Photosensitizers Used in the Photodynamic Therapy of Rheumatoid Arthritis

Total Page:16

File Type:pdf, Size:1020Kb

Photosensitizers Used in the Photodynamic Therapy of Rheumatoid Arthritis International Journal of Molecular Sciences Review Photosensitizers Used in the Photodynamic Therapy of Rheumatoid Arthritis Manuel Gallardo-Villagrán 1,2 , David Yannick Leger 1,*, Bertrand Liagre 1,* and Bruno Therrien 2,* 1 Laboratoire PEIRENE, Faculté de Pharmacie, Université de Limoges, EA 7500, F-87025 Limoges, France 2 Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland * Correspondence: [email protected] (D.Y.L.); [email protected] (B.L.); [email protected] (B.T.) Received: 17 May 2019; Accepted: 4 July 2019; Published: 7 July 2019 Abstract: Photodynamic Therapy (PDT) has become one of the most promising treatment against autoimmune diseases, such as rheumatoid arthritis (RA), as well as in the treatment of different types of cancer, since it is a non-invasive method and easy to carry out. The three main ingredients of PDT are light irradiation, oxygen, and a photosensitizer (PS). Light irradiation depends on the type of molecule or compound to be used as a PS. The concentration of O2 fluctuates according to the medium where the target tissue is located and over time, although it is known that it is possible to provide oxygenated species to the treated area through the PS itself. Finally, each PS has its own characteristics, the efficacy of which depends on multiple factors, such as solubility, administration technique, retention time, stability, excitation wavelength, biocompatibility, and clearance, among others. Therefore, it is essential to have a thorough knowledge of the disease to select the best PS for a specific target, such as RA. In this review we will present the PSs used in the last three decades to treat RA under PDT protocol, as well as insights on the relevant strategies. Keywords: photodynamic therapy; rheumatoid arthritis; photosensitizers; porphyrins; tetrapyrroles; nanoparticles 1. Background 1.1. Photodynamic Therapy Principle Some compounds are known to absorb the energy they receive from light to reach higher excited states. This energy can be transferred to other substances or molecules, thus allowing the excited compound to return to its initial state of minimal energy [1]. Photodynamic therapy (PDT) is based on this principle, in which designed photoactive chemical compounds, known as photosensitizers (PSs), are injected into tissues and then irradiated at a certain wavelength to reach an excited energy level. The absorbed energy can then be transferred directly to neighboring molecules, such as O2, giving rise to singlet oxygen, which in turn gives rise to radical oxygen species (ROS). This phenomenon is associated with the type II mechanism (Figure1). The type I mechanism involves the transmission of the PS energy to a substrate or biomolecule, and, from this intermediate, the energy is forwarded to oxygen, giving rise again to ROS. In both cases, ROS induce cell death by apoptosis or necrosis, thus making PDT interesting for the treatment of several diseases [2–7]. Int. J. Mol. Sci. 2019, 20, 3339; doi:10.3390/ijms20133339 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2019, 20, 3339 2 of 21 Figure 1. Standard Photodynamic Therapy (PDT) process involving a photosensitizer (PS), oxygen, and light. 1.2. Rheumatoid Arthritis Rheumatoid arthritis (RA) is a chronic inflammatoryinflammatory autoimmune disease that can aaffectffect multiple organ systems. systems. It Itis isconsidered considered a disease a disease of ofthe the joints, joints, attacking attacking mainly mainly the thewrists wrists and andthe themetacarpophalangeal metacarpophalangeal and andproximal proximal interphalangeal interphalangeal joints joints of the of thehands. hands. RA RAis characterized is characterized by bysynovial synovial inflammation inflammation and andhyperplasia, hyperplasia, autoantibody autoantibody production production (particularly (particularly to rheumatoid to rheumatoid factor factorand citrullinated and citrullinated peptide), peptide), and andcartilage cartilage and andbone bone destruction destruction [8]. [8 ].The The etiology etiology of of RA RA remains mainly unknown,unknown, butbut the the clinical clinical features features of RA of seemsRA seems to be theto be consequence the consequence of interactions of interactions between environmentalbetween environmental factors, including factors, including smoking, smoking, diet, obesity, diet, infections obesity, infections