Optical Measurements, Morphology, and the Faraday Effect Xunshan Liu, Emigdio E

Total Page:16

File Type:pdf, Size:1020Kb

Optical Measurements, Morphology, and the Faraday Effect Xunshan Liu, Emigdio E www.acsami.org Research Article Finely Designed P3HT-Based Fully Conjugated Graft Polymer: Optical Measurements, Morphology, and the Faraday Effect Xunshan Liu, Emigdio E. Turner, Valerii Sharapov, Dafei Yuan, Mohammad A. Awais, Jeffrey J. Rack,* and Luping Yu* Cite This: ACS Appl. Mater. Interfaces 2020, 12, 30856−30861 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: In this work, our group synthesized and charac- terized a fully conjugated graft polymer comprising of a donor− acceptor molecular backbone and regioregular poly(3-hexylthio- phene) (RRP3HT) side chains. Here, our macromonomer (MM) was synthesized via Kumada catalyst transfer polycondensation reaction based on ditin-benzodithiophene (BDT) initiator. The tin content of MM was then investigated by inductively coupled plasma-mass spectrometry (ICP-MS), which allowed for accurate control of donor/acceptor monomer ratio of 1:1 for the following Stille coupling polymerization toward our graft polymer (BP). The structures of the polymers were then characterized by gel permeation chromatography (GPC), NMR, and elemental analysis. This was followed by the characterization of optical, electrochemical, and physical properties. The magneto-optical activity of graft polymer BP was then measured. It was found that, despite the presence of the acceptor backbone, the characteristic large Faraday rotation of RRP3HT was maintained in polymer BP, which exhibited a Verdet constant of 2.39 ± 0.57 (104) °/T·m. KEYWORDS: synthesis, conjugated grafting polymer, grafting through, P3HT, Faraday effect 1. INTRODUCTION molecular backbone may be not active enough to initiate the growth of the side chains because of the electrical properties of Architectural design and control of polymer structures is a 11 continuously pursued research effort. One is looking for new the backbone. Second, the side chains may grow randomly and thus causing differences in the degree of polymerization properties from different structures because the function could (DP). Third, it is almost impossible to ensure that all of the also follow form. Recent years have witnessed a rapid active sites along the molecular backbone are fully reacted, and development of numerous organic semiconducting polymers 1−3 thus generating structural defects. For the grafting through for applications in a wide range of areas. Among these, − method, a macromonomer with two functional groups is Downloaded via UNIV OF NEW MEXICO on August 31, 2020 at 02:33:20 (UTC). donor acceptor copolymers have been extensively inves- prepared for copolymerization. However, since the macro- tigated. While the majority of efforts have been devoted monomer’s molecular weight is not fixed (different lengths for toward developing new building blocks for these polymers, See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. side chains), one can only roughly estimate the number of the developing novel chemistry to synthesize new architectures of functional groups by NMR or gel permeation chromatography conjugated polymers has been seldom reported. For instance, (GPC) and hence making it impossible to control a 1:1 ratio developing fully conjugated graft copolymers comprising of for the two monomers leading to a low degree of polymer- different types of polymers in the backbone and side chains has 4 ization. Another key reason of limited developments in this been rarely reported.4,5 The ability to combine two kinds of field might be the lack of related applications. The reported polymers with different properties in a single graft polymeric graft polymers did not show promising properties for their system offers potentials not available in each individual 6−8 potential application. For example, the authors tried to apply material. these materials to organic field-effect