Thirty Years of Plant Transformation

Total Page:16

File Type:pdf, Size:1020Kb

Thirty Years of Plant Transformation Thirty years of plant transformation A case study exploring the impact of plant transformation technology on plant science research and the global agricultural biotechnology industry Credits, left to right, Dominik Maenni, Jason Yardley, Toony, US Agricultural Research Service Thirty years of plant transformation In 1983 researchers demonstrated that they could insert role in identifying the genetic basis of important crop new genes into a plant genome, using a species of soil characteristics, which breeders are incorporating into Impact Summary bacteria called Agrobacterium tumefaciens. new varieties with increased yield, disease resistance AFRC-funded research at the Plant Breeding or which produce healthier, more nutritious food. Institute (PBI), Cambridge, published in 1983 The breakthrough was made simultaneously by three Much of this work relies on genetic tools developed by enabled researchers to create transgenic research groups, including a team at the Plant Breeding researchers at PBI. plants using Agrobacterium-mediated plant Institute (PBI) in Cambridge UK, which was funded transformation. by BBSRC’s predecessor the Agricultural and Food Plant transformation technology also led to the creation Research Council (AFRC). The genetic tools developed of the agricultural biotechnology industry, which in at PBI became freely available to academics, ensuring 2012 had a global market value of US$14.84Bn1. The the technique was adopted by research groups around genetically modified crops produced by this industry are The technology, including novel vectors and the world. now grown in countries such as the USA, Brazil, India reporter genes developed at PBI, revolutionised and China, although different regulations and on-going research around the world, and now forms a Since then, the technology, known as ‘Agrobacterium- public debate mean few are grown in Europe. fundamental tool for plant molecular biology. mediated plant transformation’, has revolutionised plant and crop science research. It has enabled researchers This case study explores the continuing impact to explore gene function, furthering our understanding of research into Agrobacterium-mediated plant Two of the top three most-cited papers in plant of how plants develop, adapt to their environment and transformation at the PBI in the 1980s, funded by the transformation research arose from research at fight off pests and diseases. It has also played a vital AFRC. PBI. Plant transformation technology also enabled the formation of the global agricultural biotechnology industry, which now has a market value of US$14.84Bn. Tobacco plant, a tomato and a US field of corn. All three crops have played an important role in the development of plant transformation tech- nology and the agri-technology industry. Credit: Dominik Maenni/David Besa, Sonoma, USA/Graylight. A history of the discovery In 1983, three groups published research papers Agrobacterium T-DNA to drive the expression [of the demonstrating that they could stably introduce and new gene in the plant cell],” Bevan explains. “I got that Timeline of key events express bacterial genes into the genome of a tobacco project going in Mary-Dell’s lab. Then I came back to 1974: Marc Van Montagu and Jeff Schell at plant, a commonly-used model plant2,3,4. One of those the UK and I got a job at the PBI as a post-doc and I Ghent University show that Agrobacterium uses papers was authored by Mike Bevan and Dick Flavell continued the project there.” a plasmid, known as the Ti plasmid, to transfer at the UK’s PBI in Cambridge, which was supported its genetic material into a plant cell. by the AFRC, and Mary-Dell Chilton at Washington Independently, Dick Flavell’s research group at the PBI University in the USA, who pioneered research into had also started to investigate the possibility of inserting 1979: Working at the AFRC-funded PBI in Agrobacterium4. They showed not only that they could novel genes into plants to aid plant breeders, building Cambridge, Dick Flavell is the first researcher use Agrobacterium to insert bacterial genes reliably on work in the 1970s that allowed researchers to isolate anywhere in the world to successfully clone plant into tobacco plants, but that the inserted genes were specific genes. DNA. inherited and expressed by subsequent generations of the plants. “If you’re sitting in a plant breeding institute, it is clear 1983: Three groups, including Mike Bevan and that the goal of plant breeders is to introduce new Dick Flavell at PBI, UK, publish research papers Bevan’s research began when he joined Mary-Dell and more useful genes into crops. When it started to demonstrating that they can stably introduce and express bacterial genes into a plant genome. Chilton’s group at Washington University, St Louis in 1980. He was interested in the