The Use of Long-Term Hepatocyte Cultures for Detecting Induction of Drug Metabolising Enzymes: the Current Status

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Long-Term Hepatocyte Cultures for Detecting Induction of Drug Metabolising Enzymes: the Current Status ATLA 27, 579–638, 1999 579 The Use of Long-term Hepatocyte Cultures for Detecting Induction of Drug Metabolising Enzymes: The Current Status ECVAM Hepatocytes and Metabolically Competent Systems Task Force Report 1 Sandra Coecke,1 Vera Rogiers,2 Martin Bayliss,3 José Castell,4 Johannes Doehmer,5 Gérard Fabre,6 Jeffrey Fry,7 Armin Kern8 and Carl Westmoreland3 1ECVAM, Institute for Health & Consumer Protection, European Commission Joint Research Centre, 21020 Ispra (VA), Italy; 2Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; 3GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK; 4Unidad de Hepatologia Experimental, Hospital Universitario La Fe, Avda de Campanar 21, 46009 Valencia, Spain; 5Institut für Toxikologie und Umwelthygiene, Technische Universität München, Lazarettstrasse 62, 80636 Munich, Germany; 6Preclinical Metabolism and Pharmacokinetics, Sanofi Recherche, Rue du Professeur Blayac 371, 34184 Montpellier Cédex 04, France; 7School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, UK; 8Drug Metabolism and Isotope Chemistry, Bayer, Aprather Weg 18a, 42096 Wuppertal, Germany Summary — In this report, metabolically competent in vitro systems have been reviewed, in the context of drug metabolising enzyme induction. Based on the experience of the scientists involved, a thorough survey of the literature on metabolically competent long-term culture models was performed. Following this, a prevalidation proposal for the use of the collagen gel sandwich hepatocyte culture system for drug metabolising enzyme induction was designed, focusing on the induction of the cytochrome P450 enzymes as the principal enzymes of inter- est. The ultimate goal of this prevalidation proposal is to provide industry and academia with a metabolically competent in vitro alternative for long-term studies. In an initial phase, the prevalidation study will be limited to the investigation of induction. However, proposals for other long-term applications of these systems should be forwarded to the European Centre for the Validation of Alternative Methods for consideration. The prevalidation proposal deals with several issues, including: a) species; b) practical prevalidation methodology; c) enzyme inducers; and d) advantages of working with independent expert laboratories. Since it is preferable to include other alternative tests for drug metabolising enzyme induction, when such tests arise, it is recommended that they meet the same level of development as for the collagen gel sand- wich long-term hepatocyte system. Those tests which do so should begin the prevalidation and validation process. Key words: long-term culture, hepatocytes, drug metabolism, enzyme regulation, induction, cytochrome P450, CYP, collagen gel culture, organotypic culture, co-culture, spheroids. This is the first report of the ECVAM Task Force on Hepatocytes and Metabolically Competent Systems and rep- resents the agreed conclusions of its members as individual scientists. Address for correspondence and reprints: Dr S. Coecke, ECVAM, TP 580, Institute for Health & Consumer Pro- tection, European Commission Joint Research Centre, 21020 Ispra (VA), Italy. 580 S. Coecke et al. Introduction tion on the enzyme induction capacities of a newly developed chemical entity. Informa- One of the first priorities for the European tion on the inducing properties of a new Centre for the Validation of Alternative chemical entity is usually obtained through Methods (ECVAM) was to become familiar animal studies, by using the mouse, rat, dog with the current status of non-animal test and/or monkey, which have been repeatedly development and validation. Furthermore, it exposed to the chemical for some days. Dur- was important to define the potential for the ing these in vivo experiments, large numbers incorporation of alternative tests into regula- of animals and large amounts of the test tory procedures. Therefore, ECVAM imple- compound are required. Thus, the availabil- mented a series of workshops detailing ity of a simple, robust and reproducible in specific topics, in which small groups of vitro model could help to expedite the drug experts reviewed and discussed the current development process. status of various in vitro tests and their The development of alternatives to the potential use. The first of these workshops, existing in vivo studies is encouraged by the The Practical Applicability of Hepatocyte trend toward an increasing acceptance of in Cultures in Routine Testing, was held in vitro studies by regulatory authorities: “. a Angera, Italy, in 1993, under the co-chair- negative result in vitro (no interaction iden- manship of Bas Blaauboer, José Castell and tified) is reassuring and can generally elimi- Vera Rogiers (1). After this workshop, a task nate the need for further clinical evaluation” force was established under the chairman- (2). Therefore, the current ECVAM proposal ship of Vera Rogiers. The following report focuses on the prevalidation of one or more summarises the results of a number of task metabolically competent in vitro systems force meetings held in Brussels. In these with the specific aim of assessing enzyme meetings, it was decided to focus on the induction. workshop report recommendations 6, 7 and 9. For information and clarity, extracts of these three recommendations are given Drug Metabolising Enzyme Regulation below. Classically, the definition of induction is the “The relatively poor maintenance