and microbiota, and microbiota, as well as geneticas well predispositionas genetic predisposition (histocompatibility (histocompatibility complex, cytokines,complex, cytokines, chemokines, chemokines, and growth and factor growth genes) factor to autoimmunegenes) to autoimmune responses responses [9,10]. [9,10]. Many of the newly developed treatments and drugsdrugs for RA have focused on inducing the cell death ofof fibroblast-like fibroblast-like synoviocytes synoviocyt (FLS)es (FLS) by reducingby reducing and stoppingand stopping their proliferation. their proliferation. Studies suggestStudies thatsuggest this that proliferation this proliferation is linked tois thelinked activation to the acti of certainvation intracellularof certain intracellular signaling pathways signaling [8 pathways,11]. Such inflammation,[8,11]. Such inflammation, if not treated if in not time, treated leads in to time, the appearanceleads to the of appearance hyper-vascularization of hyper-vascularization and damage toand cartilage damage and to cartilage bones by and erosion, bones whichby erosion, causes which joint causes pain andjoint reduced pain and mobility. reduced Sincemobility. standard Since treatmentsstandard treatments against RA, against such as RA, synovectomy, such as synovect are invasive,omy, are destructive, invasive, anddestructive, involve longand rehabilitationinvolve long periods,rehabilitation in recent periods, decades, in recent less invasive decades, treatments less invasive have treatments been explored have been [12–14 explored]. [12–14]. To date,date, the the current current treatment treatment strategy strategy is to initiate is to aggressive initiate aggressive therapy by applyingtherapy antirheumaticby applying drugsantirheumatic (DMARDs) drugs and (DMARDs) to escalate theand therapy, to escalate guided the by therapy, an assessment guided of by the an disease’s assessment activity of [12the]. DMARDsdisease’s activity reduce the[12]. rate DMARDs of erosive reduce changes the and, rate therefore, of erosive have changes the potential and, totherefore, alter the have disease’s the coursepotential by to preventing alter the irreversibledisease’s course damage. by preven However,ting conventionalirreversible damage. and biologic However, disease conventional modifying therapiesand biologic sometimes disease failmodifying or produce therapies only partialsometimes responses fail or and, produce consequently, only partial clinical responses remission and, is rarelyconsequently, achieved. clinical remission is rarely achieved. In thisthis context,context, alternativealternative oror complementarycomplementary therapiestherapies couldcould bebe ofof interest.interest. PDT PDT is is a new therapy thatthat could could improve improve the the well-being well-being of patients of pati andents increase and increase the possibility the possibility of clinical of remission. clinical Therefore,remission. PDTTherefore, treatment, PDT regardlesstreatment,of regardless the photosensitizer of the photosensitizer used, aims to used, induce aims cell to death induce in cellscell involveddeath in cells in inflammation involved in inflammation and hyperplasia and inhyperp the joint.lasia Inin combinationthe joint. In combination with standard with treatments, standard PDTtreatments, would PDT enhance would the enhance control of the cartilage control and of cartilage bone destruction and bone in destruction the treated joint.in the Consequently, treated joint. theConsequently, constant development the constant of development new photosensitizers, of new andphotosensitizers, the improvement and ofthe cell improvement targeting, could, of cell in thetargeting, future, could, allow thein usethe offuture PDT, inallow the initiationthe use of RAPDT treatment. in the initiation The effectiveness of RA treatment. of PDT in The the treatmenteffectiveness of RAof PDT depends in the on multipletreatment factors, of RA mostdepe ofnds them on beingmultiple directly factors, related most to of the them type being of PS used.directly Solubility, related to retention the type time,of PS excitationused. Solubility, wavelength, retention elimination, time, excitation transport, wavelength, and cytotoxicity elimination, are sometransport, of the and factors cytotoxicity to consider are some when of choosing the factors a PS to for consider PDT. when choosing a PS for PDT. Therefore, in this review, wewe wantwant to gather allall the compounds used as a PS in the treatment of RA by PDT. An emphasis on the factors influencinginfluencing thethe eefficiencyfficiency of the PS is given, to illustrate the advantages andand limitationslimitations ofof eacheach of of them. them. Overall, Overall, we we want want to to provide provide to to researchers researchers in in the the fields fields of PDTof PDT and and RA RA an overviewan overview of theof the actual actual state state of the of art,the asart, well as well as new as new avenues avenues for designing for designing the next the generationnext generation of photosensitizers of photosensitizers for the for treatment the treatment of RA of by RA photodynamic
