INFORMATION to USERS the Most Advanced Technology Has Been

Total Page:16

File Type:pdf, Size:1020Kb

INFORMATION to USERS the Most Advanced Technology Has Been INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Com pany 300 North Z eeb Road, Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9002021 The role of excitatory amino acids in the nucleus accumbens and subpallidal region in goal-directed locomotor activity Shreve, Paul Edward, Ph.D. The Ohio State University, 1989 UMI 300 N. ZeebRd. Ann Arbor, MI 48106 THE ROLE OF EXCITATORY AMINO ACIDS IN THE NUCLEUS ACCUMBENS AND SUBPALLIDAL REGION IN GOAL DIRECTED LOCOMOTOR ACTIVITY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Paul E. Shreve, B.S., R.Ph. ***** The Ohio State University 1989 Reading Committee: Approved by: Dr. Norman J. Uretsky Dr. Allan M. Burkman Dr. Dennis B. McKay Adviser & College of Pharmacy Dr. Lane J. Wallace DEDICATION To my wife Sheila, I have so much to thank you for, and yet, words can not begin to express how much you mean to me. You are more than my loving wife, you are also my best friend whom I can confide in and draw strength from. You have always been there when I needed love and support. You encouraged and enabled me to achieve one of my major gc'ls in life. I am eternally grateful and indebted. Therefore, as an expression of my immeassurable love for you, I dedicate this dissertation to you. 11 ACKNOWLEDGEMENTS I wish to express my sincere appreciation to: Dr. Norman J. Uretsky for his support, instruction, and guidance throughout my years as a graduate student. I feel priviledged to have worked with such a skilled and knowledgeable scientist. His confidence in me has enabled my graduate career to be a productive endeavor. His friendship and sincere interest in me has made my life as a graduate student an enjoyable experience which I will always remember. Drs. Burkman, McKay, and Wallace for their constructive criticism of my work and suggestions in the preparation of this dissertation. 111 VITA September 23, 1959....................... Born - Pomeroy, Ohio, U.S.A. 1982....................................................... B.S. in Pharmacy, College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 1983-1985............................................ Graduate Teaching Associate The Ohio State University Columbus, Ohio 1986-1989............................................ Graduate Research Associate The Ohio State University Columbus, Ohio HONORS 1982....................................................... Eli Lilly Achievement Award 1981....................................................... Rho Chi Honor Society 1981....................................................... Presented paper at Morgantown Undergraduate Research Seminars Morgantown, West Virginia 1988....................................................... ASPET Travel Award PUBLICATIONS Kolta, M., P. Shreve, and N.J. Uretsky (1985) Effect of methyl- phenidate pretreatment on the behavioral and biochemical responses to amphetmaine. Eur. J. of Pharmacol. 117:279-282. Kolta, M.G., P. Shreve, V. De Souza, and N.J. Uretsky (1985) Time course of development of the enhanced behavioral and bio­ chemical response to amphetamine after amphetamine pretreatment. Neuropharmacology 24:823-829. Shreve, P.E. and N.J. Uretsky (1988) Role of quisqualic acid receptors in the hypermotility response produced by the injection of AMPA Into the nucleus accumbens. Pharmacol. Biochem. & Behav. 