Class Field Theory and the Theory of N-Fermat Primes

Total Page:16

File Type:pdf, Size:1020Kb

Class Field Theory and the Theory of N-Fermat Primes CLASS FIELD THEORY AND THE THEORY OF N-FERMAT PRIMES BY ANDREW KOBIN A Thesis Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS Mathematics May, 2015 Winston-Salem, North Carolina Approved By: Frank Moore, Ph.D., Advisor Hugh Howards, Ph.D., Chair Jeremy Rouse, Ph.D. Acknowledgments This was probably the hardest page of this thesis to write, as no number of words are sufficient to praise those who have helped and supported me along the way to my Master's degree. First, I would like to thank the members of my committee. Thank you to Dr. Jeremy Rouse for his seemingly infinite wisdom and even greater generosity in sharing his knowledge with me. We had numerous discussions on the finer details of algebraic number theory that helped shape the direction of my research. He is also a fast runner. Thank you to Dr. Hugh Howards for his mentorship and advice going all the way back to 2010 when I was mere freshman at Wake Forest. My identity as a mathematician is in large part due to the dedication of Dr. Howards as an educator. Lastly, thank you to my adviser, Dr. Frank Moore, for his selfless devotion to this project over nearly two years' time. I would not be where I am today without his mathematical knowledge, worldly advice and sincere friendship. The Department of Mathematics at Wake Forest has been like a second family to me for some years now. Thank you to everyone here that has helped me to survive and thrive at Wake Forest. To my office mates, Mackenzie, Elliott, Elena and Amelie: thank you for your support and for putting up with my loud music! Finally, I would like to thank my family for their love and for providing me with opportunities in life that have allowed me to succeed. They are my biggest supporters and I love them dearly. ii Table of Contents Acknowledgments . ii Abstract . v Chapter 1 Algebraic Number Fields . 1 1.1 Rings of Algebraic Integers . .1 1.2 Dedekind Domains . .5 1.3 Ramification of Primes . 12 1.4 The Decomposition and Inertia Groups . 18 1.5 Norms of Ideals . 22 1.6 Discriminant and Different . 26 1.7 The Class Group . 34 1.8 The Hilbert Class Field . 45 1.9 Orders . 58 1.10 Units in a Number Field . 70 Chapter 2 Class Field Theory . 78 2.1 Valuations and Completions . 78 2.2 Frobenius Automorphisms and the Artin Map . 90 2.3 Ray Class Groups . 96 2.4 L-series and Dirichlet Density . 105 2.5 The Frobenius Density Theorem . 118 2.6 The Second Fundamental Inequality . 126 2.7 The Artin Reciprocity Theorem . 134 2.8 The Conductor Theorem . 143 2.9 The Existence and Classification Theorems . 145 2.10 The Cebotarevˇ Density Theorem . 150 2.11 Ring Class Fields . 160 Chapter 3 Quadratic Forms and n-Fermat Primes . 168 3.1 The Theory of Binary Quadratic Forms . 168 3.2 The Form Class Group . 175 3.3 n-Fermat Primes . 183 iii Bibliography . 190 Appendix A Appendix. 193 A.1 The Four Squares Theorem . 193 A.2 The Snake Lemma . 195 A.3 Cyclic Group Cohomology . 198 A.4 Helpful Magma Functions . 201 Curriculum Vitae . 209 iv Abstract Andrew J. Kobin Most problems in number theory are exceedingly simple to state, yet many con- tinue to elude mathematicians even centuries after they were originally posed. Such a question, \Given a positive integer n, when can a prime number be written in the form x2 + ny2?", was solved by Cox [7], and although the statement is elementary, the solution requires the depth and power of class field theory to understand. In our approach to this question, we will explore a variety of topics, including: algebraic number fields; types of class groups and class fields; two density theorems; the main theorems in class field theory; and the theory of quadratic forms. Our discussion will culminate in Theorem 2.11.3, a full characterization of primes of the form x2 + ny2. However, the intrigue doesn't end there. In Chapter 3, we pose the related ques- tion: \If p is a prime of the form x2 +ny2, when is y2 +nx2 also prime?" This question turns out to be much harder to approach, but we will investigate the symmetric n- Fermat prime question