of stable de novo synthesis of new enzyme (protein) biotransformation activities during hepato- molecules as a result of increased transcrip- cyte culture was identified as a major limita- tion of the respective gene following an tion of the current in vitro systems. Studies appropriate stimulus. However, an increase are required to standardise the culture con- in enzyme activity can also be observed as a ditions, in order to optimise the maintenance result of the stabilisation of an enzyme by a of various hepatocyte-specific functions.” substrate. Inhibition is defined either as an (Recommendation 6) acute decrease in activity toward a particular “The maintenance of hepatocyte-specific substrate by another simultaneously present functions during long-term culture should be compound, or a time-dependent decrease in explored further, in particular in co-cultures the amount of drug metabolising enzyme by and in three-dimensional hepatocyte culture several factors, which can include chemical systems.” (Recommendation 7) injury or a disease process (3). Knowledge of induction and inhibition of “It is essential that a minimum battery of drug metabolism could assist the prediction tests be agreed, with which to judge the of clinically significant effects such as unde- effects of different methods of isolation, sirable drug interactions and metabolism- maintenance and culture on the quality and mediated toxicity. Induction of these functionality of the hepatocytes.” (Recom- biotransformation enzymes might lead to mendation 9) enhanced toxicity because of the formation Industry has identified, as a priority, the of reactive metabolites. Furthermore, need for a metabolically competent in vitro enzyme induction can provoke a variety of system, as an alternative to the in vivo effects, including hepatic hypertrophy and model, for the examination of the induction secondary thyroid neoplasms (4). In clinical potential of new chemical entities. Regula- practice, in the context of pharmacokinetic tory agencies can require specific informa- drug–drug interactions, the metabolic clear- Drug metabolising enzyme induction 581 ance of a given drug can be enhanced and can ing to the cytosolic aryl hydrocarbon (Ah) result in reduced efficacy (5). Inhibition can receptor and translocating to the nucleus lead to enhanced toxicity, due to reduced where a ternary complex is formed with the clearance and a consequent increase in Ah receptor nuclear translocator (9, 10). plasma or tissue levels. From the viewpoint In contrast, the mechanism of gene induc- of drug therapy, to avoid potential drug–drug tion of CYP2 genes by PB and other struc- interactions and metabolism-mediated toxic- turally diverse inducing agents is regulated ity, it is desirable to develop a new drug can- by different mechanisms, without the didate that is not a potent enzyme inducer or involvement of a cytosolic receptor. A spe- inhibitor. Therefore, detailed knowledge of cific PB-responsive receptor has not been the potential of a new chemical entity to identified (9, 11). PB uses phosphorylation as either induce or inhibit drug metabolising a switch to increase the affinity of the tran- enzymes is important. scription factor(s) (10). Drug metabolising enzymes have been Ethanol regulates the expression of divided into two groups. Phase I reactions CYP2E1 by post-translational stabilisation, introduce or unmask a functional group in making it resistant to proteolytic digestion substrate molecules (for example, xenobi- (10). otics and endogenous compounds). These Glucocorticoids regulate the expression of can then be eliminated or further conjugated CYP3A genes through a receptor-mediated by Phase II reactions, the result being the mechanism involving the glucocorticoid formation of soluble compounds that are receptor. However, this receptor is appar- more readily excretable (6). ently not required for induction by The most prominent Phase I enzymes are metyrapyrone, and a complete understand-
Recommended publications
  • “Seizure Disorders” January 2017 This Is the Beginning of CE PRN’S 39Th Year
    Pharmacy Continuing Education from WF Professional Associates ABOUT WFPA LESSONS TOPICS ORDER CONTACT PHARMACY EXAM REVIEWS “Seizure Disorders” January 2017 This is the beginning of CE PRN’s 39th year. WOW! Thanks for your continued participation. The primary goal of seizure disorder treatment is to achieve a seizure-free patient. We update this topic often because it’s so important. This lesson provides 1.25 (0.125 CEUs) contact hours of credit, and is intended for pharmacists & technicians in all practice settings. The program ID # for this lesson is 0798-000-18-228-H01-P for pharmacists & 0798-000-18-228-H01-T for technicians. Participants completing this lesson by December 31, 2019 may receive full credit. Release date for this lesson is January 1, 2017. To obtain continuing education credit for this lesson, you must answer the questions on the quiz (70% correct required), and return the quiz. Should you score less than 70%, you will be asked to repeat the quiz. Computerized records are maintained for each participant. If you have any comments, suggestions or questions, contact us at the above address, or call 1-843-488-5550. Please write your name, NABP eProfile (CPE Monitor®) ID Number & birthdate (MM/DD) in the indicated space on the quiz page. The objectives of this lesson are such that upon completion participants will be able to: Pharmacists: Technicians: 1. Describe the epidemiology of seizure disorders. 1. List the types of seizures. 2. List the types of seizures. 2. List factors that affect the selection of 3. Discuss the goals associated with treating seizure anticonvulsants.