30:379-384. iv Shreve, P.E. and N.J Uretsky (1988) Effect of GABAergic trans­ mission 1n the subpallidum on the hypermotility response to to Intraaccumbens administration of excitatory amino acids and plcrotoxin. Neuropharmacology 27:1271-1278. Kolta, M.G., P.E. Shreve, and N.J. Uretsky (1989) Effect of pretreatment with amphetamine on the Interaction between amphetamine and dopamine neurons 1n the nucleus accumbens. Neuropharmacology 28:9-14. Shreve, P.E. and N.J. Uretsky (1989) AMPA, kalnic acid, and N-methyl-D-aspart1c acid stimulate locomotor activity after Injection Into the substantia Innominata / lateral preoptic area. Pharmacol., Blochem., & Behav. (In press). ABSTRACTS Grund, V.R., E.C. Hyde, and P.E. Shreve (1981) Stimulation of Insulin secretion 1n dogs with the H2-histamine receptor agonist 1mprom1dine. Diabetes 30:122A. Grund, V.R., E.C. Hyde, and P.E. Shreve (1981) H2-h1stamine receptors and Insulin secretion. The Pharmacologist 23:161. Hyde, E.C., P.E. Shreve, and V.R. Grund (1982) Role of free fatty acids 1n histamine-induced insulin secretion in dogs. The Pharmacologist 24:215. Kolta, M.G., P. Shreve, V. De Souza, and N.J. Uretsky (1984) Time course of development of the enhanced behavioral and bio­ chemical response to amphetamine after amphetamine pretreatment. The Pharmacologist 26:218. Kolta, M., P. Shreve, and N.J. Uretsky (1985) Site of action of amphetamine (A) in enhancing locomotor activity (LMA) and stereotyped behavior (STB) in A-pretreated rats. The Pharmacologist 27:124. Shreve, P.E. and N.J. Uretsky (1987) a-Amino-3-hydroxy-5- methylisoxazole-4-propionate (AMPA)-induced hypermotility after Intraaccumbens injection is antagonized by y-glutamyl- amlnomethlylsulfonate(GAMS). Fed. Proc. 46:710. Shreve, P.E. and N.J. Uretsky (1988) Kainic acid (KA), a-amino- 3-hydroxy-5-methyl1soxazole-4-prop1onate (AMPA), and N-methyl-D- aspartlc add (NMDA) stimulate locomotor activity (LMA) after injection into the substantia innominata / lateral preoptic area (SI/LPO). Society for Neuroscience Abstracts 14:940. v Boldry, R.C., P.E. Shreve, and N.J. Uretsky(1988) 6,7-Dinitro- quinoxaline-2,3-dione (DNQX) and y-glutamylaminomethylsulfo­ nate (GAMS) selectively inhibit the hypermotHity response produced by activation of qulsqualic acid (QA) receptors in the nucleus accumbens (NA). Society for Neuroscience Abstracts 14:940. Shreve, P.E. and N.J. Uretsky (1988) Role of GABAerglc neurotrans­ mission in the substantia innominata / lateral preoptic area (SI/ LPO) in the hypermotility responses produced by excitatory amino acids (EAA) Injected into the nucleus accumbens (NA). The Pharmacologist 30:A25. Field of Study: Pharmacology vi TABLE OF CONTENTS PAGE DEDICATION................................................................................................................... 11 ACKNOWLEDGEMENTS..................................................................................................... 111 VITA................................................................................................................................. iv LIST OF TABLES.......................................................................................................... xii LIST OF FIGURES........................................................................................................ xiii CHAPTER I. INTRODUCTION........................................................................................................ 1 Excitatory Amino Acid Pharmacology.............................................. 1 Endogenous Excitatory amino acids........................................ 1 Excitatory Amino Acid Receptor Classification............. 2 Effects of Excitatory Amino Acids on Neurons............... 6 Excitatory Amino Acids and Long Term Potentiation... 8 Excitatory Amino Acids and Neurotoxicity........................ 9 Function and Anatomy of The Nucleus Accumbens....................... 11 Function of the Nucleus Accumbens......................................... 11 Pharmacology of Excitatory Amino Acids in the Nucleus Accumbens .............................................................................. 13 Function of the Substantia Innominata / Lateral Preoptic area....................................................................................... 15 Statement of the Problem..................................................................... 18 v i 1 CHAPTER PAGE II. Role of Quisqualic Acid Receptors in the Hypermotility Response Produced by the Injection of AMPA into the Nucleus Accumbens ...........................................................................................