thoroughly. In certain sections (1.8, 2.10 and 3.3) we use the Magma Computational Alge- bra System to handle large or complicated computations. Many of the basic com- mands can be found in the Magma handbook, available at http://magma.maths. usyd.edu.au/magma/handbook/ through the University of Sydney's Computational Algebra Group. v Chapter 1: Algebraic Number Fields In the first chapter we provide a detailed description of the main topics in algebraic number theory: algebraic number fields, rings of integers, the behavior of prime ideals in extensions, norms of ideals, the discriminant and different, the class group, the Hilbert class field, orders and Dirichlet's unit theorem. 1.1 Rings of Algebraic Integers Let Q be an algebraic closure of Q. Then Q is an infinite dimensional Q-vector space and every polynomial f 2 Q[x] splits in Q[x]. An example of such an algebraic closure is Q = fu 2 C j f(u) = 0 for some f 2 Q[x]g. Then Q ⊂ Q ⊂ C. Note that any two choices of Q are isomorphic. One of the most important elements of a number field we will be working with is: Definition. An element α 2 Q is an algebraic integer if it is a root of some monic polynomial with coefficients in Z. p 2 1 Example 1.1.1. 2 is an algebraic integer since it is a root of x − 2. However, 2 ; π 1 and e are not algebraic integers. We will see in a moment why 2 is not algebraic, but the proof for π and e is famously difficult. Note that the set of algebraic integers in Q is precisely the integers Z. In a moment we will generalize this set to fields other than Q. Definition. The minimal polynomial of α 2 Q is the monic polynomial f 2 Q[x] of minimal degree such that f(α) = 0. The minimal polynomial of α is unique, as the following lemma shows. 1 Lemma 1.1.2. Suppose α 2 Q. Then the minimal polynomial f of α divides any other polynomial h such that h(α) = 0. Proof. Suppose h(α) = 0. Then by the division algorithm, h = fq + r with deg r < deg f. Note that r(α) = h(α) − f(α)q(α) = 0 so α is a root of r. But since deg f is minimal among all polynomials of which α is a root, r must be 0. This shows that f divides h. Lemma 1.1.3. If α 2 Q is an algebraic integer then the minimal polynomial has coefficients in Z. Proof. Let f 2 Q[x] be the minimal polynomial of α. Since α is an algebraic integer, there is some g 2 Z[x] such that g(α) = 0. By Lemma 1.1.2, g = fh for some monic h 2 Q[x]. Suppose f 62 Z[x]. Then there is some prime p dividing the denominator of at least one of the coefficients of f; let pi be the largest power of p that divides a denominator. Likewise let pj be the largest power of p that divides the denominator of a coefficient of h. Then pi+jg = (pif)(pjh) and reducing mod p gives 0 on the left, but two nonzero polynomials in Fp[x] on the right, a contradiction. Hence f 2 Z[x]. An important characterization of algebraic integers is provided in the following proposition. Proposition 1.1.4. α 2 Q is an algebraic integer if and only if ( n ) X i Z[α] = ciα : ci 2 Z; n ≥ 0 i=0 is a finitely generated Z-module. Proof. ( =) ) Suppose α is integral with minimal polynomial f 2 Z[x], where deg f = k. Then Z[α] is generated by 1; α; : : : ; αk−1. 2 ( ) = ) Suppose α 2 Q and Z[α] is generated by f1(α); : : : ; fn(α). Let d ≥ M where M = maxfdeg fi j 1 ≤ i ≤ ng. Then n d X α = aifi(α) i=1 n d X for some choice of ai 2 Z. Hence α is a root of x − aifi(x) so it is integral. i=1 1 1 Example 1.1.5. α = 2 is not an algebraic integer since Z 2 is not finitely generated as a Z-module. Definition. For a given algebraic closure Q of Q, we will denote the set of all algebraic integers in Q by Z. This set inherits the binary operations + and · from Q, and an important property is that Z is closed under these operations: Proposition 1.1.6. The set Z of all algebraic integers is a ring. Proof. Note that 0 is a root of the zero polynomial, so 0 2 Z. Then it suffices to prove closure under addition and multiplication. Suppose α; β 2 Z and let m and n be the degrees of their respective minimal polynomial. Then 1; α; : : : ; αm−1 span Z[α] and 1; β; : : : ; βn−1 likewise span Z[β]. So the elements αiβj for 1 ≤ i ≤ m; 1 ≤ j ≤ n span Z[α; β], so this Z-module is finitely generated.