transistors; however, the To the best of our knowledge, there are only two papers to obtained charge mobilities were too low for good device have studied conjugated graft polymers that may be because of some inherent limitations of these two methods. Kumada catalyst transfer polycondensation (KCTP) has been widely Received: May 4, 2020 − used for synthesizing graft polymers.9 11 Previous studies have Accepted: June 15, 2020 already demonstrated both “grafting from” and “grafting Published: June 15, 2020 through” methods for synthesizing fully conjugated graft polymers employing KCTP polymerization.4,5 As for the grafting from method, the functionalized reactive sites on the © 2020 American Chemical Society https://dx.doi.org/10.1021/acsami.0c08170 30856 ACS Appl. Mater. Interfaces 2020, 12, 30856−30861 ACS Applied Materials & Interfaces www.acsami.org Research Article performance. Therefore, a well-designed method to synthesize ratio of MM to the other monomer for the Stille polymers with high DP, less traps, and fixed side chain length is polycondensation. The structures of the resulting brush needed; appropriate applications for this kind of materials are polymers were investigated, and their thermal, photophysical, demanded. and electrochemical properties were studied. More impor- In this work, we developed a new method for synthesizing tantly, a new application, Faraday rotation, induced by polymer fully conjugated graft polymers (BP), as shown in Figure 1.A BP was investigated. It was found that the regioregular P3HT side chains in polymer BP maintained the large magneto- optical activity previously demonstrated for pure RRP3HT. The specific packing morphology of RRP3HT that yields large magneto-optical activity is still a subject of on-going − study.12 15 Furthermore, the effect of an acceptor domain on the thin-film “giant Faraday rotation” has previously not been studied. The maintained Faraday rotation implies that the packing of RRP3HT side chains forms extended domains, which exhibit properties similar to pure RRP3HT. Figure 1. Synthetic routes for the brush polymer. 2. RESULTS AND DISCUSSION 2.1. Synthesis and Characterization. The polymer ditin-benzodithiophene (BDT) unit with two chlorothio- structure and synthetic route are shown in Scheme 1. The phenes as pendant groups was functionalized with two structures of the monomers and copolymers were confirmed trimethyltin groups. Then, regioregular P3HT (RRP3HT) by 1H NMR, matrix-assisted laser desorption ionization time- chains were grown from the chlorothiophene unit by the of-flight (MALDI-TOF), and elemental analysis. The two KCTP method to yield a macromonomer (MM) showing a polymers exhibited excellent solubility in common organic low polydispersity index (Đ) of 1.25. The trimethyltin groups solvents such as chloroform, tetrahydrofuran (THF), and survived the Kumada condition, and the tin content of MM chlorobenzene. Table 1 summarizes the polymerization results was investigated with inductively coupled plasma-mass and thermal properties of the copolymers. The molecular Đ spectrometry (ICP-MS) allowing us to accurately control the weights (Mw) and of the two copolymers were Mw = 16.9 Scheme 1. Synthetic Routes of the Macromonomer and Brush Copolymer 30857 https://dx.doi.org/10.1021/acsami.0c08170 ACS Appl. Mater. Interfaces 2020, 12, 30856−30861 ACS Applied Materials & Interfaces www.acsami.org Research Article Table 1. Polymerization Results and Thermal Properties of 2.2. Optical Properties. The photophysical properties of Copolymers the two polymers (MM and BP) were investigated using ultraviolet−visible (UV−vis) spectroscopy. The key physical · −1 a Đ ° b copolymers yields (%) Mn Mw (kg mol ) Td ( C) properties are summarized in Table 2. Both of our polymers MM 87 13.5 16.9 1.25 352 showed a very similar absorption spectrum from 300 to 500 BP 83 39.5 102.0 2.58 386 nm in the visible region (Figure 2). This is very similar to that aDetermined by GPC in THF based on