Recommended publications
  • Characterization of a Domoic Acid Binding Site from Pacific Razor Clam
    Aquatic Toxicology 69 (2004) 125–132 Characterization of a domoic acid binding site from Pacific razor clam Vera L. Trainer∗, Brian D. Bill NOAA Fisheries, Northwest Fisheries Science Center, Marine Biotoxin Program, 2725 Montlake Blvd. E., Seattle, WA 98112, USA Received 5 November 2003; received in revised form 27 April 2004; accepted 27 April 2004 Abstract The Pacific razor clam, Siliqua patula, is known to retain domoic acid, a water-soluble glutamate receptor agonist produced by diatoms of the genus Pseudo-nitzschia. The mechanism by which razor clams tolerate high levels of the toxin, domoic acid, in their tissues while still retaining normal nerve function is unknown. In our study, a domoic acid binding site was solubilized from razor clam siphon using a combination of Triton X-100 and digitonin. In a Scatchard analysis using [3H]kainic acid, the partially-purified membrane showed two distinct receptor sites, a high affinity, low capacity site with a KD (mean ± S.E.) of 28 ± 9.4 nM and a maximal binding capacity of 12 ± 3.8 pmol/mg protein and a low affinity, high capacity site with a mM affinity for radiolabeled kainic acid, the latter site which was lost upon solubilization. Competition experiments showed that the rank order potency for competitive ligands in displacing [3H]kainate binding from the membrane-bound receptors was quisqualate > ibotenate > iodowillardiine = AMPA = fluorowillardiine > domoate > kainate > l-glutamate. At high micromolar concentrations, NBQX, NMDA and ATPA showed little or no ability to displace [3H]kainate. In contrast, Scatchard analysis 3 using [ H]glutamate showed linearity, indicating the presence of a single binding site with a KD and Bmax of 500 ± 50 nM and 14 ± 0.8 pmol/mg protein, respectively.
    [Show full text]
  • Download Product Insert (PDF)
    Product Information CNQX Item No. 14618 CAS Registry No.: 115066-14-3 Formal Name: 1,2,3,4-tetrahydro-7-nitro-2,3-dioxo-6- quinoxalinecarbonitrile H Synonyms: 6-cyano-7-Nitroquinoxaline-2,3-dione, NC N O FG 9065 MF: C9H4N4O4 FW: 232.2 O O N N Purity: ≥98% 2 Stability: ≥2 years at -20°C H Supplied as: A crystalline solid λ UV/Vis.: max: 217, 275, 315 nm Laboratory Procedures For long term storage, we suggest that CNQX be stored as supplied at -20°C. It should be stable for at least two years. CNQX is supplied as a crystalline solid. A stock solution may be made by dissolving the CNQX in the solvent of choice. CNQX is soluble in organic solvents such as DMSO and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of CNQX in these solvents is approximately 5 and 12 mg/ml, respectively. CNQX is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, CNQX should first be dissolved in DMF and then diluted with the aqueous buffer of choice. CNQX has a solubility of approximately 0.5 mg/ml in a 1:1 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. CNQX is a competitive, non-NMDA glutamate receptor antagonist (IC50s = 0.3 and 1.5 μM for AMPA and kainate 1,2 receptors, respectively, versus IC50 = 25 μM for NMDA receptors). This compound has been used to specifically target AMPA and kainate receptor responses and thus differentiate from that of NMDA receptors.
    [Show full text]
  • An Investigation Into Pro-Apoptotic Targets in Experimental Glaucoma and the Neuroprotective Effects of Ginkgo Biloba in Retinal Ganglion Cells
    An investigation into pro-apoptotic targets in experimental glaucoma and the neuroprotective effects of Ginkgo biloba in retinal ganglion cells Abeir Baltmr MB ChB, FRCS (Glasg) A thesis submitted to University College London for the degree of Doctor of Medicine (Research) 2012 Glaucoma and Retinal Neurodegeneration Research Group Visual Neuroscience Institute of Ophthalmology 1 Declaration I, Abeir Baltmr, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abeir Baltmr 2 Abstract Ginkgo biloba has been advocated as a neuroprotective agent for several years in glaucoma. In this study, immunohistochemistry was used to identify known potential molecular targets of Ginkgo biloba related to retinal ganglion cell (RGC) apoptosis in experimental glaucoma, including amyloid precursor protein (APP), Aß, cytochrome c, caspase-3 and tumor necrosis factor receptor-1 (TNF-R1). Furthermore, using apoptotic inducers related to mechanisms implicated in glaucoma, namely Dimethyl sulphoxide (DMSO), ultraviolet C (UVC) and Sodium Azide (NaN3), the effects of the terpenoid fraction of Ginkgo biloba (Ginkgolide A, Ginkgolide B and Bilobalide) were investigated separately in cultured retinal ganglion cells (RGC-5). Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and morphological analysis of DMSO treated RGC-5 was performed using Hoechst 33342 stain. Immunohistochemistry showed a strong inverse correlation between Aß and APP in ocular hypertension (OHT) animals, with APP and Aß accumulation peaking at 1 and 12 weeks after intraocular pressure (IOP) elevation respectively. Cytochrome c and TNF-R1 expression peaked at 3 weeks, and active caspase 3 activity at 12 weeks after IOP elevation.