genes in T-DNA – the 1984: Mike Bevan creates the BIN19 binary length of DNA transferred from the Agrobacterium to the vector and begins distributing it to academic plant. Bevan and Chilton had the idea that they could researchers around the world. use elements of the genes in the T-DNA to express a bacterial gene in the plant cells. In particular, they chose 1987: Creation of the GUS reporter system by a bacterial gene that would confer antibiotic resistance. Richard Jefferson and Mike Bevan. The paper As a result, the researchers could use the gene as a describing their work is now the most highly-cited ‘selectable marker’, because adding an antibiotic (at plant transformation paper to date. lethal levels) would eliminate any cells that had not been transformed. 1987: First field trial of a GM crop (potatoes) in the UK, by researchers at PBI. The transgenic potatoes included the GUS reporter gene. Bevan identified a promoter and a terminator sequence in the T-DNA, which worked as genetic switches to control the expression of a gene in the plant. “The The former PBI offices in Trumpington, Cambridge, UK. innovation was to use a genetic element from the Credit: Wikimedia/James Yardley become obvious that there might be a way of moving In 1982, Bevan joined the PBI to continue his work. By genes, in the laboratory, from other organisms in to crop the end of the year he had shown that it was possible Timeline of key events plants, then it was a technology that was destined to be to express the bacterial antibiotic resistance gene in 1988: Don Grierson at the University of extremely useful,” explains Flavell. “So my group in the tobacco plant cells, and that the antibiotic gene could be Nottingham, working with agri-tech company PBI set about attempting to do that,” he adds. used as a selectable marker to identify only those cells Zeneca (now Syngenta), uses transformation that had been transformed. Importantly, the researchers to knock out the polygalacturonase gene in Their first forays into plant transformation in the late also demonstrated that the genes could be inherited by tomatoes, which degrades the pectin in the 1970s were focussed on using protoplasts – plant subsequent generations of the plants according to the tomato fruit cell wall. cells with their tough cellulose cell walls removed – in rules of Mendelian inheritance. collaboration with the AFRC-funded work of Edward 1994: EU approves the first GM crop, a tobacco Cocking at the University of Nottingham. However, with Alongside two other groups, one led by Jeff Schell plant carrying resistance to a herbicide, to be the discovery that Agrobacterium could transfer its own and Marc Van Montagu at Ghent University, Belgium, grown commercially in Europe. DNA into plants, Flavell’s group altered the focus of its and the other by Rob Fraley at agri-tech company research. Monsanto, Mary-Dell Chilton announced their discovery 1994: Calgene’s Flavr Savr tomatoes go on sale at the Miami Winter Symposium in January 1983. in the USA. The tomatoes use GM to knock out the polygalacturonase gene, enabling the fruit Bevan’s landmark paper was published in the journal to remain firm for longer so they could be picked Nature in July of that year4. later, letting them develop a better flavour. Vectors 1996: Tomato puree made from GM tomatoes with the polygalacturonase gene knocked To introduce its genetic material to plant cells, out goes on sale in Safeway and Sainsbury’s Agrobacterium relies on a loop of DNA called a plasmid. supermarkets in the UK, based on work by To replicate this feat in the laboratory, Bevan had Grierson and Zeneca. The GM tomatoes mean created a DNA ‘vector’. “Once you’ve got the selectable the puree is thicker and less of the fruit is wasted marker gene, the idea then is to make a vector. A vector during production. is a piece of DNA you can use to transfer DNA from one organism to another; in this case from Agrobacterium to 1999: The UK begins the farm scale evaluations to investigate the effects of the management a plant cell,” Bevan explains. practices of herbicide-tolerant GM crops on wildlife when compared to weed management In 1984, he published a paper describing the binary practices for conventional crops. Protoplasts from a petunia leaf. Credit: Wikimedia/Mnolf vector he had created5. Binary vectors consist of two plasmids; one containing the T-DNA with the genes Professor at the University of Nottingham and one of the to be introduced to the plant, and the other containing early adopters of the plant transformation techniques Timeline of key events the genes required to transfer the T-DNA into the plant developed at PBI, including the BIN 19 vectors. “The 2005: The final results of the farm scale genome. “The original idea came from Rob Schilperoort key thing about Mike [Bevan]’s work is that it made evaluations are published. in Leiden. He had the idea, and had even patented transformation easy to do.