polystyrene standards. bDecomposition temperature, determined by TGA in nitrogen, based on 5% weight loss. Đ kg/mol with a = 1.25 for MM and Mw = 102.0 kg/mol with a Đ =2.58forBP, as determined by gel permeation chromatography (GPC) using polystyrenes standard and CHCl3 as the eluent. The thermal properties of the copolymers were determined by thermogravimetric analysis (TGA) under a nitrogen atmosphere at a heating rate of 10 °C/min. The two Figure 2. UV−vis absorption spectra of the copolymers in the film polymers (MM and BP) showed good thermal stability with states. onset decomposition temperatures (Td) corresponding to a 5% ° weight loss at 352 and 386 C, respectively, as shown in Table of regioregular P3HT.16 The two polymers showed the same 1. absorption maxima at 448 nm. Since the content of the The synthesis of the macromonomer via KCTP is the crucial backbone is relatively low compared to the P3HT side chains, step in our synthesis. Normally, this polymerization is backbone absorption might be overlapped with that of P3HT quenched with HCl; however, since the macromonomer has leading to almost identical spectra. Absorption maxima for thin trimethyltin groups attached that are sensitive to acidic films were shifted from 448 to 518 nm for both the polymers. conditions, the reaction was just quenched with MeOH. The 70 nm red shift indicated a very strong aggregation in NMR spectrum (Figure S6)ofMM showed a clear signal at solid state, which is reasonable because the major component 0.43 ppm, which is consistent with the trimethyltin signal of of the polymers is a regioregular17 P3HT chain. the initiator compound 4 at 0.41 ppm (Figure S4). The 2.3. Electrochemical Properties. Electrochemical spectra integration ratio of the methyl groups with the aromatic of the two polymers MM and BP were investigated by cyclic protons on the thiophenes indicated that the DP of the P3HT voltammetry (CV). The CV curves and their corresponding chains is around 20, which is in good agreement with the data (Figure 3 and Table 2) indicate that these polymers are starting material ratio of the thiophene Grignard reagents and the initiator of 38. Theoretically, each side of the BDT unit should attach 19 thiophenes, plus one from the initiator itself totaling 20. ICP-MS was employed to investigate the tin content that was found to be 2.13% by weight.
Recommended publications
  • Chapter 10 Experimental Methods
    Chapter 10 Experimental Methods 10.1Materials preparation 10.2 Magnetic fields 10.3 Atomic-scale magnetism 10.4 Domain-scale measurements 10.5 Bulk magnetization measurement 10.6 Excitations 10.7 Numerical methods TCD April 2007 1 10.1 Materials Preparation 10.1.1 Bulk material Metals: Melt in an arc furnaces or a rf induction furnace. Heat treat in a resistance furnace (controlled temperature or atmosphere. X-ray Diffractometer Arc A meltermorphous me Gloveboxtals are produced by rapid solidificaSQUIDtion magnetometer - melt spinning Insulators: Mill components e.g. CoO + Fe2O3 ! CoFe2O4 . Grind and fire nx Mix ions in solutions. Precipitate gel as a precusror. Crystals: seed temperature seed Bridgeman method Czochralski method TCD April 2007 2 10.1.2 Thin films Physical vapour deposition Substrate 400 - 1000 C source Evaporation: Thermal e-beam e.g. 10 kV, 1A Mean-free path " = 6/P "in mm, P in Pa. TCD April 2007 3 cap film substrate TCD April 2007 4 Pulsed-laser deposition (PLD) ns pulses of UV light ! 1 J cm2 on the target, ! 10 Hz. directed plume cos11# Growth rate ! 1 nm s-1 TCD April 2007 5 Molecular-beam epitaxy (MBE) Carried out in UHV 10-7 - 10-9 Pa Needed to avoid conamination of a slowly-growing film by residual gas. Time for a monolayer 1/2 2 $t = (12MkBT/M) /Pa e..g Oxygen a ! 0.2 nm, P = 10-5 Pa, $t ! 6 0s Growth rate < 0.2 nm s-1 • Franck-van der Merwe • Volmer-Weber • Strannsky-Krastanov TCD April 2007 6 10.1.3 Small particles TCD April 2007 7 TCD April 2007 8 Sputtering Use Ar gas, Ar+ ions are accelerated towards the cathode (target).