Recommended publications
  • Use of Fluorescence to Guide Resection Or Biopsy of Primary Brain Tumors and Brain Metastases
    Neurosurg Focus 36 (2):E10, 2014 ©AANS, 2014 Use of fluorescence to guide resection or biopsy of primary brain tumors and brain metastases *SERGE MARBACHER, M.D., M.SC.,1,5 ELISABETH KLINGER, M.D.,2 LUCIA SCHWYZER, M.D.,1,5 INGEBORG FISCHER, M.D.,3 EDIN NEVZATI, M.D.,1 MICHAEL DIEPERS, M.D.,2,5 ULRICH ROELCKE, M.D.,4,5 ALI-REZA FATHI, M.D.,1,5 DANIEL COLUCCIA, M.D.,1,5 AND JAVIER FANDINO, M.D.1,5 Departments of 1Neurosurgery, 2Neuroradiology, 3Pathology, and 4Neurology, and 5Brain Tumor Center, Kantonsspital Aarau, Aarau, Switzerland Object. The accurate discrimination between tumor and normal tissue is crucial for determining how much to resect and therefore for the clinical outcome of patients with brain tumors. In recent years, guidance with 5-aminolev- ulinic acid (5-ALA)–induced intraoperative fluorescence has proven to be a useful surgical adjunct for gross-total resection of high-grade gliomas. The clinical utility of 5-ALA in resection of brain tumors other than glioblastomas has not yet been established. The authors assessed the frequency of positive 5-ALA fluorescence in a cohort of pa- tients with primary brain tumors and metastases. Methods. The authors conducted a single-center retrospective analysis of 531 patients with intracranial tumors treated by 5-ALA–guided resection or biopsy. They analyzed patient characteristics, preoperative and postoperative liver function test results, intraoperative tumor fluorescence, and histological data. They also screened discharge summaries for clinical adverse effects resulting from the administration of 5-ALA. Intraoperative qualitative 5-ALA fluorescence (none, mild, moderate, and strong) was documented by the surgeon and dichotomized into negative and positive fluorescence.
    [Show full text]
  • Singlet Oxygen Production by Peptide-Coated Quantum Dot-Photosensitizer Conjugates James M
    Published on Web 05/04/2007 Singlet Oxygen Production by Peptide-Coated Quantum Dot-Photosensitizer Conjugates James M. Tsay,†,|,§ Michael Trzoss,† Lixin Shi,⊥ Xiangxu Kong,†,| Matthias Selke,⊥ Michael E. Jung,† and Shimon Weiss*,†,‡,| Contribution from the Department of Chemistry and Biochemistry, Department of Physiology, and California NanoSystems Institute, UniVersity of California at Los Angeles, Los Angeles, California 90095, and Department of Chemistry, California State UniVersity, Los Angeles, Los Angeles, California 90032 Received January 31, 2007; E-mail: [email protected] Abstract: Peptide-coated quantum dot-photosensitizer conjugates were developed using novel covalent conjugation strategies on peptides which overcoat quantum dots (QDs). Rose bengal and chlorin e6, photosensitizers (PSs) that generate singlet oxygen in high yield, were covalently attached to phytochelatin- related peptides. The photosensitizer-peptide conjugates were subsequently used to overcoat green- and red-emitting CdSe/CdS/ZnS nanocrystals. Generation of singlet oxygen could be achieved via indirect excitation through Fo¨rster (fluorescence) resonance energy transfer (FRET) from the nanocrystals to PSs, or by direct excitation of the PSs. In the latter case, by using two color excitations, the conjugate could be simultaneously used for fluorescence imaging and singlet oxygen generation. Singlet oxygen quantum yields as high as 0.31 were achieved using 532-nm excitation wavelengths. 1. Introduction cancer, (3) have efficient energy transfer to O2, (4) be easily cleared from the body, (5) be resistant to aggregation, and (6) Photodynamic therapy (PDT) has emerged as a highly be photostable.1,3 Unfortunately, even the most successful PSs, 1,2 effective treatment for oncological diseases. It relies on the such as Photofrin, have major drawbacks: poor water solubility, effective localization of photosensitizers (PSs) into tumor tissues low selectivity, skin phototoxicity, and instability.