Recommended publications
  • Plant Viral, Agrobacterium Tumefaciens, and Xanthomonas Spp.
    USDA May conta in Co nfidential Business Information ~ United States Department of Agricu lture . ... - ------------ --------- - - - ------------ Animal and August 28, 201 4 Plant Health Dr. Luc Mathus Inspection Service Cellectis Plant Sciences 600 County Road D West, Suite 8 Biotechnology Regulatory New Brighton, MN 55112 Servi ces 4700 I iver Road Re: Request for Confirmation that I. ] Potato is not a regulated article Unit 98 Riverdale, MD 20737 Dear Dr. Mathis: Thank you for your letter dated July 29, 2013 inquiring whether or not the potato product described in your letter is a regulated article. This letter states that the "potato has· improved consumer safety and processing attributes attributable to a single gene knock-out achieved through transient expression of a Transcription Activator-Like Effector Nuclease (TALEN)." APHIS regulates the introduction of certain genetically engineered organisms which are, or have the potential to be plant pest. Regulations for genetically engineered organisms that have the potenti al to be plant pests, under the Plant Protection Act, are codified at 7 CFR part 340, "Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pest or Which There Is Reason To Believe Are Plant Pests." Under the provisions of these regulations, a genetically engineered (GE) organism is deemed a regulated article if it has been genetically engineered from a donor organism, recipient organism, or vector or vector agent listed in §340.2 and the listed organism meets the definition of "plant pest" or is an unclassified organism and/or an organism whose classification is unknown, or if the Administrator dete11nines that tl e GE organism is a plant pest or has reason to believe is a plant pest.
    [Show full text]
  • Tropix Catalog.Indd 1 3/23/07 12:43:35 PM 1 Chemiluminescent Substrates and Chemiluminescent Enhancers
    2007 Chemiluminescent Product Guide Tropix catalog.indd 1 3/23/07 12:43:35 PM 1 Chemiluminescent Substrates and Chemiluminescent Enhancers 1 Chemiluminescent Substrates and Chemiluminescent Enhancers . .1 2 Reporter Gene Assays and Reagents . .9 3 Immunodetection Products . 25 4 Nucleic Acid Membrane-Based Detection Products . 38 5 Reagents and Accessories for Chemiluminescence. 43 Introduction . .1 CDP-Star® Substrate and CSPD® Substrates . .3 Galacton® / Galacton-Plus® / Galacton-Star® Substrates . .4 Glucuron® Substrate . .5 Glucon™ Substrate . .5 NA-Star® Substrate. .6 Solution-based Luminescence Enhancers Sapphire™, Sapphire-II™, Emerald™, Emerald-II™, and Ruby™ . .7 Membrane-based Luminescence Enhancers Nitro-Block™ and Nitro-Block-II™. .8 ii Tropix catalog.indd 2 3/23/07 12:43:39 PM Substrates and Enhancers Introduction OO OCH 3 Chemiluminescence ® CDP-Star Chemiluminescence is the conversion of chemical energy to light energy. Cl Cl = OPO Several different chemical reactions, including some enzyme-catalyzed reac- Alkaline 3 tions, result in the production of visible light. Chemiluminescence reactions Phosphatase occur naturally (bioluminescence) in a wide variety of organisms, including OO OCH 3 beetles, jellyfish, bacteria, and many marine organisms. In addition, there Metastable Intermediate are several classes of synthetic chemical structures that upon chemical or Cl Cl enzymatic cleavage produce light emission. Chemiluminescent reactions O - are employed in a wide variety of applications, including but not limited to OCH 3 O biological assays, clinical diagnostic assays, biosensors, hygiene monitoring, O O - * and commercial low-level lighting. Cl Cl Principles of Enzyme-activated Chemiluminescence 1,2-Dioxetane substrates emit visible light upon enzyme-catalyzed decom- Light position. Chemiluminescent detection of biomolecules with 1,2-dioxetane Figure 1.
    [Show full text]
  • Histochemical Analysis of Expression Pattern of Camv 35S Promoter in Transgenic Rapeseed (Brassica Napus L.)