    [Show full text]
  • The Faraday Effect
    Faraday 1 The Faraday Effect Objective To observe the interaction of light and matter, as modified by the presence of a magnetic field, and to apply the classical theory of matter to the observations. You will measure the Verdet constant for several materials and obtain the value of e/m, the charge to mass ratio for the electron. Equipment Electromagnet (Atomic labs, 0028), magnet power supply (Cencocat. #79551, 50V-5A DC, 32 & 140 V AC, RU #00048664), gaussmeter (RFL Industries), High Intensity Tungsten Filament Lamp, three interference filters, volt-ammeter (DC), Nicol prisms (2), glass samples (extra dense flint (EDF), light flint (LF), Kigre), sample holder (PVC), HP 6235A Triple output power supply, HP 34401 Multimeter, Si photodiode detector. I. Introduction If any transparent solid or liquid is placed in a uniform magnetic field, and a beam of plane polarized light is passed through it in the direction parallel to the magnetic lines of force (through holes in the pole shoes of a strong electromagnet), it is found that the transmitted light is still plane polarized, but that the plane of polarization is rotated by an angle proportional to the field intensity. This "optical rotation" is called the Faraday rotation (or Farady effect) and differs in an important respect from a similar effect, called optical activity, occurring in sugar solutions. In a sugar solution, the optical rotation proceeds in the same direction, whichever way the light is directed. In particular, when a beam is reflected back through the solution it emerges with the same polarization as it entered before reflection.
    [Show full text]
  • Faraday and the Electromagnetic Theory of Light - Openmind Search Private Area
    8/9/2015 Faraday and the Electromagnetic Theory of Light - OpenMind Search Private area Sharing knowledge for a better future Home Faraday and the Electromagnetic Theory of Light Faraday and the Electromagnetic Theory of Light Share 24 August 2015 Physics, Science Sign in or register to rate this publication Michael Faraday (1791-1867) is probably best known for his discovery of electromagnetic induction, his contributions to electrical engineering and electrochemistry or due to the fact that he was responsible for introducing the concept of field in physics to describe electromagnetic interaction. But perhaps it is not so well known that he also made fundamental contributions to the electromagnetic theory of light. In 1845, just 170 years ago, Faraday discovered that a magnetic field influenced polarized light – a phenomenon known as the magneto-optical effect or Faraday effect. To be precise, he found that the plane of vibration of a beam of linearly polarized light incident on a piece of glass rotated when a magnetic field was applied in the direction of propagation of the beam. This was one of the first indications that electromagnetism and light were related. The following year, in May 1846, Faraday published the article Thoughts on Ray Vibrations, a prophetic publication in which he speculated that light could be a vibration of the electric and magnetic lines of force. Michael Faraday (1791-1867) / Credits: Wikipedia Faraday’s case is not common in the history of physics: although his training was very basic, the laws of electricity and magnetism are due much more to Faraday’s experimental discoveries than to any other https://www.bbvaopenmind.com/en/faraday-electromagnetic-theory-light/ 1/7 8/9/2015 Faraday and the Electromagnetic Theory of Light - OpenMind scientist.
    [Show full text]
  • Arxiv:1603.08481V1 [Physics.Optics] 28 Mar 2016 Strong Localized Electromagnetic fields Associated with Plasmonic Resonances
    Magneto-optical response in bimetallic metamaterials Evangelos Atmatzakis,1 Nikitas Papasimakis,1 Vassili Fedotov,1 Guillaume Vienne,2 and Nikolay I. Zheludev1, 3, ∗ 1Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Southampton SO17 1BJ, United Kingdom 2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 3The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371 (Dated: October 15, 2018) We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano- ring resonators consisting of Au and Ni sections. This metamaterial design allows to optimize the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Although Ni sections correspond to as little as ∼ 6% of the total surface of the metamaterial, the resulting magneto-optically induced polarization rotation is equal to that of a continuous film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components and integrated photonic circuits. The ability to tailor light-matter interactions is equally important for the development of current and future tech- nologies (telecommunications, sensing, data storage), as well as for the study of the fundamental properties of matter (spectroscopy). A typical example involves the exploitation of magneto-optical (MO) effects, where quasistatic mag- netic fields can induce optical anisotropy in a material. This is a direct manifestation of the Zeeman effect, the splitting of electronic energy levels due to interactions between magnetic fields and the magnetic dipole moment associated with the orbital and spin angular momentum [1]. This energy splitting gives rise to numerous polarization phenomena, such as magnetically-induced birefringence and dichroism, which enable dynamic control over the polarization state of light.