    [Show full text]
  • Synthesis and Biological Evaluation
    Margarida Leonor Florindo Espadinha Licenciatura em Química Aplicada Enantiopure bicyclic lactams: synthesis and biological evaluation Dissertação para obtenção do Grau de Mestre em Química Bioorgânica Orientador: Prof. Doutora Maria M. M. Santos, FF-UL Elemento de Ligação: Prof. Doutora Paula Sério Branco, FCT-UNL Presidente: Prof. Doutora Paula Sério Branco, FCT-UNL Arguente: Prof. Doutor Vasco Bonifácio, IST-CQFM Vogal: Prof. Doutora Maria M. M. Santos, FF-UL Outubro 2015 i LOMBADA biological evaluation biological dinha synthesis and and synthesis : Margarida Espa Margarida lactams bicyclic Enantiopure ii 2015 Margarida Leonor Florindo Espadinha Licenciatura em Química Aplicada Enantiopure bicyclic lactams: synthesis and biological evaluation Dissertação para obtenção do Grau de Mestre em Química Bioorgânica Orientador: Prof. Doutora Maria M. M. Santos, FF-UL Elemento de Ligação: Prof. Doutora Paula Sério Branco, FCT Presidente: Prof. Doutora Paula Sério Branco, FCT-UNL Arguente: Doutor Vasco Bonifácio, IST-CQFM Vogal: Prof. Doutora Maria M. M. Santos, FF-UL Outubro 2015 iii Enantiopure bicyclic lactams: synthesis and biological evaluation Margarida Leonor Florindo Espadinha, Copyright A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por outro qualquer meio conhecido ou que venha a ser inventado e de divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. iv Acknowledgements I would like to thank Professor Dr. Maria M.
    [Show full text]
  • Systemic Administration of Mk-801 Protects Against ~=Met~Yl~~-Aspartate* and Quisqualate-Mediated Neurotoxicity in Perinatal Rats
    Neatroscience Vol. 36, No. 3. pp. 589-599, 1990 0306-4522j90 $3.00 f 0.00 Printed in Great Britain Pergamon Press plc 0 1990 IBRO SYSTEMIC ADMINISTRATION OF MK-801 PROTECTS AGAINST ~=MET~YL~~-ASPARTATE* AND QUISQUALATE-MEDIATED NEUROTOXICITY IN PERINATAL RATS J. W. MCDONALD,* F. S. .%LvERS~IN,~$ II. Chmo~~,$ C. HmmN,$ R. CWEN~and M. V. JoHNsToN*~$$IIB *Neuroscience Training Program and Departments of TPediatrics and SNeurotogy, Medical SchooI, and &%nter for Human Growth and Development, University of Michigan, Ann Arbor, MI 48Io4, U.S.A. ~~~Fa~rnen~ of Neurology and Pediatrics, Johns Hopkins Un~~~~~ty Schoot of Medicine and the Kennedy Institute, Baltimore, MD 21205, U.S.A. Abstract-MK-801, a non-competitive antagonist of N-methy&aspartate-type glutamate receptors, was tested for its abiiity to antagonize excitotoxic actions of ~-methyl-~-as~~ate or quisqualic acid injected into the brains of seven-day-old rats, Stereotaxic injection of ~“me~yi-~aspa~ate (25 nmol/OS ai) or quisqualic acid (100 nmol/l.O ~1) into the corpus striatum under ether anesthesia consistently produced severe unilateral neuronal necrosis in the basal ganglia, dorsal hippocampus and overlying neocortex. The distribution of the damage corresponded to the topography of glutamate receptors in the vulnerable regions demonstrated by previous autoradiographic studies, ~-Methyl-~aspa~ate produced severe, mntluent neuronal destruction while quisquaiic acid typicatty caused more selective neuronaf necrosis. Intraperitoneal administration of MK-801 (0.1-1.0 mg/kg) 30 min before N-methyl-D-aspartate injection had a prominent dose-dependent neuroprotective effects as assessed morphometrically by comparison of bilateral striatal, hippocampal and cerebral hemisphere cross-sectional areas five days later.