    Current World Environment Vol. 10(Special Issue 1), 752-757 (2015) Histochemical Analysis of Expression Pattern of CaMV 35S Promoter in Transgenic Rapeseed (Brassica napus L.) PARISSA JONOUBI1, ALI HateF SALMANIAN2 and AMIN RavaeI3 1Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran. 2Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. 3Master of Science, Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran. http://dx.doi.org/10.12944/CWE.10.Special-Issue1.90 (Received: November, 2014; Accepted: April, 2015) ABstract Promoters are considered valuable tools for biotechnology and provide great opportunities for eugenic purposes. This study aimed to investigate the expression pattern of GUS gene directed by CaMV 35S promoter in transgenic rapeseed (Brassica napus L.). The GUS gene was transferred to the rapeseed explants by Agrobacterium. The regenerated and rooted transgenic plantlets were transferred to the pots containing a mixture of soli and vermiculite. These plants underwent PCR and histochemical GUS assay. The cross-section of leaf, petiole, and stem of the transformed plants was obtained. GUS activity was observed in phloem, parenchyma, collenchyma, and supporting tissue of vascular bundles. It was also observed in cambium, endoderm, vascular ray, pith parenchyma, epidermis, and trichomes. These results showed that CaMV 35S causes the expression of transgene in various tissues differently.
    [Show full text]
  • The Ethics of Changing People Through Genetic Engineering, 13 Notre Dame J.L
    Notre Dame Journal of Law, Ethics & Public Policy Volume 13 Article 5 Issue 1 Sym[posium on Emerging Issues in Technology 1-1-2012 What Sort of People Do We Want - The thicE s of Changing People through Genetic Engineering Michael J. Reiss Follow this and additional works at: http://scholarship.law.nd.edu/ndjlepp Recommended Citation Michael J. Reiss, What Sort of People Do We Want - The Ethics of Changing People through Genetic Engineering, 13 Notre Dame J.L. Ethics & Pub. Pol'y 63 (1999). Available at: http://scholarship.law.nd.edu/ndjlepp/vol13/iss1/5 This Article is brought to you for free and open access by the Notre Dame Journal of Law, Ethics & Public Policy at NDLScholarship. It has been accepted for inclusion in Notre Dame Journal of Law, Ethics & Public Policy by an authorized administrator of NDLScholarship. For more information, please contact [email protected]. WHAT SORT OF PEOPLE DO WE WANT? THE ETHICS OF CHANGING PEOPLE THROUGH GENETIC ENGINEERING MICHAEL J. REISS* Within the last decade, genetic engineering has changed from being a relatively esoteric research technique of molecular biologists to an application of considerable power, yet one which raises widespread public concern. In this article, I first briefly summarize the principles of genetic engineering, as applied to any organism. I then concentrate on humans, reviewing both progress to date and possible future developments. Throughout, my particular focus is on the ethical acceptability or otherwise of the technology. I restrict myself to cases where humans are themselves being genetically engineered. This means, for instance, that I do not cover such topics as xenotransplantation (when animals are genetically engineered to make them suitable for transplantation into humans) and the issues resulting from the production of such products as genetically engineered human growth hor- mone, al-antitrypsin, or vaccines (when micro-organisms, ani- mals, or plants are genetically engineered to produce human proteins).
    [Show full text]
  • Import of DNA Into Mammalian Nuclei by Proteins Originating from a Plant Pathogenic Bacterium
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 3729–3733, March 1999 Cell Biology Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium i ALICJA ZIEMIENOWICZ*, DIRK GO¨RLICH†,ERICH LANKA§,BARBARA HOHN*¶, AND LUCA ROSSI* *Friedrich Miescher-Institut, P.O. Box 2543, CH-4002 Basel, Switzerland; †Zentrum fu¨r Molekulare Biologie der Universita¨tHeidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany; and §Max-Planck Institut fu¨r Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Communicated by Diter von Wettstein, Washington State University, Pullman, WA, February 2, 1999 (received for review October 22, 1998) ABSTRACT Import of DNA into mammalian nuclei is accompanying it into the plant. The bacterial proteins VirD2 generally inefficient. Therefore, one of the current challenges and VirE2 both contain bipartite nuclear localization signals in human gene therapy is the development of efficient DNA (NLSs) that target them into plant nuclei (7–9). Furthermore, delivery systems. Here we tested whether bacterial proteins the C-terminal NLS of the VirD2 protein is required for could be used to target DNA to mammalian cells. Agrobacte- efficient transfer of the bacterial T-DNA to the plant nucleus rium tumefaciens, a plant pathogen, efficiently transfers DNA (10–12). Because mammalian NLSs have been shown to be as a nucleoprotein complex to plant cells. Agrobacterium- recognized in plant systems (13–16), these target sequences mediated T-DNA transfer to plant cells is the only known may be universal. example for interkingdom DNA transfer and is widely used for We reconstituted in vitro the T-DNA complexes composed plant transformation.