    [Show full text]
  • Faraday Rotation Measurement Using a Lock-In Amplifier Sidney Malak, Itsuko S
    Faraday rotation measurement using a lock-in amplifier Sidney Malak, Itsuko S. Suzuki, and Masatsugu Sei Suzuki Department of Physics, State University of New York at Binghamton (Date: May 14, 2011) Abstract: This experiment is designed to measure the Verdet constant v through Faraday effect rotation of a polarized laser beam as it passes through different mediums, flint Glass and water, parallel to the magnetic field B. As the B varies, the plane of polarization rotates and the transmitted beam intensity is observed. The angle through which it rotates is proportional to B and the proportionality constant is the Verdet constant times the optical path length. The optical rotation of the polarized light can be understood circular birefringence, the existence of different indices of refraction for the left-circularly and right-circularly polarized light components. The linearly polarized light is equivalent to a combination of the right- and left circularly polarized components. Each component is affected differently by the applied magnetic field and traverse the system with a different velocity, since the refractive index is different for the two components. The end result consists of left- and right-circular components that are out of phase and whose superposition, upon emerging from the Faraday rotation, is linearly polarized light with its plane of polarization rotated relative to its original orientation. ________________________________________________________________________ Michael Faraday, FRS (22 September 1791 – 25 August 1867) was an English chemist and physicist (or natural philosopher, in the terminology of the time) who contributed to the fields of electromagnetism and electrochemistry. Faraday studied the magnetic field around a conductor carrying a DC electric current.
    [Show full text]
  • Notes on Corona-Resistant Antennas for High-Voltage Sensing Applications
    Notes on Corona-Resistant Antennas for High-Voltage Sensing Applications Prof. Gregory D. Durgin, Marcin Morys August 13, 2018 1 Introduction Within emerging smart grid technologies, there is a gaping hole in scientific knowledge regarding design, modeling, and characterization of radio antennas in high-voltage environments. Specifically, useful quantitative models do not exist for describing the dynamic physics of high-voltage AC corona plasmas and their influence on radiating structures; as a result, little guidance is available for the design and measurement of communication antennas that resist this phenomenon. It has long been understood that high-voltages produce severe compatibility and noise issues for radio communications [Juh08]. Only recently, however, has the effect of corona shielding been measured and shown to impair UHF and microwave communication devices that operate at high- voltage line potentials [Val10]. Valenta, et. al. measured a 10 dB drop in the 5.8 GHz received power from an antenna operating at 100 kV line-to-ground AC potential [Val10]. This drop in received power was due to the surrounding corona plasma, an invisible Faraday cage that reflects and attenuates radio signals as well as de-tunes and distorts the antenna that it encapsulates. Antenna designs that resist this corona shielding are critical for wireless sensors that monitor and protect the national power grid. 2 Review of High-Voltage Corona In this section, we review the basic physics of AC corona plasmas and preliminary results on their influence on radio communications using line-potential antennas. 2.1 Plasma Effects on Communications The influence of plasmas on radio communications has been extensively studied for ionospheric propagation.
    [Show full text]
  • Quantum Faraday Effect
    Propagation of photons along the direction of the magnetic field. Quantum Faraday Effect. MsC. Lidice Cruz Rodríguez * Dra. Aurora Pérez Martínez ** Dra. Elizabeth Rodríguez Querts ** Dr. Hugo Pérez Rojas ** * Physics Faculty, Havana University ** Institute of Cybernetic, Mathematics and Physics STARS2015-SMFNS2015 Outline 1. Introduction, Faraday rotation angle. 2. Propagation of photons along the direction of the magnetic field . Quantum Faraday Effect, initial results . Solution of the dispersion equation near the thresholds. 3. Diluted gas: magnetosphere of neutron stars. Quantum Faraday Effect. Solution of the dispersion equation near the thresholds. 4. Summary. 5. Work in progress. Faraday Effect, our initial motivation It is well known that an electromagnetic wave propagating through a medium in an ambient magnetic field suffers Faraday rotation. Classical explanation of the phenomenon: birefringence of the medium Astrophysical applications!!!!!! . Measurements of the magnetic field in the interstellar medium. Particle density in the ionosphere . Difference between the amount of matter and antimatter However, in most of papers the amount of Faraday rotation is derived in a non relativistic regime and for a non degenerated medium. Faraday Effect, our initial motivation However, in most of papers the amount of Faraday rotation is derived in a non relativistic regime and for a non degenerated medium. But in the magnetosphere of neutron stars degenerate plasma Faraday Effect, our initial motivation However, in most of papers the amount of Faraday rotation is derived in a non relativistic regime and for a non degenerated medium. But in the magnetosphere of neutron stars degenerate plasma Faraday rotation in graphene-like systems. J. Appl. Phys. 113, 17B529 (2013) Faraday rotation has been reported in graphene, we use QFT, to describe the astrophysical background and also, graphene-like systems.