    [Show full text]
  • Photosensitizer-Functionalized Nanocomposites for Light-Activated Cancer Theranostics
    International Journal of Molecular Sciences Review Photosensitizer-Functionalized Nanocomposites for Light-Activated Cancer Theranostics Banendu Sunder Dash 1 , Suprava Das 1 and Jyh-Ping Chen 1,2,3,4,* 1 Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; [email protected] (B.S.D.); [email protected] (S.D.) 2 Craniofacial Research Center, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan 3 Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan 4 Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan * Correspondence: [email protected]; Tel.: +886-3-2118800 Abstract: Photosensitizers (PSs) have received significant attention recently in cancer treatment due to its theranostic capability for imaging and phototherapy. These PSs are highly responsive to light source of a suitable wavelength for image-guided cancer therapy from generated singlet oxygen and/or thermal heat. Various organic dye PSs show tremendous attenuation of tumor cells during cancer treatment. Among them, porphyrin and chlorophyll-based ultraviolet-visible (UV-Vis) dyes are employed for photodynamic therapy (PDT) by reactive oxygen species (ROS) and free radicals generated with 400–700 nm laser lights, which have poor tissue penetration depth. To enhance the efficacy of PDT, other light sources such as red light laser and X-ray have been suggested; nonetheless, it is still a challenging task to improve the light penetration depth for deep tumor treatment.
    [Show full text]
  • Aminolevulinic Acid (ALA) As a Prodrug in Photodynamic Therapy of Cancer
    Molecules 2011, 16, 4140-4164; doi:10.3390/molecules16054140 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer Małgorzata Wachowska 1, Angelika Muchowicz 1, Małgorzata Firczuk 1, Magdalena Gabrysiak 1, Magdalena Winiarska 1, Małgorzata Wańczyk 1, Kamil Bojarczuk 1 and Jakub Golab 1,2,* 1 Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland 2 Department III, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel. +48-22-5992199; Fax: +48-22-5992194. Received: 3 February 2011 / Accepted: 3 May 2011 / Published: 19 May 2011 Abstract: Aminolevulinic acid (ALA) is an endogenous metabolite normally formed in the mitochondria from succinyl-CoA and glycine. Conjugation of eight ALA molecules yields protoporphyrin IX (PpIX) and finally leads to formation of heme. Conversion of PpIX to its downstream substrates requires the activity of a rate-limiting enzyme ferrochelatase. When ALA is administered externally the abundantly produced PpIX cannot be quickly converted to its final product - heme by ferrochelatase and therefore accumulates within cells. Since PpIX is a potent photosensitizer this metabolic pathway can be exploited in photodynamic therapy (PDT). This is an already approved therapeutic strategy making ALA one of the most successful prodrugs used in cancer treatment. Key words: 5-aminolevulinic acid; photodynamic therapy; cancer; laser; singlet oxygen 1. Introduction Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used in the management of various cancerous and pre-malignant diseases.
    [Show full text]
  • Detergent-Induced Self-Assembly and Controllable Photosensitizer Activity of Diester Phenylene Ethynylenes
    Detergent-induced self-assembly and controllable photosensitizer activity of diester phenylene ethynylenes Patrick L. Donabediana,b, Matthew N. Creyerc, Florencia A. Mongeb,d, Kirk S. Schanzee,1, Eva Y. Chib,f, and David G. Whittenb,f,2 aNanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131; bCenter for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131; cDepartment of Chemistry, University of Wisconsin–Madison, Madison, WI 53706; dBiomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131; eDepartment of Chemistry, University of Florida, Gainesville, FL 32611; and fDepartment of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131 Edited by Vivian Wing-Wah Yam, The University of Hong Kong, Hong Kong, China, and approved May 25, 2017 (received for review February 14, 2017) Photodynamic therapy, in which malignant tissue is killed by investigations of switchable photosensitizers by various groups targeted light exposure following administration of a photosen- have used a pH-activatable rubyrin derivative (13), a quencher- sitizer, can be a valuable treatment modality but currently relies tethered Si(IV) phthalocyanine (14) and pyropheophorbide (15), on passive transport and local irradiation to avoid off-target and various boron-dipyrromethene (BODIPY) dye-based scaf- oxidation. We present a system of excited-state control for truly folds (16–18). Solvent microenvironment has been used to se- local delivery of singlet oxygen. An anionic phenylene ethynylene lectively photooxidize protein (19) and cellular targets (17), but oligomer is initially quenched by water, producing minimal only using intramolecular FRET quenching or solvent polarity fluorescence and no measurable singlet oxygen generation.