    [Show full text]
  • This Document Is the Property of Bayer AG And/Or
    Safety Assessment Summary of Genuity Roundup Ready 2Yield MON 89788 Soybean Executive Summary Ongoing developments in biotechnology and molecular-assisted breeding have enabled Monsanto to develop a second-generation glyphosate-tolerant soybean product: GenuityTM Roundup Ready 2 Yield® or MON 89788 soybean (OECD Unique ID: MON–89788–1). Similar to the first generation product Roundup Ready® soybean, MON 89788 soybean will continue to provide growers with flexibility, simplicity, and cost effective weed control options. However, MON 89788 soybean and varieties containing the trait have the added potential toand and regime. enhance yield and thereby further benefit farmersAG and the soybean industry. In 1996, Roundup Ready soybean was the first soybean product containing a biotechnology trait to be commercialized in the U.S. Roundup Ready soybean was produced by incorporation of the cp4 epspsBayer coding property sequence derivedpublishing from the protectioncontents common soil bacterium Agrobacteriumof sp. strain CP4. The cp4 epsps coding its sequence directs the production of the 5-enolpyruvylparties. datashikimate -3-phosphatetherefore and/oror synthase (termed CP4 EPSPS) that is much less sensitive to glyphosate inhibition affiliates. than endogenous plant EPSPS.property The CP4 EPSPSintellectualthird renders Roundup Readymay soybean its tolerant to glyphosate, which is the asactive ingredient in Roundup agricultural the of and herbicides. The utilizationis of Roundup agriculturalregulatory herbicides plusowner. Round up a document
    [Show full text]
  • Barley Transformation Using Agrobacterium-Mediated Techniques
    Barley Transformation using Agrobacterium-Mediated Techniques Wendy A Harwood, Joanne G Bartlett, Silvia C Alves, Matthew Perry, Mark A Smedley, Nicola Leyland and John W Snape Abstract Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past ten years. Agrobacterium offers a number of advantages over Biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system. Key Words: Barley transformation, Agrobacterium tumefaciens, transgenic plants, hygromycin, immature embryo. 1 1. Introduction The first reports of successful barley transformation (1) used biolistic-based techniques to introduce DNA to immature embryos. Immature embryos were also the target tissue used in the first reports of the generation of transgenic barley plants using Agrobacterium (2). Although alternative target tissues have been examined for use in barley transformation systems, immature embryos remain the target tissue of choice for obtaining high transformation efficiencies. An alternative Agrobacterium- mediated barley transformation system uses microspore cultures as the target tissue (3). A comparison of biolistic and Agrobacterium-based methods for barley transformation highlighted some of the advantages of the Agrobacterium system (4). These included higher transformation efficiencies, lower transgene copy number and more stable inheritance of the transgenes with less transgene silencing.