    [Show full text]
  • Lab on Faraday Rotation
    Faraday Rotation Tatsuya Akiba∗ Truman State University Department of Physics (Dated: March 6, 2019) This paper reports the results of analyzing the Faraday rotation effect of SF-59 glass subject to a magnetic field generated by current through a solenoid. We verify Malus' Law to determine the orientation of the first polarizer. We set the nominal angle at an optimal φ = 45◦ to make relative intensity measurements at various magnetic field strengths. The relative intensity is measured using a photo diode and a simple circuit that allows for voltage readout. The exact magnetic field strength generated by a current through a solenoid of finite length is calculated and used to compute magnetic field strengths at various currents. A plot of the magnetic field strength integrated over the length of the optical material against the Faraday rotation angle is produced and a linear fit is obtained. The experimental value of the Verdet constant was obtained from the slope of the linear fit, and compared to two theoretical values: one provided by the manufacturer and one predicted by the dispersion relation. I. INTRODUCTION of known polarization state through an optical material in a magnetic field to obtain an experimental value of Faraday rotation is a magneto-optic effect that causes the Verdet constant. The magnetic field is generated by the polarization vector of light to rotate as it passes a solenoid, and we control the magnetic field strength by through an optical material in an external magnetic field controlling the current passing through the solenoid. The [1]. First discovered by Michael Faraday in 1845, it was laser passes through an initial polarizer to set the light the first experimental evidence linking light to magnetic to a particular linear polarization, then goes through the phenomena [2].
    [Show full text]
  • Metamaterials with Magnetism and Chirality
    1 Topical Review 2 Metamaterials with magnetism and chirality 1 2;3 4 3 Satoshi Tomita , Hiroyuki Kurosawa Tetsuya Ueda , Kei 5 4 Sawada 1 5 Graduate School of Materials Science, Nara Institute of Science and Technology, 6 8916-5 Takayama, Ikoma, Nara 630-0192, Japan 2 7 National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, 8 Japan 3 9 Advanced ICT Research Institute, National Institute of Information and 10 Communications Technology, Kobe, Hyogo 651-2492, Japan 4 11 Department of Electrical Engineering and Electronics, Kyoto Institute of 12 Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan 5 13 RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan 14 E-mail: [email protected] 15 November 2017 16 Abstract. This review introduces and overviews electromagnetism in structured 17 metamaterials with simultaneous time-reversal and space-inversion symmetry breaking 18 by magnetism and chirality. Direct experimental observation of optical magnetochiral 19 effects by a single metamolecule with magnetism and chirality is demonstrated 20 at microwave frequencies. Numerical simulations based on a finite element 21 method reproduce well the experimental results and predict the emergence of giant 22 magnetochiral effects by combining resonances in the metamolecule. Toward the 23 magnetochiral effects at higher frequencies than microwaves, a metamolecule is 24 miniaturized in the presence of ferromagnetic resonance in a cavity and coplanar 25 waveguide. This work opens the door to the realization of a one-way mirror and 26 synthetic gauge fields for electromagnetic waves. 27 Keywords: metamaterials, symmetry breaking, magnetism, chirality, magneto-optical 28 effects, optical activity, magnetochiral effects, synthetic gauge fields 29 Submitted to: J.
