Entry and Replication of Negative-Strand Rna Viruses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gut Microbiota Beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD
International Journal of Molecular Sciences Review Gut Microbiota beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD Mario Matijaši´c 1,* , Tomislav Meštrovi´c 2, Hana Cipˇci´cPaljetakˇ 1, Mihaela Peri´c 1, Anja Bareši´c 3 and Donatella Verbanac 4 1 Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; [email protected] (H.C.P.);ˇ [email protected] (M.P.) 2 University Centre Varaždin, University North, 42000 Varaždin, Croatia; [email protected] 3 Division of Electronics, Ruđer Boškovi´cInstitute, 10000 Zagreb, Croatia; [email protected] 4 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-01-4590-070 Received: 30 January 2020; Accepted: 7 April 2020; Published: 11 April 2020 Abstract: The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions as well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system have not been as widely explored. This review covers the recent findings on the non-bacterial communities of the human gastrointestinal microbiota and their involvement in health and disease, with particular focus on the pathophysiology of inflammatory bowel disease. Keywords: gut microbiota; inflammatory bowel disease (IBD); mycobiome; virome; archaeome; eukaryotic parasites 1. Introduction Trillions of microbes colonize the human body, forming the microbial community collectively referred to as the human microbiota. -
Taxonomy of the Order Mononegavirales: Second Update 2018
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Arch Virol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 April 01. Published in final edited form as: Arch Virol. 2019 April ; 164(4): 1233–1244. doi:10.1007/s00705-018-04126-4. Taxonomy of the order Mononegavirales: second update 2018 A full list of authors and affiliations appears at the end of the article. Abstract In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV). Keywords artovirid; Artoviridae; artovirus; bornavirid; Bornaviridae; bornavirus; filovirid; Filoviridae; filovirus; ICTV; International Committee on Taxonomy of Viruses; lispivirid; Lispiviridae; lispivirus; mononegavirad; Mononegavirales; mononegavirus; mymonavirid;; Mymonaviridae; mymonavirus; nyamivirid; Nyamiviridae; nyamivirus; paramyxovirid; Paramyxoviridae; paramyxovirus; pneumovirid; Pneumoviridae; pneumovirus; rhabdovirid; Rhabdoviridae; rhabdovirus; sunvirid; Sunviridae; sunvirus; virus classification; virus nomenclature; virus taxonomy; xinmovirid; Xinmoviridae; xinmovirus *Corresponding author: JHK: Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes -
Entry and Early Infection of Non-Segmented Negative Sense Rna Viruses
University of Kentucky UKnowledge Theses and Dissertations--Molecular and Cellular Biochemistry Molecular and Cellular Biochemistry 2021 ENTRY AND EARLY INFECTION OF NON-SEGMENTED NEGATIVE SENSE RNA VIRUSES Jean Mawuena Branttie University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2021.248 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Branttie, Jean Mawuena, "ENTRY AND EARLY INFECTION OF NON-SEGMENTED NEGATIVE SENSE RNA VIRUSES" (2021). Theses and Dissertations--Molecular and Cellular Biochemistry. 54. https://uknowledge.uky.edu/biochem_etds/54 This Doctoral Dissertation is brought to you for free and open access by the Molecular and Cellular Biochemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Molecular and Cellular Biochemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A. -
Marine Oomycetes of the Genus Halophytophthora Harbor Viruses Related to Bunyaviruses