    [Show full text]
  • 11:115:321 (44K PDF)
    Ethical Issues in Biochemical Research Spring 2021 11:115:321:01 George Pieczenik, Ph.D., Professor Spring 2021 Day M,W Time 2:15-3:35 Online: GoToMeeting and Zoom 3 credits, meeting twice a week for 80 minutes Course Description This course will address ethical issues in biochemistry, with some focus on genetics and molecular biology. The course will consist of lectures by the professor, as well as student presentations on selected topics. Issues to be covered will include the ethics of recombinant DNA technology, of genetically modified plants and animals, of stem cell use, scientific patents, and of creating DNA databases. Other topics will include the political use of genetics and evolutionary paradigms, and the use of fraudulent data and “pseudo science”, and how these tools can be used to sway public opinion. Important issues facing scientists and students currently will also be discussed, such as plagiarism . data manipulation and consequences of the biotechnology revolution. Course Requirements 1. Class Attendance & Participation: Students are expected to attend class online and to participate actively. There will be spot quizzes. Unexcused absences (>3) will result in failure. (10%) Online class attendance will be through GoToMyMeeting and/or Zoom. Classes will be recorded and deposited to Dropbox for students who can not make the class synchronously. 2. Essays on assigned topics: Students will present two power point topics assigned or requested. for presentation to the class. (70%) 3. Final exam; A final take home 2 hour exam. (20%) Optional reading list from which to prepare paper The Main text is Edwin Black's - America's War on the Weak Publisher: Four Walls Eight Windows; (September 2003) ISBN: 1568582587 Rosalind Franklin: The Dark Lady of DNA by Brenda Maddox , Harper Collins 2002, UK The Fraud of Abderhalden’s Enzymes by Ute Deichmann and Benno Muller-Hill, Nature vol 393.
    [Show full text]
  • Vegetable Biotechnology
    UC Davis, Vegetable Research and Information Center Biotechnology (Publication pending) VEGETABLE BIOTECHNOLOGY Vegetable Research and Information Center Vegetable Biotechnology Applications of Biotechnology in Vegetable Breeding, Production, Marketing, and Consumption Department of Vegetable Crops, University of California, Davis, CA 95616 Tel. 530-752-1249 Fax: 530-752-9659 email: [email protected] http://vric.ucdavis.edu Authors: Trevor V. Suslow and Kent J. Bradford Bioengineered Products Reach The Marketplace Revolutionary discoveries in biology in the 1970’s and 1980’s fueled predictions of dramatic changes in agriculture and stimulated entrepreneurial excitement and investment. Driven by continuing advances in knowledge, technology, and commercial experience, these predictions are now being realized in the marketplace. Beginning in 1994, the first wave of products from biotechnological applications to vegetables were introduced in pilot test markets. Vine-ripe tomatoes with extended shelf life, processing tomatoes with superior quality and deep red color, squash with novel virus resistance, and potatoes genetically modified to produce an insect-killing protein are examples of the traits introduced into commercial vegetable varieties with the tools of biotechnology These first products, such as the Flavr Savr® tomato which promised superior vine-ripened flavor, received both public visibility and regulatory scrutiny. Less visible to the public is the astounding behind-the-scenes impact of biotechnology in vegetable breeding, production, processing, and marketing. While not replacing traditional crop breeding and horticultural expertise, biotechnology has dramatically expanded the tools available for the genetic improvement and production of vegetables. The revolutionary (evolutionary in terms of biological sciences as a whole) advances that have resulted from public and private investments in basic and applied research are now entering commercial application, to the benefit of both producers and consumers.
    [Show full text]
  • Micropropagation, Genetic Engineering, and Molecular Biology of Populus
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Chapter7 Agrobacterium-mediated Transformation of Populus Species1 Mee-Sook Kim, Ned B. Klopfenstein, and Young Woo Chun posed by wounding (Perani et al. 1986). Infection by A. Introduction tumefaciens causes crown gall disease (figure 1), whereas A. rhizogenes causes hairy root disease. In addition to its chromosomal DNA, Agrobacterium contains 2 other genetic Although molecular biology of woody plants is a rela­ components that are required for plant cell transforma­ tively young field, it offers considerable potential for breed­ tion; T-DNA (transferred DNA) and the virulence (vir) re­ ing and selecting improved trees for multiple purposes. gion, which are both located on the TI (tumor-inducing) or Conventional breeding programs have produced im­ Ri (root-inducing) plasmid (Zambryoski et al. 1989). The proved growth rates, adaptability, and pest resistance; T-DNA portion of the A. tumefaciens TI plasmid or the A. however, tree improvement processes are time consum­ rhizogenes Ri plasmid is transferred to the nucleus of a host ing because of the long generation and rotation cycles of plant where it integrates into the nuclear DNA genetically trees (Dinus and Tuskan this volume; Leple et al. 1992). transforming the recipient plant. A region of the 1i plas­ Genetic engineering of trees helps to compensate for con­ mid outside the T-DNA, referred to as the wirulence re­ ventional breeding disadvantages by incorporating known gion, carries the vir genes. Expression of vir genes occurs genes into specific genetic backgrounds.