    [Show full text]
  • A Human Stem Cell-Derived Test System for Agents Modifying Neuronal N
    Archives of Toxicology (2021) 95:1703–1722 https://doi.org/10.1007/s00204-021-03024-0 IN VITRO SYSTEMS A human stem cell‑derived test system for agents modifying neuronal 2+ N‑methyl‑D‑aspartate‑type glutamate receptor Ca ‑signalling Stefanie Klima1,2 · Markus Brüll1 · Anna‑Sophie Spreng1,3 · Ilinca Suciu1,3 · Tjalda Falt1 · Jens C. Schwamborn4 · Tanja Waldmann1 · Christiaan Karreman1 · Marcel Leist1,5 Received: 28 October 2020 / Accepted: 4 March 2021 / Published online: 13 March 2021 © The Author(s) 2021 Abstract Methods to assess neuronal receptor functions are needed in toxicology and for drug development. Human-based test systems that allow studies on glutamate signalling are still scarce. To address this issue, we developed and characterized pluripotent stem cell (PSC)-based neural cultures capable of forming a functional network. Starting from a stably proliferating neu- roepithelial stem cell (NESC) population, we generate “mixed cortical cultures” (MCC) within 24 days. Characterization by immunocytochemistry, gene expression profling and functional tests (multi-electrode arrays) showed that MCC contain various functional neurotransmitter receptors, and in particular, the N-methyl-D-aspartate subtype of ionotropic glutamate receptors (NMDA-R). As this important receptor is found neither on conventional neural cell lines nor on most stem cell- derived neurons, we focused here on the characterization of rapid glutamate-triggered Ca2+ signalling. Changes of the intra- 2+ cellular free calcium ion concentration ([Ca ]i) were measured by fuorescent imaging as the main endpoint, and a method to evaluate and quantify signals in hundreds of cells at the same time was developed. We observed responses to glutamate in the low µM range.
    [Show full text]
  • L-Proline and Glutamatergic Neurotransmission: Clarifying The
    L-Proline and Glutamatergic Neurotransmission: Clarifying the Modulatory Role of Neuronal L-Proline Transporter Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Daniel Schulz aus Troisdorf Bonn 06.12.2011 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Eva Kostenis 2. Gutachter: Prof. Dr. Klaus Mohr Tag der Promotion: 26.03.12 Erscheinungsjahr: 2012 Die vorliegende Arbeit wurde in der Zeit von April 2007 bis November 2011 am Institut für Pharmazeutische Biologie der Rheinischen Friedrich-Wilhelms Universität Bonn unter der Leitung von Frau Prof. Dr. rer. nat. Evi Kostenis durchgeführt. Abstract I Abstract The neuronal high affinity L-proline transporter (PROT) is a putative neurotransmitter transporter whose contribution to neurotransmission is still unknown. PROT is expressed exclusively in brain by subpopulations of glutamatergic neurons and is assumed to conduct the reuptake of L-proline, which is released upon depolarization. Since to date no specific high-affinity receptor for L-proline has been discovered, the amino acid has been suggested to play a role regulating glutamatergic neurotransmission. To uncover the in vivo modulatory function of PROT, a mouse strain lacking functional PROT was generated and confirmed. The analysis of these PROT-knockout mice provided new insights into the modulatory functional roles of this transporter. Biochemical alterations within the central nervous system of PROT lacking mice were identified. Thus, PROT-deficient mice exhibit increased expression levels of N-methyl-D-aspartic acid (NMDA), α-amino-3-hydroxy-5 methylisoxazolepropionic acid (AMPA) and kainate (KA) receptor subunits.