    [Show full text]
  • The Safety Evaluation of Food Flavouring Substances
    Toxicology Research View Article Online REVIEW View Journal The safety evaluation of food flavouring substances: the role of metabolic studies Cite this: DOI: 10.1039/c7tx00254h Robert L. Smith,a Samuel M. Cohen, b Shoji Fukushima,c Nigel J. Gooderham,d Stephen S. Hecht,e F. Peter Guengerich, f Ivonne M. C. M. Rietjens,g Maria Bastaki,h Christie L. Harman,h Margaret M. McGowenh and Sean V. Taylor *h The safety assessment of a flavour substance examines several factors, including metabolic and physio- logical disposition data. The present article provides an overview of the metabolism and disposition of flavour substances by identifying general applicable principles of metabolism to illustrate how information on metabolic fate is taken into account in their safety evaluation. The metabolism of the majority of flavour substances involves a series both of enzymatic and non-enzymatic biotransformation that often results in products that are more hydrophilic and more readily excretable than their precursors. Flavours can undergo metabolic reactions, such as oxidation, reduction, or hydrolysis that alter a functional group relative to the parent compound. The altered functional group may serve as a reaction site for a sub- sequent metabolic transformation. Metabolic intermediates undergo conjugation with an endogenous agent such as glucuronic acid, sulphate, glutathione, amino acids, or acetate. Such conjugates are typi- Received 25th September 2017, cally readily excreted through the kidneys and liver. This paper summarizes the types of metabolic reac- Accepted 21st March 2018 tions that have been documented for flavour substances that are added to the human food chain, the DOI: 10.1039/c7tx00254h methodologies available for metabolic studies, and the factors that affect the metabolic fate of a flavour rsc.li/toxicology-research substance.
    [Show full text]
  • Daniel Hussar, Phd, New Drug Update
    New Drug Update 2014* *Presentation by Daniel A. Hussar, Ph.D. Remington Professor of Pharmacy Philadelphia College of Pharmacy University of the Sciences in Philadelphia Objectives: After attending this program, the participant will be able to: 1. Identify the indications and routes of administration of the new therapeutic agents. 2. Identify the important pharmacokinetic properties and the unique characteristics of the new drugs. 3. Identify the most important adverse events and precautions of the new drugs. 4. Compare the new drugs to the older therapeutic agents to which they are most similar in activity. 5. Identify information regarding the new drugs that should be communicated to patients. New Drug Comparison Rating (NDCR) system 5 = important advance 4 = significant advantage(s) (e.g., with respect to use/effectiveness, safety, administration) 3 = no or minor advantage(s)/disadvantage(s) 2 = significant disadvantage(s) (e.g., with respect to use/effectiveness, safety, administration) 1 = important disadvantage(s) Additional information The Pharmacist Activist monthly newsletter: www.pharmacistactivist.com Dapagliflozin propanediol (Farxiga – Bristol-Myers Squibb; AstraZeneca) Antidiabetic Agent 2014 New Drug Comparison Rating (NDCR) = Indication: Adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus Comparable drug: Canagliflozin (Invokana) Advantages: --May be less likely to cause hypersensitivity reactions and hyperkalemia --May be less likely to interact with other medications --May
    [Show full text]
  • Caffeine Posited to Enhance Psoriasis Tx Response
    30 Skin Disorders FAMILY P RACTICE N EWS • July 1, 2006 Caffeine Posited to Enhance Psoriasis Tx Response BY ERIK GOLDMAN versity of Michigan, Ann Arbor. The im- flammatory, and they work by inhibiting drinkers were more likely to discontinue Contributing Writer pact of coffee and other caffeine-containing an enzyme called 5-amidoimidazole-4-car- MTX therapy due to perceived lack of ef- beverages on inflammatory conditions such boxamide ribonucleotide (AICAR) trans- ficacy. A second rheumatoid arthritis study P HILADELPHIA — Patients with psori- as psoriasis has been the subject of con- formylase, resulting in AICAR accumula- involving 39 patients also showed inhibi- asis who drink coffee frequently respond troversy for some time. Many people con- tion. This leads to increased adenosine tion of the drug’s effects, but other pub- better to treatment with methotrexate sider caffeine to be proinflammatory and which has anti-inflammatory properties,” lished studies show no such effects. and sulfasalazine, Dr. Yolanda Helfrich re- have suggested that patients with inflam- explained Dr. Helfrich. “Caffeine acts as an But it appears that, at least biochemi- ported at the annual meeting of the Soci- matory diseases cut their consumption. adenosine receptor antagonist, so you’d cally, coffee has bivalent effects. While it is ety for Investigative Dermatology. On face value, one would expect coffee expect it to inhibit MTX and SSZ.” true that caffeine is an adenosine receptor That should be good news for patients to thwart the efficacy of drugs such as Indeed, a study published several years antagonist, it also increases cyclic adeno- who like to drink coffee, said Dr.