fmicb-11-01467 July 15, 2020 Time: 14:45 # 1 ORIGINAL RESEARCH published: 15 July 2020 doi: 10.3389/fmicb.2020.01467 Marine Oomycetes of the Genus Halophytophthora Harbor Viruses Related to Bunyaviruses Leticia Botella1,2*, Josef Janoušek1, Cristiana Maia3, Marilia Horta Jung1, Milica Raco1 and Thomas Jung1 1 Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia, 2 Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, Ceske Budejovice, Czechia, 3 Centre for Marine Sciences (CCMAR), University of Algarve, Faro, Portugal We investigated the incidence of RNA viruses in a collection of Halophytophthora spp. from estuarine ecosystems in southern Portugal. The first approach to detect the presence of viruses was based on the occurrence of dsRNA, typically considered as a viral molecule in plants and fungi. Two dsRNA-banding patterns (∼7 and 9 kb) were observed in seven of 73 Halophytophthora isolates tested (9.6%). Consequently, two dsRNA-hosting isolates were chosen to perform stranded RNA sequencing for de novo virus sequence assembly. A total of eight putative novel virus species with genomic Edited by: affinities to members of the order Bunyavirales were detected and their full-length RdRp Ioly Kotta-Loizou, gene characterized by RACE. Based on the direct partial amplification of their RdRp Imperial College London, United Kingdom gene by RT-PCR multiple viral infections occur in both isolates selected. Likewise, Reviewed by: the screening of those viruses in the whole collection of Halophytophthora isolates Robert Henry Arnold Coutts, showed that their occurrence is limited to one single Halophytophthora species. -
Nongenetic Reactivation and Is Caused by the Action of the Uncoating Protein
Poxviruses Dr. Ali Hashemi Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran Introduction Structure and Composition Poxviruses are the largest and most complex of viruses infecting humans. Poxviruses are large enough to be seen as featureless particles by light microscopy. By electron microscopy, they appear to be brick-shaped or ellipsoid particles. An outer lipoprotein membrane,or envelope, encloses a core and two structures of unknown function called lateral bodies Cont…. The core contains the large viral genome of linear double- stranded DNA. The DNA contains inverted terminal repeats of variable length, and the strands are connected at the ends by terminal hairpin loops. The chemical composition of a poxvirus resembles that of a bacterium. Vaccinia virus is composed predominantly of protein (90%), lipid (5%), and DNA (3%). Classification Poxviruses are divided into two subfamilies based on whether they infect vertebrate or insect hosts. Most of the poxviruses that can cause disease in humans are contained in the genera Orthopoxvirus and Parapoxvirus; there are also several that are classified in the genera Yatapoxvirus and Molluscipoxvirus. Cont… Cont… The orthopoxviruses have a broad host range affecting several vertebrates. They include ectromelia (mousepox), camelpox, cowpox, monkeypox, vaccinia, and variola (smallpox) viruses. Some poxviruses have a restricted host range and infect only rabbits (fibroma and myxoma) or only birds. Others infect mainly sheep and goats (sheeppox, goatpox) or cattle (pseudocowpox, or milker’s nodule). Poxvirus replication Poxviruses are unique among DNA viruses in that the entire multiplication cycle takes place in the cytoplasm of infected cells. Poxviruses are further distinguished from all other animal viruses by the fact that the uncoating step requires a newly synthesized, virus-encoded protein. -
Characterization of Vertically and Cross-Species Transmitted Viruses in the Cestode Parasite 2 Schistocephalus Solidus
bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Characterization of vertically and cross-species transmitted viruses in the cestode parasite 2 Schistocephalus solidus 3 Megan A Hahna, Karyna Rosariob, Pierrick Lucasc, Nolwenn M Dheilly a# 4 5 a School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, USA 6 b College of Marine Science, University of South Florida, Saint Petersburg, FL, USA 7 c ANSES, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du 8 Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, 9 Ploufragan, France 10 11 # Address correspondence to Nolwenn M Dheilly: [email protected] 12 1 bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 13 Abstract 14 Parasitic flatworms (Neodermata) represent a public health and economic burden due to associated 15 debilitating diseases and limited therapeutic treatments available. Despite their importance, there 16 is scarce information regarding flatworm-associated microbes. We report the discovery of six RNA 17 viruses in the cestode Schistocephalus solidus. -