Recommended publications
  • MAXIMAL and NON-MAXIMAL ORDERS 1. Introduction Let K Be A
    MAXIMAL AND NON-MAXIMAL ORDERS LUKE WOLCOTT Abstract. In this paper we compare and contrast various prop- erties of maximal and non-maximal orders in the ring of integers of a number field. 1. Introduction Let K be a number field, and let OK be its ring of integers. An order in K is a subring R ⊆ OK such that OK /R is finite as a quotient of abelian groups. From this definition, it’s clear that there is a unique maximal order, namely OK . There are many properties that all orders in K share, but there are also differences. The main difference between a non-maximal order and the maximal order is that OK is integrally closed, but every non-maximal order is not. The result is that many of the nice properties of Dedekind domains do not hold in arbitrary orders. First we describe properties common to both maximal and non-maximal orders. In doing so, some useful results and constructions given in class for OK are generalized to arbitrary orders. Then we de- scribe a few important differences between maximal and non-maximal orders, and give proofs or counterexamples. Several proofs covered in lecture or the text will not be reproduced here. Throughout, all rings are commutative with unity. 2. Common Properties Proposition 2.1. The ring of integers OK of a number field K is a Noetherian ring, a finitely generated Z-algebra, and a free abelian group of rank n = [K : Q]. Proof: In class we showed that OK is a free abelian group of rank n = [K : Q], and is a ring.
    [Show full text]
  • 6 Ideal Norms and the Dedekind-Kummer Theorem
    18.785 Number theory I Fall 2017 Lecture #6 09/25/2017 6 Ideal norms and the Dedekind-Kummer theorem In order to better understand how ideals split in Dedekind extensions we want to extend our definition of the norm map to ideals. Recall that for a ring extension B=A in which B is a free A-module of finite rank, we defined the norm map NB=A : B ! A as ×b NB=A(b) := det(B −! B); the determinant of the multiplication-by-b map with respect to an A-basis for B. If B is a free A-module we could define the norm of a B-ideal to be the A-ideal generated by the norms of its elements, but in the case we are most interested in (our \AKLB" setup) B is typically not a free A-module (even though it is finitely generated as an A-module). To get around this limitation, we introduce the notion of the module index, which we will use to define the norm of an ideal. In the special case where B is a free A-module, the norm of a B-ideal will be equal to the A-ideal generated by the norms of elements. 6.1 The module index Our strategy is to define the norm of a B-ideal as the intersection of the norms of its localizations at maximal ideals of A (note that B is an A-module, so we can view any ideal of B as an A-module). Recall that by Proposition 2.6 any A-module M in a K-vector space is equal to the intersection of its localizations at primes of A; this applies, in particular, to ideals (and fractional ideals) of A and B.