    [Show full text]
  • The Flavr Savr Tomato, an Early Example of Rnai Technology
    JOBNAME: horts 43#3 2008 PAGE: 1 OUTPUT: April 23 08:32:38 2008 tsp/horts/163067/02585 HORTSCIENCE 43(3):962–964. 2008. oligo probes or DNA probes complementary to PG. DNA oligo probes were ordered from IDT; a ‘‘+’’ symbol preceding represents an The Flavr Savr Tomato, an Early LNA-modified nucleotide. Sequences used Example of RNAi Technology were as follows: Elysia K. Krieger1, Edwards Allen, Larry A. Gilbertson, A1: AAAC+ATA+TGA+TAATATT+GCA+ TTT+GAGCAAG+CAT+GGA+ATGAA and James K. Roberts A2: ATTA+TAA+TGG+AGAATAT+AAA+ Monsanto Company, Chesterfield Campus, 700 Chesterfield Parkway, TTA+GTAGGGG+AAA+GTG+GAAAA Chesterfield, MO 63017 B1: ATGC+AAT+ATT+ATCATAT+GTT+ TTT+CCATCAC+CCT+TAG+CTCCA William Hiatt and Rick A. Sanders B2: ATAG+TCT+ATA+ATTATGG+GAT+ Monsanto Company, Calgene Campus, 1920 5th Street, Davis, CA 95616 ACT+TAACGTC+TTG+CAT+TTCCA Additional index words. Flavr Savr tomato, polygalacturonase, RNAi, T-DNA linkage Oligos were isotopically labeled with Abstract. The Flavr Savr tomato was introduced as the first genetically engineered whole [g-32P]ATP as described in Allen et al. food in 1994. The commercial event, resulting from transformation with an antisense (2005). DNA probes: Probe C—First 483 expression cassette of the endogenous polygalacturonase gene, was sequenced and found bp of the NptII sequence. Probe D—Last to contain two contiguous, linked, transfer DNA insertions. We found polygalacturonase 420 bp of the PG sequence. DNA probes suppression correlates with accumulation of ’21-nt small interfering RNAs, the were labeled with dCTP using the RadPrime hallmark of an RNA interference-mediated suppression mechanism.
    [Show full text]
  • The Role of 3-Deoxy-D-Arabino-Heptulosonate 7- Phosphate Synthase 1 in Arabidopsis Thaliana Metabolism
    THE ROLE OF 3-DEOXY-D-ARABINO-HEPTULOSONATE 7- PHOSPHATE SYNTHASE 1 IN ARABIDOPSIS THALIANA METABOLISM by Jimmy Poulin A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Cell and System Biology University of Toronto © Copyright by Jimmy Poulin, 2011 The role of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 1 in Arabidopsis thaliana metabolism Jimmy Poulin Master of Science Cell and System Biology University of Toronto 2011 Abstract The enzyme 3-deoxy-D-arabino-heptulusonate 7-phosphate synthase (DHS) catalyzes the first step of the shikimate pathway. In bacteria, the regulation of the pathway is mediated by allosteric inhibition of DHS by the aromatic amino acids tyrosine, phenylalanine and tryptophan. The regulation of the pathway in plants remains elusive but the aromatic amino acids are involved as suggested by the hypersensitivity of dhs1 knockout mutant to tyrosine. In this study the effects of the dhs1 mutation on endogenous levels of aromatic amino acids and of downstream metabolites are explored. HPLC analysis is used to measure levels of tyrosine and phenylalanine and 5-methyltryptophan sensitivity is used to probe levels of tryptophan. Additionally, the auxin content of whole seedlings was quantified by LC/MS and its local levels at the root apex are visualized with the DR5::GUS reporter system. ii Acknowledgements I could not have completed my master’s degree without the help of many resourceful individuals. First and foremost I would like to thank Dr. Dinesh Christendat for his supervision and guidance. I am also grateful for guidance received from Dr.
    [Show full text]