Tically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2021 doi:10.20944/preprints202106.0526.v1 Review Towards the forest virome: next-generation-sequencing dras- tically expands our understanding on virosphere in temperate forest ecosystems Artemis Rumbou 1,*, Eeva J. Vainio 2 and Carmen Büttner 1 1 Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Ber- lin, Germany; [email protected], [email protected] 2 Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland; [email protected] * Correspondence: [email protected] Abstract: Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont. Symbiotic mi- crobiota and pathogens engage in a permanent interplay, which influences the host. Thanks to the development of NGS technol- ogies, a vast amount of genetic information on the virosphere of temperate forests has been gained the last seven years. To estimate the qualitative/quantitative impact of NGS in forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of NGS methods is ex- tremely significant for forest virology. Reviewed data about viral presence in holobionts, allowed us to address the role of the virome in the holobionts. Genetic variation is a crucial aspect in hologenome, significantly reinforced by horizontal gene transfer among all interacting actors. Through virus-virus interplays synergistic or antagonistic relations may evolve, which may drasti- cally affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protec- tion based on endophytes and mycovirus biocontrol agents. -
CBME TIME TABLE – II MBBS BLOCK 1: March to June-2021
SRI ADICHUNCHANAGIRI SHIKSHANA TRUST (R.) BGS GLOBAL INSTITUTE OF MEDICAL SCIENCES (Affiliated to Rajiv Gandhi University of Health Sciences, Bangalore) No. 67, BGS Health & Education City, Uttarahalli Road, Kengeri, Bangalore- 560060, Karnataka CBME TIME TABLE – II MBBS BLOCK 1: March TO June-2021 WEEK 1 DAY 8-11 11.30-12.30 12.30-1.30 2.00-4.00 4.00-5.00 Monday Postings L1 –PH: 1.1 OBG-LL1: OG 1.1: Integration: PH-A: PH: 1.1 MIC SDL 1 PSM: Birth rate, maternal 08/03/21 Batch A - Principles of mortality rate and morbidity Source of drug , drug information , Integration with Physiology and Gen Med pharmacology & drug compendia ,essential medicine, Pathology pharmacotherapeutics Formative Assessment: counterfeit drug , orphan drug. Batch B - Written/ Viva Assessment: Written/ viva Gen Sur Formative Assessment: MI 1.7.2 immune system Written/ Viva Batch C - Assessment: Written/ OBG Pharmacology –PH: 1.2: Therapeutic drug Monitoring & Clinical Trials Viva/MCQs Assessment: Short Notes Error! Not a valid embedded object. CM - B CM 7.2 - SGD-1: Cold chain system and its uses Assessment: Skill demo CM 7.3 - SGD-2: Integration Biochemistry Immunizing agents, national immunization schedule and vaccination strategies including vaccine development and implementation Assessment: MCQ/Viva Tuesday Postings L2 –PH: 1.3 & 1.11 FM: L1: SGD -1: FM- A: SGD-1 09/03/21 Batch A - Routes of Drug FM 1.1: Basics of Forensic PA 1.1 - Describe the role of a Gen Med administration medicine, Definition of FMT, pathologist in diagnosis and and its Sub Specialities management of disease Batch B - Formative Assessment: FM 2.8: Post Mortem Changes - ASSESSMENT: (written,viva-voce) Gen Sur Written/ Viva FM 1.2: History and Immediate & Early changes. -
Curicullum Vitae
CURICULLUM VITAE Linfa (Lin-Fa) Wang Programme in Emerging Infectious Diseases Duke-NUS Medical School Tel. +65-65167256 (office) 8 College Road Tel. +65-90297056 (mobile) Singapore 169857, VIC 3220 Email: [email protected] ACADEMIC QUALIFICATIONS Ph.D. Biochemistry (Molecular Biology), University of California, Davis. June, 1986. B.S. (Honour) Biology (Biochemistry), East China Normal University, Shanghai, China, January 1982. EMPLOYMENT AND RESEARCH EXPERIENCE 2012.7-present Director and Professor, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 2008.3-2015.8 OCE Science Leader, CSIRO Australian Animal Health Laboratory, Geelong, Vic. 2004.7-2008.2 