    [Show full text]
  • Multiplication Semimodules
    Acta Univ. Sapientiae, Mathematica, 11, 1 (2019) 172{185 DOI: 10.2478/ausm-2019-0014 Multiplication semimodules Rafieh Razavi Nazari Shaban Ghalandarzadeh Faculty of Mathematics, Faculty of Mathematics, K. N. Toosi University of Technology, K. N. Toosi University of Technology, Tehran, Iran Tehran, Iran email: [email protected] email: [email protected] Abstract. Let S be a semiring. An S-semimodule M is called a mul- tiplication semimodule if for each subsemimodule N of M there exists an ideal I of S such that N = IM. In this paper we investigate some properties of multiplication semimodules and generalize some results on multiplication modules to semimodules. We show that every multiplica- tively cancellative multiplication semimodule is finitely generated and projective. Moreover, we characterize finitely generated cancellative mul- tiplication S-semimodules when S is a yoked semiring such that every maximal ideal of S is subtractive. 1 Introduction In this paper, we study multiplication semimodules and extend some results of [7] and [17] to semimodules over semirings. A semiring is a nonempty set S together with two binary operations addition (+) and multiplication (·) such that (S; +) is a commutative monoid with identity element 0; (S; :) is a monoid with identity element 1 6= 0; 0a = 0 = a0 for all a 2 S; a(b + c) = ab + ac and (b + c)a = ba + ca for every a; b; c 2 S. We say that S is a commutative semiring if the monoid (S; :) is commutative. In this paper we assume that all semirings are commutative. A nonempty subset I of a semiring S is called an ideal of S if a + b 2 I and sa 2 I for all a; b 2 I and s 2 S.
    [Show full text]
  • Mension One in Noetherian Rings R
    LECTURE 5-12 Continuing in Chapter 11 of Eisenbud, we prove further results about ideals of codi- mension one in Noetherian rings R. Say that an ideal I has pure codimension one if every associated prime ideal of I (that is, of the quotient ring R=I as an R-module) has codimen- sion one; the term unmixed is often used instead of pure. The trivial case I = R is included in the definition. Then if R is a Noetherian domain such that for every maximal ideal P the ring RP is a UFD and if I ⊂ R is an ideal, then I is invertible (as a module or an ideal) if and only if it has pure codimension one. If I ⊂ K(R) is an invertible fractional ideal, then I is uniquely expressible as a finite product of powers of prime ideals of codimension one. Thus C(R) is a free abelian group generated by the codimension one primes of R. To prove this suppose first that I is invertible. If we localize at any maximal ideal then I becomes principal, generated by a non-zero-divisor. Since a UFD is integrally closed, an earlier theorem shows that I is pure of codimension one. Conversely, if P is a prime ideal of codimension one and M is maximal, then either P ⊂ M, in which case PM ⊂ RM is ∼ principal since RM is a UFD, or P 6⊂ M, in which case PM = RM ; in both case PM = RM , so P is invertible. Now we show that any ideal I of pure codimension one is a finite product of codi- mension one primes.
    [Show full text]
  • Low-Dimensional Algebraic K-Theory of Dedekind Domains
    Low-dimensional algebraic K-theory of Dedekind domains What is K-theory? k0¹OFº Z ⊕ Cl¹OFº Relationship with topological K-theory illen was the first to give appropriate definitions of algebraic K-theory. We will be This remarkable fact relates the K0 group of a Dedekind domain to its class Topological K-theory was developed before its algebraic counterpart by Atiyah and using his Q-construction because it is defined more generally, for any exact category C: group, which measures the failure of unique prime factorization. We follow the Hirzebruch. The K0 group was originally just denoted K, and it was defined for a proof outlined in »2; 1:1¼: compact Hausdor space X as: Kn¹Cº := πn+1¹BQCº 1. It is easy to show that every finitely generated projective OF-module is a K¹Xº := K¹VectF¹Xºº We will be focusing on a special exact category, the category of finitely generated direct sum of O -ideals. ¹ º F ¹ º projective modules over a ring R. We denote this by P R . By abuse of notation, we 2. Conversely, every fractional O -ideal I is a finitely generated projective Where Vectf X is the exact category of isomorphism classes of finite-dimensional F R C define the K groups of a ring R to be: OF-module, since: F-vector bundles on X under Whitney sum. Here F is either or . Kn¹Rº := Kn¹P¹Rºº 2.1 By a clever use of Chinese remainder theorem, any fractional ideal of a Dedekind Then a theorem of Swan gives an explicit relationship between this topological domain can be generated by at most 2 elements.
