr. med. vet. Jakub Kubacki Virome of Swiss bats Inaugural-Dissertation zur Erlangung der Doktorwürde der Vetsuisse-Fakultät Universität Zürich vorgelegt von Isabelle Simone Hardmeier Tierärztin von Zumikon ZH genehmigt auf Antrag von Prof. Dr. sc. nat. Cornel Fraefel, Referent Prof. Dr. sc. nat. Matthias Schweizer, Korreferent 2021 Contents Zusammenfassung ................................................................................................. 4 Abstract .................................................................................................................. 5 Submitted manuscript ............................................................................................ 6 Acknowledgements ................................................................................................. Curriculum Vitae ..................................................................................................... 3 Zusammenfassung
    [Show full text]
  • Adenovirus Validated Ultraviolet Systems for Inactivation of SARS-Cov-2, the Virus That Causes COVID-19?
    Can We Use Adenovirus Validated Ultraviolet Systems for Inactivation of SARS-CoV-2, The Virus That Causes COVID-19? By Ytzhak Rozenberg, Assaf Lowentahl, Ph.D. Atlantium Technologies, [email protected], www.atlantium.com. Reviewed by Prof. Hadas Mamane, Head of Environmental Engineering Program, School of Mechanical Engineering, Tel-Aviv University, Israel, and Yoram Gerchman Ph.D., Professor Biology and Environment at Oranim College and University of Haifa, Israel. ABSTRACT: Ultraviolet (UV) technology is a Physical Process for disinfection by exPosing bacteria, viruses and Proto- zoa to UV light, rendering them incapable of reproducing or further affecting water supplies. Pathogenic viruses such as adenovirus, norovirus, rotavirus, and hepatitis A commonly occur in both surface and groundwater sources. This paper discusses evidence for SARS-CoV-2 (the virus that causes COVID-19) in water and the Possibility of using UV systems for its disinfection, providing information regarding the ability of a UV system validated to a 4-log virus inac- tivation Per the U.S. EPA guidelines with adenovirus to effectively mitigate SARS-CoV-2 in water. INTRODUCTION the virus resistance to such UV inactivation. However, poly- Ultraviolet (UV) technology is a physical process for disin- chromatic UV systems (e.g., MP, 200-415 nm) inactivate mi- fection by exposing bacteria, viruses and protozoa to UV croorganisms by damaging both DNA and proteins [8] and light, rendering them incapable of reproducing or further generating oxygen radicals [9]. This results in a virus that is affecting water supplies. Pathogenic viruses such as adeno- unable to enter the host; a feat unachievable by monochro- virus, norovirus, rotavirus, and hepatitis A commonly occur matic LP lamps.
    [Show full text]
  • Informative Regions in Viral Genomes
    viruses Article Informative Regions In Viral Genomes Jaime Leonardo Moreno-Gallego 1,2 and Alejandro Reyes 2,3,* 1 Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; [email protected] 2 Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia 3 The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63108, USA * Correspondence: [email protected] Abstract: Viruses, far from being just parasites affecting hosts’ fitness, are major players in any microbial ecosystem. In spite of their broad abundance, viruses, in particular bacteriophages, remain largely unknown since only about 20% of sequences obtained from viral community DNA surveys could be annotated by comparison with public databases. In order to shed some light into this genetic dark matter we expanded the search of orthologous groups as potential markers to viral taxonomy from bacteriophages and included eukaryotic viruses, establishing a set of 31,150 ViPhOGs (Eukaryotic Viruses and Phages Orthologous Groups). To do this, we examine the non-redundant viral diversity stored in public databases, predict proteins in genomes lacking such information, and used all annotated and predicted proteins to identify potential protein domains. The clustering of domains and unannotated regions into orthologous groups was done using cogSoft. Finally, we employed a random forest implementation to classify genomes into their taxonomy and found that the presence or absence of ViPhOGs is significantly associated with their taxonomy. Furthermore, we established a set of 1457 ViPhOGs that given their importance for the classification could be considered as markers or signatures for the different taxonomic groups defined by the ICTV at the Citation: Moreno-Gallego, J.L.; order, family, and genus levels.
    [Show full text]
  • (SARS-Cov-2) and Herpes Simplex Virus 1 (HSV-1) on Foods Stored at Refrigerated Temperature
    foods Article Survival of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Herpes Simplex Virus 1 (HSV-1) on Foods Stored at Refrigerated Temperature Janak Dhakal 1, Mo Jia 2, Jonathan D. Joyce 3, Greyson A. Moore 4, Reza Ovissipour 5 and Andrea S. Bertke 2,* 1 Food Science and Technology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; [email protected] 2 Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; [email protected] 3 Translational Biology Medicine and Health, Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; [email protected] 4 Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; [email protected] 5 Food Science and Technology, Agricultural Research and Extension Center, Virginia Polytechnic Institute & State University, Hampton, VA 23669, USA; [email protected] * Correspondence: [email protected] Abstract: Outbreaks of coronavirus infectious disease 2019 (COVID-19) in meat processing plants and media reports of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection on foods Citation: Dhakal, J.; Jia, M.; Joyce, have raised concerns of a public health risk from contaminated foods. We used herpes simplex virus 1, J.D.; Moore, G.A.; Ovissipour, R.; a non-Biosafety Level 3 (non-BSL3) enveloped virus, as a surrogate to develop and validate methods Bertke, A.S. Survival of Severe Acute before assessing the survival of infectious SARS-CoV-2 on foods.
    [Show full text]
  • Emerging and Reemerging Respiratory Viral Infections up to Covid-19
    Turkish Journal of Medical Sciences Turk J Med Sci (2020) 50: 557-562 http://journals.tubitak.gov.tr/medical/ © TÜBİTAK Review Article doi:10.3906/sag-2004-126 Emerging and reemerging respiratory viral infections up to Covid-19 1, 2 3 İlhami ÇELİK *, Esma SAATÇİ , Füsun Öner EYÜBOĞLU 1 Department of Infectious Diseases and Clinical Microbiology, Kayseri Health Practice and Research Center, University of Health Sciences, Kayseri, Turkey 2 Department of Clinical Microbiology, Kayseri Health Practice and Research Center, University of Health Sciences, Kayseri, Turkey 3 Department of Pulmonary Diseases, Başkent University, Ankara, Turkey Received: 12.04.2020 Accepted/Published Online: 14.04.2020 Final Version: 21.04.2020 Abstract: Infectious diseases remain as the significant causes of human and animal morbidity and mortality, leading to extensive outbreaks and epidemics. Acute respiratory viral diseases claim over 4 million deaths and cause millions of hospitalizations in developing countries every year. Emerging viruses, especially the RNA viruses, are more pathogenic since most people have no herd immunity. The RNA viruses can adapt to the rapidly changing global and local environment due to the high error rate of their polymerases that replicate their genomes. Currently, coronavirus disease 2019 (COVID-19) is determined as an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first identified in 2019 in Wuhan. Herein we discuss emerging and reemerging respiratory viral infections till to SARS-CoV-2. Key words: Emerging, reemerging, respiratory virus, Covid-19 1. Introduction Coronaviridae, Adenoviridae, and Herpesviridae. Infectious diseases that increase in incidence and tend to Community-acquired respiratory viruses are critical spread geographically within decades can be defined as pathogens such as influenza, respiratory syncytial virus, emerging infections.
    [Show full text]