Senior Principal Research Scientist and project leader, CSIRO Australian Animal Health Laboratory, Geelong, Vic. 2003.7-2010.6 Project Leader, Australian Biosecurity Cooperative Research Centre for Emerging Infectious Diseases (AB-CRC), Brisbane, Qld. 1996.7-2004.6 Principal Research Scientist and project leader, CSIRO Australian Animal Health Laboratory, Geelong, Vic. 1992.7-1996.6 Senior Research Scientist and project leader, CSIRO Australian Animal Health Laboratory, Geelong, Vic. 1990.12-1992.6 Research Scientist, CSIRO Australian Animal Health Laboratory, Geelong, Vic. 1990.5-1990.12 Senior Research Officer, the Centre for Molecular Biology and Medicine, Monash University, Clayton, Vic. 1989.5-1990.5 Senior Tutor, Department of Biochemistry, Monash University, Clayton, Vic. 1986.7-1989.3 Postdoctoral Research Fellow, Department of Biochemistry, University of California, Davis. 1982.10-1986.6 Postgraduate Student, Department of Biochemistry, University of California, Davis. TEACHING EXPERIENCE 2012.7-present Professor, Program in Emerging Infectious Diseases, Duke- NUS Graduate Medical School, Singapore 1996.2-present Supervisor for Ph.D. -
Theory, Practicals Block
MVJ Medical College And Research Hospital Integrated and Aligned Time table Block -2 Teaching Program - Theory, Practicals Block - 2 01/07/2021 to 30/09/2021 8.30 - Time 11.30 - 12.30 12.30 - 1.30 1.30 - 2.00 2.00 - 4.00 2 TO 3 3 TO 4 4 TO 5 11.30 Lecture/ SGD Date Day clinicals Lecture/SGD class lunch Practicals /SGD/SDL OBG AETCOM SDL SPRTS /ECA class Microbiology Pathology Pharmacology Community Medicine SPORTS /ECA PA18.2 Acute PH 1.20 - Alcohol PH CM 1 PQLI, HDI calculation 1/7/21 THURS Leukemia (L) 1.23 - Drug Deaddiction (L) SGD Ph.1.24.1 physiology of Nephron MI3.1.1 (LECTURE ((SGD 1 )MI3.1.2 01) Introduction to Diarrheagenic E.coli PA 18.1 Non Leukemic 2/7/21 FRI gastrointestinal PA18.2 Chronic Leukemia (L) MI3.1.5 Viral Leucocyte disoreder Pandemic 2.4 infections diarhhea (SGD) IM22.1:- Enumerate the causes of hpercalcemia and distinguish the features of PTH us non PTH mediated hypercalcemia. IM22.2:- Describe the OG14.1 Maternal SU5.1 - Describe normal wound actiology, clinical pelvis: Diameters 3/7/21 SAT healing and factors affecting AETCOM2.4 manifestations, (Clinical pelvimetry healing diagnosis and clinical & Types of pelvis) approach to primary hyperthroidism. IM22.3:- Describe the approach to the management to ypercalcemia 4/7/21 SUN MI3.1.2 ,3,5 AE -3(BATCH A) Diarrheagenic E.coli, cholera,food PH 1.19.58 - 1.19.65 - PA 19.4 Hodgkins Lymphoma & poisoning Hanging drop preperation 5/7/21 MON NEURODEGENERATIVE PA 14 15 MHA & Dimorphic ( Pracs B) MICRO SDL Non Hodgkins Lymphoma (L) MI3.1.7 ,8,9 DOAP: Stool examination DISORDERS -
Genetic and Phenotypic Characterization of a Rabies Virus Strain Isolated from a Dog in Tokyo, Japan in the 1940S
viruses Article Genetic and Phenotypic Characterization of a Rabies Virus Strain Isolated from a Dog in Tokyo, Japan in the 1940s Tatsuki Takahashi 1, Maho Inukai 2, Michihito Sasaki 3 , Madlin Potratz 4, Supasiri Jarusombuti 5 , Yuji Fujii 6, Shoko Nishiyama 2, Stefan Finke 4 , Kentaro Yamada 7, Hiroki Sakai 1,6,8,9, Hirofumi Sawa 3, Akira Nishizono 7, Makoto Sugiyama 1,2,6 and Naoto Ito 1,2,6,9,* 1 The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan; [email protected] (T.T.); [email protected] (H.S.); [email protected] (M.S.) 2 Laboratory of Zoonotic Disease, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan; [email protected] (M.I.); [email protected] (S.N.) 3 Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; [email protected] (M.S.); [email protected] (H.S.) 4 Institute of Molecular Virology and Cell Biology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; madlin.potratz@fli.de (M.P.); stefan.finke@fli.de (S.F.) 5 Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan; [email protected] 6 Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan; [email protected] 7 Department of Microbiology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; [email protected] (K.Y.); [email protected] (A.N.) 8 Laboratory of Veterinary