    [Show full text]
  • 1750.Full.Pdf
    1750 • The Journal of Neuroscience, February 3, 2010 • 30(5):1750–1759 Development/Plasticity/Repair In the Developing Rat Hippocampus, Endogenous Activation of Presynaptic Kainate Receptors Reduces GABA Release from Mossy Fiber Terminals Maddalena D. Caiati,* Sudhir Sivakumaran,* and Enrico Cherubini Neuroscience Programme, International School for Advanced Studies, 34014 Trieste, Italy Presynaptic kainate receptors regulate synaptic transmission in several brain areas but are not known to have this action at immature mossy fiber (MF) terminals, which during the first week of postnatal life release GABA, which exerts into targeted cells a depolarizing and excitatory action. Here, we report that, during the first week of postnatal life, endogenous activation of GluK1 receptors by glutamate present in the extracellular space severely depresses MF-mediated GABAergic currents [GABAA-mediated postsynaptic currents (GPSCs)]. Activation of GluK1 receptors was prevented by treating the slices with enzymatic glutamate scavengers that enhanced the clearance of glutamate from the extracellular space. The depressant effect of GluK1 on MF-GPSCs was mediated by a metabotropic process sensitive to pertussis toxin. In the presence of U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H- pyrrole-2,5-dione), a selective inhibitor of phospholipase C, along the transduction pathway downstream to G-protein, GluK1 activation increased the probability of GABA release, thus unveiling the ionotropic action of this receptor. In line with this type of action, we found that GluK1 enhanced MF excitability by directly depolarizing MF terminals via calcium-permeable cation channels. Furthermore, GluK1 dynamically regulated the direction of spike time-dependent plasticity occurring by pairing MF stimulation with postsynaptic spiking and switched spike time-dependent potentiation into depression.
    [Show full text]
  • Agmatine Reverses Pain Induced by Inflammation, Neuropathy, and Spinal Cord Injury
    Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury Carolyn A. Fairbanks*†, Kristin L. Schreiber†, Kori L. Brewer‡, Chen-Guang Yu§, Laura S. Stone†, Kelley F. Kitto*†, H. Oanh Nguyen*, Brent M. Grocholski*, Don W. Shoeman*, Lois J. Kehl¶, Soundararajan Regunathanʈ, Donald J. Reisʈ, Robert P. Yezierski§, and George L. Wilcox*†** Departments of *Pharmacology and †Neuroscience and ¶Oral Science, University of Minnesota, Minneapolis, MN 55455; §University of Miami, The Miami Project, Miami, FL 33136; ʈDepartment of Neurology and Neuroscience, Weill–Cornell University Medical College, New York, NY 10021; and ‡East Carolina University School of Medicine, Department of Emergency Medicine, Greenville, NC 27858 Edited by Susan E. Leeman, Boston University School of Medicine, Boston, MA, and approved July 11, 2000 (received for review November 17, 1999) Antagonists of glutamate receptors of the N-methyl-D-aspartate geenan (CARRA), ketamine, dextromethorphan, ifenprodil, ␻ subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) aminoguanidine, N -nitro-L-arginine methyl ester (L-NAME), AG, prevent nervous system plasticity. Inflammatory and neuropathic NMDA, substance P (SP), memantine, and ␣-amino-3-hydroxy-5- pain rely on plasticity, presenting a clinical opportunity for the use methyl-4-isoxazolepropionic acid (AMPA)͞metabotropic agonist of NMDAR antagonists and NOS inhibitors in chronic pain. Agma- quisqualate (QUIS; Sigma); dynorphin (DYN; National Institute tine (AG), an endogenous neuromodulator present in brain and on Drug Abuse), SK&F 86466 (SmithKline Beecham), efaxoran spinal cord, has both NMDAR antagonist and NOS inhibitor activ- (Research Biochemicals), and moxonidine (Solvay Pharma). SP ities. We report here that AG, exogenously administered to ro- and moxonidine were dissolved in acidified saline; CARRA was dents, decreased hyperalgesia accompanying inflammation, nor- dissolved in PBS; and all the other drugs were dissolved in 0.9% malized the mechanical hypersensitivity (allodynia͞hyperalgesia) normal saline.
