Program, Abstracts, List of Poster 2009

Total Page:16

File Type:pdf, Size:1020Kb

Program, Abstracts, List of Poster 2009 Eseb Def:Layout 1 30/07/09 10:21 Pagina 1 European Society for Evolutionary Biology ORAL PRESENTATION ABSTRACTS AND LIST OF POSTERS 12th Congress, Turin, Italy, 24 -29 August 2009 Eseb Def:Layout 1 30/07/09 10:21 Pagina 2 PRINT: FIORDO S.R.L. GALLIATE (NO) THE 2009 ESEB LOGO WAS KINDLY DESIGNED BY GIULIO PALMIERI 2 Eseb Def:Layout 1 30/07/09 10:21 Pagina 3 Symposia 1. Evolutionary systems biology 9 2. From the selfish gene to species extinction: levels of selection in evolution 19 3. Are “good genes” theories of sexual selection finally sinking into the sunset? 29 4. The evolution of threshold, inducible and polyphenic traits 41 5. Diversity of host-microbe symbioses 51 6. The evolution of conflict and cooperation: when theory meets data 61 7. Evolutionary applications: a symposium sponsored by Wiley - Blackwell Publishing 77 8. Male-female coevolution - from molecules to species 95 9. On the origins of novelty in development and evolution: from cryptic genetic variation 111 to genetic accommodation 10. Ecological genetics in the genomics era 123 11. The phenotype-fitness map re-visited: agents of selection and the importance of ecology 137 in evolutionary studies 12. The genetic consequences of reproductive modes: insights from asexual species 157 13. Evolution of time-keeping mechanisms 167 14. Selection in subdivided populations 175 15. Evolutionary transcriptomics 191 16. Recent advances in macroevolutionary approaches to evolutionary studies 201 17. Integrating ecology with parasite evolution 213 18. Frontiers in speciation research: proximal and causal mechanisms of behavioural 229 divergence 19. Genetic trade-offs in fitness-traits: theory, evidence and implications 243 20. Selective forces shaping transitions to social life 255 21. Intralocus sexual conflicts: detection, resolution and consequences 265 22. Inbreeding depression: from gene expression to population viability 273 23. Ecological consequences of polyploidy in plants and animals 281 24. Functional analysis of natural variation 289 25. Recent advances in kin selection 301 26. Post-genomic approaches to host-parasite evolution 309 27. Early evolution 317 28. Pollinator-mediated selection in floral evolution 323 29. Evolution of shape: linking micro- and macroevolution 331 30. Hybrid speciation 341 31. The evolution of development across the species boundary 351 3 Eseb Def:Layout 1 30/07/09 10:21 Pagina 4 Plenary Lectures Location: Aula Magna 1. Tuesday August 25 Hanna Kokko, University of Helsinky, Finland “From individuals to populations... and back” 2. Wednesday August 26 Massimo Pigliucci, Stony Brook University, New York, United States “Is there a coming new evolutionary synthesis?” 3. Thursday August 27 Ian Tattersall, American Museum of Natural History, New York, United States “Human evolution and the human biological future” 4. Friday August 28 Cristina Vieira, CNRS, Université Lyon 1, France “Transposable elements and genome evolution” 5. Saturday August 29 John N. Thompson, University of California at Santa Cruz, United States “Coevolution on our rapidly changing earth” JOHN MAYNARD SMITH PRIZE LECTURE Wednesday August 26 Tanja Schwander, Simon Fraser University, Burnaby, Canada “Evolution of genetic caste determination in social insects” 4 Eseb Def:Layout 1 30/07/09 10:21 Pagina 5 Keynote FROM INDIVIDUALS TO POPULATIONS... AND BACK Hanna Kokko 1,2, Michael Jennions 2, Andrés López-Sepulcre 3, Ken Norris 4, Daniel J. Rankin 5, Katja U. Heubel 1 1University of Helsinki, Laboratory of Ecological and Evolutionary Dynamics, Helsinki, Finland 2Australian National University, School of Botany & Zoology, Canberra, Australia 3University of California, Department of Biology, Riverside, United States 4University of Reading, Centre for Agri-Environmental Research, Reading, United Kingdom 5University of Zürich, Institute of Biochemistry, Zürich, Switzerland [email protected] This ESEB conference hosts a total of nine symposia that mention the word ‘ecology’ in their title or topic description, and this figure probably rises further when all their abstracts are taken into account. Nevertheless, I will argue that ecology is all too often ignored, or treated in a superficial way, when explaining evolutionary phenomena, and that this can lead to misleading arguments or conclusions. I will discuss three case studies — one theoretical, and two empirical — where proper understanding of evolutionary ecology either sheds new light on old questions or raises new exciting issues. The key theme is that if we consider selectively important traits they should show up in the life history of a