    [Show full text]
  • Unique Factorization of Ideals in OK
    IDEAL FACTORIZATION KEITH CONRAD 1. Introduction We will prove here the fundamental theorem of ideal theory in number fields: every nonzero proper ideal in the integers of a number field admits unique factorization into a product of nonzero prime ideals. Then we will explore how far the techniques can be generalized to other domains. Definition 1.1. For ideals a and b in a commutative ring, write a j b if b = ac for an ideal c. Theorem 1.2. For elements α and β in a commutative ring, α j β as elements if and only if (α) j (β) as ideals. Proof. If α j β then β = αγ for some γ in the ring, so (β) = (αγ) = (α)(γ). Thus (α) j (β) as ideals. Conversely, if (α) j (β), write (β) = (α)c for an ideal c. Since (α)c = αc = fαc : c 2 cg and β 2 (β), β = αc for some c 2 c. Thus α j β in the ring. Theorem 1.2 says that passing from elements to the principal ideals they generate does not change divisibility relations. However, irreducibility can change. p Example 1.3. In Z[ −5],p 2 is irreduciblep as an element but the principal ideal (2) factors nontrivially: (2) = (2; 1 + −5)(2; 1 − −p5). p To see that neither of the idealsp (2; 1 + −5) and (2; 1 − −5) is the unit ideal, we give two arguments. Suppose (2; 1 + −5) = (1). Then we can write p p p 1 = 2(a + b −5) + (1 + −5)(c + d −5) for some integers a; b; c, and d.
    [Show full text]
  • Ideals and Class Groups of Number Fields
    Ideals and class groups of number fields A thesis submitted To Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science by Minjiao Yang August, 2018 ○C Copyright All rights reserved Except for previously published materials Thesis written by Minjiao Yang B.S., Kent State University, 2015 M.S., Kent State University, 2018 Approved by Gang Yu , Advisor Andrew Tonge , Chair, Department of Mathematics Science James L. Blank , Dean, College of Arts and Science TABLE OF CONTENTS…………………………………………………………...….…...iii ACKNOWLEDGEMENTS…………………………………………………………....…...iv CHAPTER I. Introduction…………………………………………………………………......1 II. Algebraic Numbers and Integers……………………………………………......3 III. Rings of Integers…………………………………………………………….......9 Some basic properties…………………………………………………………...9 Factorization of algebraic integers and the unit group………………….……....13 Quadratic integers……………………………………………………………….17 IV. Ideals……..………………………………………………………………….......21 A review of ideals of commutative……………………………………………...21 Ideal theory of integer ring 풪푘…………………………………………………..22 V. Ideal class group and class number………………………………………….......28 Finiteness of 퐶푙푘………………………………………………………………....29 The Minkowski bound…………………………………………………………...32 Further remarks…………………………………………………………………..34 BIBLIOGRAPHY…………………………………………………………….………….......36 iii ACKNOWLEDGEMENTS I want to thank my advisor Dr. Gang Yu who has been very supportive, patient and encouraging throughout this tremendous and enchanting experience. Also, I want to thank my thesis committee members Dr. Ulrike Vorhauer and Dr. Stephen Gagola who help me correct mistakes I made in my thesis and provided many helpful advices. iv Chapter 1. Introduction Algebraic number theory is a branch of number theory which leads the way in the world of mathematics. It uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Concepts and results in algebraic number theory are very important in learning mathematics.