    [Show full text]
  • Paclitaxel Augments Cytotoxic Effect of Photodynamic Therapy Using Verteporfin in Gastric and Bile Duct Cancer Cells
    PAPER www.rsc.org/pps | Photochemical & Photobiological Sciences Paclitaxel augments cytotoxic effect of photodynamic therapy using verteporfin in gastric and bile duct cancer cells Seungwoo Park,†a Sung Pil Hong,†a Tae Yoon Oh,b Seungmin Bang,a Jae Bock Chunga and Si Young Song*a,b Received 11th December 2007, Accepted 25th April 2008 First published as an Advance Article on the web 15th May 2008 DOI: 10.1039/b719072g Photodynamic therapy (PDT) shows a limited antitumor effect in treating gastrointestinal tumors because of improper light penetration or insufficient photosensitizer uptake. The aim of this study was to evaluate the cytotoxic effect of PDT combined with paclitaxel on in vitro cancer cells. In vitro photodynamic therapy was performed in gastric cancer cells (NCI-N87) and bile duct cancer cells (YGIC-6B) using verteporfin (2 ug mL−1) and a PTH light source (1 000 W, Oriel Co.) with 665–675 nm narrow band pass filter. Cytotoxicity was compared using the MTT assay between cancer cells treated with PDT alone or pretreated with paclitaxel (IC25). Apoptotic changes were evaluated using DAPI staining, DNA fragmentation analysis, Annexin V-FITC apoptosis assay, cell cycle analysis, and western blots for cytochrome c, Bax, and Bid. The PDT-induced cytotoxicity was potentiated by pretreating with low dose paclitaxel (P < 0.001). The enhanced cytotoxicity was due to an augmented apoptotic response mediated by exaggerated cytochrome c released from mitochondria, without Bax or Bid activation. These results show that paclitaxel pretreatment
    [Show full text]
  • Photodynamic Therapy Induces Autophagy-Mediated Cell Death In
    Song et al. Cell Death and Disease (2020) 11:938 https://doi.org/10.1038/s41419-020-03136-y Cell Death & Disease ARTICLE Open Access Photodynamic therapy induces autophagy- mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway Changfeng Song1,WenXu1,HongkunWu2,XiaotongWang1,QianyiGong1,ChangLiu2,JianwenLiu1 and Lin Zhou2 Abstract Evidence has shown that m-THPC and verteporfin (VP) are promising sensitizers in photodynamic therapy (PDT). In addition, autophagy can act as a tumor suppressor or a tumor promoter depending on the photosensitizer (PS) and the cancer cell type. However, the role of autophagy in m-THPC- and VP-mediated PDT in in vitro and in vivo models of human colorectal cancer (CRC) has not been reported. In this study, m-THPC-PDT or VP-PDT exhibited significant phototoxicity, inhibited proliferation, and induced the generation of large amounts of reactive oxygen species (ROS) in CRC cells. From immunoblotting, fluorescence image analysis, and transmission electron microscopy, we found extensive autophagic activation induced by ROS in cells. In addition, m-THPC-PDT or VP-PDT treatment significantly induced apoptosis in CRC cells. Interestingly, the inhibition of m-THPC-PDT-induced autophagy by knockdown of ATG5 or ATG7 substantially inhibited the apoptosis of CRC cells. Moreover, m-THPC- PDT treatment inhibited tumorigenesis of subcutaneous HCT116 xenografts. Meanwhile, antioxidant treatment 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; markedly inhibited autophagy and apoptosis induced by PDT in CRC cells by inactivating JNK signaling. In conclusion, inhibition of autophagy can remarkably alleviate PDT-mediated anticancer efficiency in CRC cells via inactivation of the ROS/JNK signaling pathway.