    [Show full text]
  • The Faraday Effect
    23Jun99 Massachusetts Institute of Technology Physics Department 8.13/8.14 1999/2000 Junior Physics Laboratory: Experiment #8 THE FARADAY EFFECT PURPOSE The purpose of this experiment is to observe the effect of a magnetic field on the transmission of linearly polarized light through a dispersive medium , to measure the Verdet constant of dense flint glass at several wavelengths, and to test the validity of the classical theory of magnetic circular birefringence, known as the Faraday Effect. PREPARATORY QUESTIONS 1. Describe the following phenomena: linear birefringence optical activity magnetic circular birefringence 2. Derive Becquerel's expression for the Verdet constant. 3. Define the angle of minimum deviation of a prism and derive the relation between it and the index of refraction. 4. The material used in this experiment to display the Faraday effect is an expensive piece of heavy flint glass in the form of a long prism. What property of this material makes it specially useful for demonstrating the Faraday effect? 5. Plot the expected relation between the rotation angle and the wavelength for the Faraday effect in a substance with an optical resonance at 2000 Å. QUANTITIES TO BE MEASURED OR CALCULATED IN THIS EXPERIMENT. 1. The angle and sense (clockwise or counterclockwise relative to the direction of propagation and the magnetic field) by which the plane of polarization of linearly polarized light is rotated in traversing a measured thickness of flint glass under the influence of a magnetic field, for several wavelengths and several field strengths. 2. The Verdet constant V= /BD for each of the several wavelengths, from the data obtained in 1.
    [Show full text]
  • 09. Fields and Lines of Force. Darrigol (2000), Chap 3
    09. Fields and Lines of Force. Darrigol (2000), Chap 3. A. Faraday and Dielectrics • 1835. Insulator in presence of electric source is in a 'state of tension' (essence of electricity). • In presence of electric source, an insulator becomes polarized: positive on one side, negative on the other. • Electric charge belongs to insulators, not conductors. • Insulator = "electric" or "dielectric". Three predictions: 1. No "absolute charge" (charge = "the beginning or ending of polarization"; so, every charge must be related to an opposite charge). 2. Any effect of the composition of the "electric" should prove "that the electricity is related to the electric, not the conductor". 3. "Must try again a very thin plate under induction and look for optical effects." (Kerr effect = change in refractive index of a material in response to an electric field.) Prediction 1: No "absolute charge". • Consider a hollow conductor: If charge derives from the beginning or ending of polarization, there can be no charge inside a conductor, since conductors do not exhibit polarization. • 1835. Inside bottom of copper boiler carries no charge, no matter how electrified the boiler globally is. • 1836. Builds a 12 foot conducting cube with wood, copper, wire, paper, and tin foil and "lived in it" to check internal electric state. • No electricity in "Faraday cage"! • Conclusion: Induction is "illimitable": no global loss of power along a polarized dielectric. • Or: Absolute charge does not exist, insofar as all charge is sustained by induction and is related to another, opposite charge. Prediction 2: Dependence of induced charge on type of dielectric. • Consider device containing two concentric brass spheres.
    [Show full text]
  • Insights Into Magneto-Optics of Helical Conjugated Polymers
    Insights into Magneto-Optics of Helical Conjugated Polymers The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Wang, Pan et al. "Insights into Magneto-Optics of Helical Conjugated Polymers." Journal of the American Chemical Society 140, 20 (May 2018): 6501–6508 © 2018 American Chemical Society As Published http://dx.doi.org/10.1021/jacs.8b03777 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/128127 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Page 1 of 9 Journal of the American Chemical Society 1 2 3 4 5 6 7 Insights into Magneto-Optics of Helical Conjugated Polymers 8 Pan Wang,1,3 Intak Jeon,2,3 Zhou Lin,1 Martin D. Peeks,1,3 Suchol Savagatrup,1,3 Steven E. Kooi,3 Troy 9 1 1,3 10 Van Voorhis, and Timothy M. Swager * 11 1 Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States. 12 2 13 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United 14 States. 15 3 Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, United States 16 17 ABSTRACT: Materials with magneto-optic (MO) properties have enabled critical fiber-optic applications and highly sensitive mag- 18 netic field sensors. While traditional MO materials are inorganic in nature, new generations of MO materials based on organic semi- 19 conducting polymers could allow increased versatility for device architectures, manufacturing options, and flexible mechanics.
    [Show full text]