    [Show full text]
  • Qt267353tc Nosplash 6C08d1b
    Copyright 2011 by Leslie Ann Cruz ii In Memoriam Andrew Braisted (1963-2003) Warren DeLano (1972-2009) Two of the best scientists that I had the opportunity work with at Sunesis Pharmaceuticals. So much talent. Gone too soon… iii Dedication To my husband, George, and my son, Thomas My two most favorite men. To the grandfather I never had: Dr. David T. Petty, my life-long mentor To My Family and Friends who have supported and encouraged me throughout the years: Mom, Jim, Dad, Mikey, Maria, Lyla Carolyn, Bob, Melissa, Rob, LeeAnn, Graciela, James David, Janell, Lori, Becky, Judy, Alex, Gigi Daniel, Astrid, Dave, Scott, Joice, Kwasi, Marcus Dan and Monya Jeanne and Bruce iv Acknowledgments The saying goes, “It takes a village to raise a child”. It also takes a village to raise a scientist. Thank You to All My Teachers and Mentors With Special Thanks To: St. Benedict's Elementary School Ilene Hopkins Memorial Jr. High School Timothy Sandow Thornton Fractional South High School Richard Powell and Ann Rice The University of Chicago Viresh Rawal Argonne National Laboratory John Hryn v MediChem Research Raghu Samy, Stuart Feinberg, Shankar Saha, Dimitry Kolton Sunesis Pharmaceuticals Andrew Braisted, Dan Erlanson, Jeanne Hardy, Doug Cary, Brian Cunningham, Brian Raimundo, Molly He, Michelle Arkin, Darin Allen, Warren DeLano, Jim Wells University of California, San Francisco My Adviser: Robert Fletterick, My Dissertation Committee: Holly Ingraham, Jack Taunton, My Orals Committee: Pam England, Jim Wells, Lily Jan, Kevan Shokat Chris Olson, Charly Craik, Tom Scanlan, Kip Guy, Sue Miller, Dave Agard, Bob Stroud, David Julius, Roger Nicoll, Maia Vinogradova, Fumiaki Yumoto, Phuong Nguyen, Sam Pfaff, Eric Slivka, Jeremey Wilbur, Cindy Benod, Kris Kuchenbecker, Peter Huang, Elena Sablin, Ulrike Boettcher, Kristin Krukenburg, James Kraemer, Mariano Tabios, Rebeca Choy Collaborators Marc Cox, Eva Estébanez-Perpiñá, Paul Webb, John Baxter, Stephen Mayo vi Preface My dissertation is comprised of the two projects I worked on during my graduate career.
    [Show full text]
  • Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors
    Neurochemical Research (2019) 44:735–750 https://doi.org/10.1007/s11064-018-02712-1 REVIEW PAPER Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors Sumit Barua1 · Jong Youl Kim1 · Jae Young Kim1 · Jae Hwan Kim4 · Jong Eun Lee1,2,3 Received: 15 October 2018 / Revised: 19 December 2018 / Accepted: 24 December 2018 / Published online: 4 January 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regu- late ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,888,996 Farb (45) Date of Patent: Mar
    USOO5888996A United States Patent (19) 11 Patent Number: 5,888,996 Farb (45) Date of Patent: Mar. 30, 1999 54 INHIBITION OF NMDA RECEPTOR Gyermek, L., et al., “Structure-Activity Relationship of ACTIVITY AND MODULATION OF Some Steroidal Hypnotic Agents,” Steroids. CCX, GLUTAMATE-MEDIATED SYNAPTC 11:117–125 (1968). ACTIVITY Wu, F.-S., et al., “Pregnenolone Sulfate: A Positive Allos teric Modulator at the N-Methyl-D-aspartate Receptor,” 75 Inventor: David H. Farb, Cambridge, Mass. Molecular Pharmacology, 40:333-336 (1991). 73 Assignee: Trustees of Boston University, Boston, Park-Chung, M., et al., “3C-Hydroxy-5B-pregnan-20-one Mass. Sulfate: A Negative Modulator of the NMDA-Induced Cur rent in Cultured Neurons,” Molecular Pharmacology, 21 Appl. No.: 559,442 46:146-150 (1994). Wieland, S., et al., “Anxiolytic Activity of the Progesterone 22 Filed: Nov. 15, 1995 Metabolite 5C-pregnan-3C-ol-20-one,” Brain Research, Related U.S. Application Data 565:263-268 (1991). Belelli, D., et al., “Anticonvulsant Profile of the Progester 63 Continuation-in-part of Ser. No. 507,757, Jul. 26, 1995, one Metabolite 5C-pregnan-3C-ol-20-one.” European abandoned. Journal of Pharmacology, 166:325–329 (1989). (51) Int. Cl." ..................................................... A61K 31/56 Lan, N. C., et al., “Neurocactive Steroid Actions at the 52 U.S. Cl. .......................... 514/182; 514/177; 514/178; GABA Receptor.” Hormones and Behavior; 28:537-544 514/179 (1994). 58 Field of Search ..................................... 514/182, 177, 514/178, 179 Primary Examiner Rebecca Cook Attorney, Agent, or Firm-Hamilton, Brook, Smith & 56) References Cited Reynolds, P.C. U.S.
    [Show full text]