    [Show full text]
  • The Different Ideal
    THE DIFFERENT IDEAL KEITH CONRAD 1. Introduction The discriminant of a number field K tells us which primes p in Z ramify in OK : the prime factors of the discriminant. However, the way we have seen how to compute the discriminant doesn't address the following themes: (a) determine which prime ideals in OK ramify (that is, which p in OK have e(pjp) > 1 rather than which p have e(pjp) > 1 for some p), (b) determine the multiplicity of a prime in the discriminant. (We only know the mul- tiplicity is positive for the ramified primes.) Example 1.1. Let K = Q(α), where α3 − α − 1 = 0. The polynomial T 3 − T − 1 has discriminant −23, which is squarefree, so OK = Z[α] and we can detect how a prime p 3 factors in OK by seeing how T − T − 1 factors in Fp[T ]. Since disc(OK ) = −23, only the prime 23 ramifies. Since T 3−T −1 ≡ (T −3)(T −10)2 mod 23, (23) = pq2. One prime over 23 has multiplicity 1 and the other has multiplicity 2. The discriminant tells us some prime over 23 ramifies, but not which ones ramify. Only q does. The discriminant of K is, by definition, the determinant of the matrix (TrK=Q(eiej)), where e1; : : : ; en is an arbitrary Z-basis of OK . By a finer analysis of the trace, we will construct an ideal in OK which is divisible precisely by the ramified primes in OK . This ideal is called the different ideal. (It is related to differentiation, hence the name I think.) In the case of Example 1.1, for instance, we will see that the different ideal is q, so the different singles out the particular prime over 23 that ramifies.
    [Show full text]
  • Algebraic Number Theory Course Notes
    Math 80220 Spring 2018 Notre Dame Introduction to Algebraic Number Theory Course Notes Andrei Jorza Contents 1 Euclidean domains 2 2 Fields and rings of integers 6 2.1 Number fields . 6 2.2 Number Rings . 7 2.3 Trace and Norm . 8 3 Dedekind domains 11 3.1 Noetherian rings . 11 3.2 Unique factorization in Dedekind domains . 11 4 Ideals in number fields 13 4.1 Norms of ideals . 13 4.2 The class group . 14 4.3 Units . 18 4.4 S-integers and S-units . 20 5 Adeles and p-adics 21 5.1 p-adic completions . 21 5.2 Adeles and ideles . 25 6 Ramification and Galois theory 29 6.1 Prime ideals under extensions . 29 6.2 Ramification and inertia indices . 30 6.3 Factoring prime ideals in extensions . 32 6.4 Ramification in Galois extensions . 33 6.5 Applications of ramification . 35 7 Higher ramification 37 7.1 The different ideal . 38 8 Dirichlet series, ζ-functions and L-functions 39 8.1 Formal Dirichlet series . 39 8.2 Analytic properties of Dirichlet series . 40 8.3 Counting ideals and the Dedekind zeta function . 41 8.4 The analytic class number formula . 44 8.5 Functional equations . 45 8.6 L-functions of characters . 47 1 8.7 Euler products and factorizations of Dedekind zeta functions . 48 8.8 Analytic density of primes . 50 8.9 Primes in arithmetic progression . 51 8.10 The Chebotarëv density theorem . 52 8.11 Fourier transforms . 53 8.12 Gauss sums of characters . 55 8.13 Special values of L-functions at non-positive integers .