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Textbook of Clinical Pharmacology and Therapeutics This Page Intentionally Left Blank a Textbook of Clinical Pharmacology and Therapeutics
    A Textbook of Clinical Pharmacology and Therapeutics This page intentionally left blank A Textbook of Clinical Pharmacology and Therapeutics FIFTH EDITION JAMES M RITTER MA DPHIL FRCP FMedSci FBPHARMACOLS Professor of Clinical Pharmacology at King’s College London School of Medicine, Guy’s, King’s and St Thomas’ Hospitals, London, UK LIONEL D LEWIS MA MB BCH MD FRCP Professor of Medicine, Pharmacology and Toxicology at Dartmouth Medical School and the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA TIMOTHY GK MANT BSC FFPM FRCP Senior Medical Advisor, Quintiles, Guy's Drug Research Unit, and Visiting Professor at King’s College London School of Medicine, Guy’s, King’s and St Thomas’ Hospitals, London, UK ALBERT FERRO PHD FRCP FBPHARMACOLS Reader in Clinical Pharmacology and Honorary Consultant Physician at King’s College London School of Medicine, Guy’s, King’s and St Thomas’ Hospitals, London, UK PART OF HACHETTE LIVRE UK First published in Great Britain in 1981 Second edition 1986 Third edition 1995 Fourth edition 1999 This fifth edition published in Great Britain in 2008 by Hodder Arnold, an imprint of Hodden Education, part of Hachette Livre UK, 338 Euston Road, London NW1 3BH http://www.hoddereducation.com ©2008 James M Ritter, Lionel D Lewis, Timothy GK Mant and Albert Ferro All rights reserved. Apart from any use permitted under UK copyright law, this publication may only be reproduced, stored or transmitted, in any form, or by any means with prior permission in writing of the publishers or in the case of reprographic production in accordance with the terms of licences issued by the Copyright Licensing Agency.
    [Show full text]
  • Identification of Human Sulfotransferases Involved in Lorcaserin N-Sulfamate Formation
    1521-009X/44/4/570–575$25.00 http://dx.doi.org/10.1124/dmd.115.067397 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:570–575, April 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Identification of Human Sulfotransferases Involved in Lorcaserin N-Sulfamate Formation Abu J. M. Sadeque, Safet Palamar,1 Khawja A. Usmani, Chuan Chen, Matthew A. Cerny,2 and Weichao G. Chen3 Department of Drug Metabolism and Pharmacokinetics, Arena Pharmaceuticals, Inc., San Diego, California Received September 30, 2015; accepted January 7, 2016 ABSTRACT Lorcaserin [(R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benza- and among the SULT isoforms SULT1A1 was the most efficient. The zepine] hydrochloride hemihydrate, a selective serotonin 5-hydroxy- order of intrinsic clearance for lorcaserin N-sulfamate is SULT1A1 > Downloaded from tryptamine (5-HT) 5-HT2C receptor agonist, is approved by the U.S. SULT2A1 > SULT1A2 > SULT1E1. Inhibitory effects of lorcaserin Food and Drug Administration for chronic weight management. N-sulfamate on major human cytochrome P450 (P450) enzymes Lorcaserin is primarily cleared by metabolism, which involves were not observed or minimal. Lorcaserin N-sulfamate binds to multiple enzyme systems with various metabolic pathways in human plasma protein with high affinity (i.e., >99%). Thus, despite humans. The major circulating metabolite is lorcaserin N-sulfamate. being the major circulating metabolite, the level of free lorcaserin Both human liver and renal cytosols catalyze the formation of N-sulfamate would be minimal at a lorcaserin therapeutic dose and lorcaserin N-sulfamate, where the liver cytosol showed a higher unlikely be sufficient to cause drug-drug interactions.
    [Show full text]
  • Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
    Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Relating Metatranscriptomic Profiles to the Micropollutant
    1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
    US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]