    [Show full text]
  • The Assessment of the Combined Treatment of 5-ALA Mediated Photodynamic Therapy and Thalidomide on 4T1 Breast Carcinoma and 2H11 Endothelial Cell Line
    molecules Article The Assessment of the Combined Treatment of 5-ALA Mediated Photodynamic Therapy and Thalidomide on 4T1 Breast Carcinoma and 2H11 Endothelial Cell Line Krzysztof Zduniak, Katarzyna Gdesz-Birula, Marta Wo´zniak*, Kamila Du´s-Szachniewiczand Piotr Ziółkowski Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland; [email protected] (K.Z.); [email protected] (K.G.-B.); [email protected] (K.D.-S.); [email protected] (P.Z.) * Correspondence: [email protected] or [email protected] Academic Editors: M. Amparo F. Faustino, Carlos J. P. Monteiro and Catarina I. V. Ramos Received: 29 September 2020; Accepted: 2 November 2020; Published: 7 November 2020 Abstract: Photodynamic therapy (PDT) is a low-invasive method of treatment of various diseases, mainly neoplastic conditions. PDT has been experimentally combined with multiple treatment methods. In this study, we tested a combination of 5-aminolevulinic acid (5-ALA) mediated PDT with thalidomide (TMD), which is a drug presently used in the treatment of plasma cell myeloma. TMD and PDT share similar modes of action in neoplastic conditions. Using 4T1 murine breast carcinoma and 2H11 murine endothelial cells lines as an experimental tumor model, we tested 5-ALA-PDT and TMD combination in terms of cytotoxicity, apoptosis, Vascular Endothelial Growth Factor (VEGF) expression, and, in 2H11 cells, migration capabilities by wound healing assay. We have found an enhancement of cytotoxicity in 4T1 cells, whereas, in normal 2H11 cells, this effect was not statistically significant. The addition of TMD decreased the production of VEGF after PDT in 2H11 cell line.
    [Show full text]
  • Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer
    cancers Article Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer Ting Luo 1, Qinrong Zhang 1,* and Qing-Bin Lu 1,2,* 1 Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; [email protected] 2 Departments of Biology and Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada * Correspondence: [email protected] (Q.Z.); [email protected] (Q.-B.L.); Tel.: +1-519-888-4567 (ext. 33503) (Q.-B.L.) Academic Editor: Michael R. Hamblin Received: 12 May 2017; Accepted: 1 June 2017; Published: 5 June 2017 Abstract: Indocyanine green (ICG) has been reported as a potential near-infrared (NIR) photosensitizer for photodynamic therapy (PDT) of cancer. However the application of ICG-mediated PDT is both intrinsically and physiologically limited. Here we report a combination of ICG-PDT with a chemotherapy drug etoposide (VP-16), aiming to enhance the anticancer efficacy, to circumvent limitations of PDT using ICG, and to reduce side effects of VP-16. We found in controlled in vitro cell-based assays that this combination is effective in killing non-small-cell lung cancer cells (NSCLC, A549 cell line). We also found that the combination of ICG-PDT and VP-16 exhibits strong synergy in killing non-small-cell lung cancer cells partially through inducing more DNA double-strand breaks (DSBs), while it has a much weaker synergy in killing human normal cells (GM05757). Furthermore, by studying the treatment sequence dependence and the cytotoxicity of laser-irradiated mixtures of ICG and VP-16, we found that the observed synergy involves direct/indirect reactions between ICG and VP-16.
    [Show full text]
  • Targeting Phosphatidylinositol 3-Kinase Signaling Pathway For
    Published OnlineFirst August 23, 2017; DOI: 10.1158/1535-7163.MCT-17-0326 Small Molecule Therapeutics Molecular Cancer Therapeutics Targeting Phosphatidylinositol 3-Kinase Signaling Pathway for Therapeutic Enhancement of Vascular-Targeted Photodynamic Therapy Daniel Kraus1, Pratheeba Palasuberniam1, and Bin Chen1,2 Abstract Vascular-targeted photodynamic therapy (PDT) selectively the strongest synergism, followed in order by combinations disrupts vascular function by inducing oxidative damages to with pan-PI3K inhibitor BKM120 and p110a isoform-selective the vasculature, particularly endothelial cells. Although effec- inhibitor BYL719. Combination treatments of PDT and tive tumor eradication and excellent safety profile are well BEZ235 exhibited a cooperative inhibition of antiapoptotic demonstrated in both preclinical and clinical studies, incom- Bcl-2 family protein Mcl-1 and induced more cell apoptosis plete vascular shutdown and angiogenesis are known to cause than each treatment alone. In addition to increasing treatment tumor recurrence after vascular-targeted PDT. We have explored lethality, BEZ235 combined with PDT effectively inhibited therapeutic enhancement of vascular-targeted PDT with PI3K PI3K pathway activation and consequent endothelial cell pro- signaling pathway inhibitors because the activation of PI3K liferation after PDT alone, leading to a sustained growth inhi- pathway was involved in promoting endothelial cell survival bition. In the PC-3 prostate tumor model, combination treat- and proliferation after PDT. Here, three clinically relevant ments improved treatment outcomes by turning a temporary small-molecule inhibitors (BYL719, BKM120, and BEZ235) of tumor regrowth delay induced by PDT alone to a more long- the PI3K pathway were evaluated in combination with verte- lasting treatment response. Our study strongly supports the porfin-PDT.