    [Show full text]
  • (1), 1984 Characterizations of *-Multiplication Domains
    Canad. Math. Bull. Vol. 27 (1), 1984 CHARACTERIZATIONS OF *-MULTIPLICATION DOMAINS BY EVAN G. HOUSTON, SAROJ B. MALIK AND JOE L. MOTT ABSTRACT. Let '* be a finite-type star-operation on an integral domain D. If D is integrally closed, then D is a *-multiplication domain (the *-finite *-ideals form a group) if and only if each upper to 0 in D[x] contains an element / with c(f)* = D. A finite-type star operation on D[x] naturally induces a finite-type star operation on D, and, if each *-prime ideal P of D[x] satisfies PHD = 0 or P = (P H D)D[x], then D[x] is a *-multiplication domain if and only if D is. Introduction. Throughout this paper D will denote an integral domain, and K will denote its quotient field. We shall be concerned with finite-type star operations. A star operation on D is a mapping I-+I* from the set of non-zero fractional ideals of D to itself which satisfies the following axioms for each element aGK and each pair of non-zero fractional ideals I, J of D: (i) (a)* = (a) and (al)* = ai*, (h) Içzl* and IÇ:J^I*Œ j*, (hi) /** = /*. The star operation * is said to be of finite type if each non-zero ideal I of D satisfies I* = U {J* | J is a non-zero finitely generated ideal contained in I}. For the pertinent facts about star operations, we refer the reader to [2, Sections 32 and 34] or to [6]. If * is a star operation on D, then we call D a *-multiplication domain if for each non-zero finitely generated ideal I of D there is a finitely generated fractional ideal J of D with (I/)* = D.
    [Show full text]
  • Ideal Class of an Algebraic Number Field of Unit Rank One
    MATHEMATICS OF COMPUTATION VOLUME 50, NUMBER 182 APRIL 1988, PAGES 569-579 On the Infrastructure of the Principal Ideal Class of an Algebraic Number Field of Unit Rank One By Johannes Buchmann* and H. C. Williams** Abstract. Let R be the regulator and let D be the absolute value of the discriminant of an order 0 of an algebraic number field of unit rank 1. It is shown how the infra- structure idea of Shanks can be used to decrease the number of binary operations needed to compute R from the best known 0(RD£) for most continued fraction methods to 0(Rll2De). These ideas can also be applied to significantly decrease the number of operations needed to determine whether or not any fractional ideal of 0 is principal. 1. Introduction. In [16] Shanks introduced an idea which has since been modified and extended by Lenstra [13], Schoof [15] and Williams [17]. This idea can be used to decrease the number of binary operations needed to compute the regulator of a real quadratic order of discriminant D from 0(Dll2+e) to 0(D1/4+£) for every s > 0. In [21] and [17] Williams et al. showed that Shanks' idea could be extended to complex cubic fields. In this note we show that it can be further extended to any order 0 of an algebraic number field 7 of unit rank one, i.e., to orders of real quadratic, complex cubic, and totally complex quartic fields. We present an algorithm which computes the regulator R of 0 in 0(Rll2De) binary operations.
    [Show full text]
  • Dedekind Domains
    NOTES ON DEDEKIND RINGS J. P. MAY Contents 1. Fractional ideals 1 2. The definition of Dedekind rings and DVR’s 2 3. Characterizations and properties of DVR’s 3 4. Completions of discrete valuation rings 6 5. Characterizations and properties of Dedekind rings 7 6. Ideals and fractional ideals in Dedekind rings 10 7. The structure of modules over a Dedekind ring 11 These notes record the basic results about DVR’s (discrete valuation rings) and Dedekind rings, with at least sketches of the non-trivial proofs, none of which are hard. This is standard material that any educated mathematician with even a mild interest in number theory should know. It has often slipped through the cracks of Chicago’s first year graduate program, but then we would need at least three years to cover all of the basic algebra that every educated mathematician should know. Throughout these notes, R is an integral domain with field of fractions K. 1. Fractional ideals Definition 1.1. A fractional ideal A of R is a sub R-module of K for which there is a non-zero element d of R such that dA ⊂ R. Define A−1 to be the set of all k ∈ K, including zero, such that kA ⊂ R. For fractional ideals A and B define AB to be the set of finite linear combinations of elements ab with a ∈ A and b ∈ B. Observe that AB and A−1 are fractional ideals. The set of isomorphism classes of non-zero fractional ideals is a commutative monoid with unit R under this product.
    [Show full text]