    [Show full text]
  • Prodrugs: a Challenge for the Drug Development
    PharmacologicalReports Copyright©2013 2013,65,1–14 byInstituteofPharmacology ISSN1734-1140 PolishAcademyofSciences Drugsneedtobedesignedwithdeliveryinmind TakeruHiguchi [70] Review Prodrugs:A challengeforthedrugdevelopment JolantaB.Zawilska1,2,JakubWojcieszak2,AgnieszkaB.Olejniczak1 1 InstituteofMedicalBiology,PolishAcademyofSciences,Lodowa106,PL93-232£ódŸ,Poland 2 DepartmentofPharmacodynamics,MedicalUniversityofLodz,Muszyñskiego1,PL90-151£ódŸ,Poland Correspondence: JolantaB.Zawilska,e-mail:[email protected] Abstract: It is estimated that about 10% of the drugs approved worldwide can be classified as prodrugs. Prodrugs, which have no or poor bio- logical activity, are chemically modified versions of a pharmacologically active agent, which must undergo transformation in vivo to release the active drug. They are designed in order to improve the physicochemical, biopharmaceutical and/or pharmacokinetic properties of pharmacologically potent compounds. This article describes the basic functional groups that are amenable to prodrug design, and highlights the major applications of the prodrug strategy, including the ability to improve oral absorption and aqueous solubility, increase lipophilicity, enhance active transport, as well as achieve site-selective delivery. Special emphasis is given to the role of the prodrug concept in the design of new anticancer therapies, including antibody-directed enzyme prodrug therapy (ADEPT) andgene-directedenzymeprodrugtherapy(GDEPT). Keywords: prodrugs,drugs’ metabolism,blood-brainbarrier,ADEPT,GDEPT
    [Show full text]
  • Organic–Inorganic Hybrid Nanosystems for Photodynamic Therapy
    PhysBioSymp17 The 2nd International Symposium on KnE Energy & Physics Physics, Engineering and Technologies for Biomedicine Volume 2018 Conference Paper Organic–Inorganic Hybrid Nanosystems for Photodynamic Therapy Rakovich Yu.P.1,2 1Materials Physics Center, University of the Basque Country, IKERBASQUE, Donostia-San Sebastián, Spain 2National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, Moscow, 115409, Russia Abstract The purpose of this study is to investigate the possibility of improving the efficiency of a photosensitizer utilizing colloidal semiconductor quantum dots as light-harvesting nanoantenna and reveal the mechanism of this enhancement. Keywords: quantum dots, photosensitizer, photodynamic therapy, FRET, charge transfer Corresponding Author: Rakovich Yu.P. [email protected] Received: 17 January 2018 1. Introduction Accepted: 25 March 2018 Published: 17 April 2018 Photodynamic (PD) therapy takes advantages of light absorption by light-sensitive Publishing services provided by photosensitizers and the generation of photochemical species such as singlet oxy- Knowledge E 1 gen ( O2) or other reactive oxygen species (ROS) linked to apoptosis or necrosis Rakovich Yu.P.. This article is of cancerous cells.[1] One of the necessary conditions for the efficient generation distributed under the terms of the Creative Commons of ROS is wavelength matching of excitation wavelength to optical absorption of a Attribution License, which photosensitizer.[2] permits unrestricted use and redistribution provided that the Upon last decades, there have been a lot of research activities directed toward original author and source are the development of PD complexes based on different nanomaterials which are able credited. to expand the excitation spectral region beyond the absorption of a photosensitizer Selection and Peer-review and to enhance the efficiency of ROS generation.[3] Among others, semiconductor under the responsibility of the quantum dots (QDs) are highly attractive for PD therapy applications.
    [Show full text]