population, thus evolutionary change is probably reflected in population dynamics too. Changed dynamics in turn can select for different behaviours or life-history traits (ecogenetic feedback). As my first example I will consider sex roles and parental care evolution, where recent theoretical work has highlighted that old explanations may have been jumping to conclusions too quickly, and evolving population- wide sex ratios may have more explanatory power than previously thought. Thereafter, I will discuss competition for breeding sites in an endangered bird species (the Seychelles magpie robin) and show that individual-level selection may promote behaviours that are detrimental enough for species- level survival that they should be taken into account in conservation management. My final example is an extreme case of ‘unintelligent design’: a gynogenetic, asexual fish, the Amazon molly. This species reproduces asexually (and hence produces no males) but still requires sperm to trigger embryogenesis. As a consequence, it can only live in sympatry with sexual ‘host’ species, which it however tends to replace ecologically, thus promoting its own local extinction. This leads to very complicated dynamics that eventually raises an intriguing question from the host species point of view: can mate choice ever be group selected? 5 Eseb Def:Layout 1 30/07/09 10:21 Pagina 6 Keynote IS THERE A COMING NEW EVOLUTIONARY SYNTHESIS? Massimo Pigliucci 1 1Stony Brook University, Department of Ecology & Evolution, New York, United States [email protected] Modern evolutionary biology began with the publication of Charles Darwin’s Origin of Species in 1859. Since then, two major reassessments of the theory have taken place: the neo-Darwinian turn at the end of the 19th century (which definitely excluded Lamarckism), and the Modern Synthesis of the 1930s and ‘40s (which reconciled Mendelism, statistical genetics and Darwinism). For years now scholars have been hinting at the necessity of a new Extended Synthesis, building on the conceptual framework laid out during the middle of the 20th century while incorporating new empirical findings and theoretical advances that have occurred since. In this talk I sketch how the Extended Synthesis is beginning to shape, with contributions from fields such as evo- devo, genomics, ecology and complexity theory, and with the incorporation of new concepts like phenotypic plasticity, modularity and evolvability. There is much intellectual ferment in the field, and this is an exciting time to be an evolutionary biologist! HUMAN EVOLUTION AND THE HUMAN BIOLOGICAL FUTURE Ian Tattersall 1 1American Museum of Natural History, Division of Anthropology, New York City, United States [email protected] Major innovations in hominid biology and culture have been highly sporadic, conflicting with the received notion that human evolution, and particularly the attainment of the unique human symbolic mind, was essentially a matter of long-term, generation-by generation burnishing by natural selection. Natural selection can only operate on entire integrated individuals, and brain size increase in human evolution may well reflect the preferential success of larger-brained species in a diverse hominid family rather than generation-by-generation augmentation of intelligence in a single central lineage. This makes it both necessary and possible to suggest a more plausible mechanism than simple selective pressure for the unprecedented transition of Homo sapiens from a nonsymbolic and nonlinguistic precursor condition to its unprecedented cognitive status today: a mechanism involving both exaptation and emergence, the process whereby a new and unanticipated level of complexity may be achieved through a random coincidence of acquisitions. Not only does this change our view of the past, but it also has implications for the human biological future. 6 Eseb Def:Layout 1 30/07/09 10:21 Pagina 7 Keynote TRANSPOSABLE ELEMENTS AND GENOME EVOLUTION Cristina Vieira 1 1Université Lyon 1, CNRS, Lyon, France [email protected] We learned recently that the human genome is very poor in genes, with almost the same number as in fly. What is still more surprising is that most of our genetic material is considered as junk. How is it possible to spend so much energy to maintain this system? Maybe this “junk DNA” is in fact important, in different ways, to the genome evolution of species and populations? Transposable elements (TEs), which were initially called “jumping genes”, belong to the class of non-genic DNA. These DNA sequences have the ability to jump (to transpose) inside genomes and represent an important part of these genomes. Although Barbara McClintock discovered them in the ’50, it is only now that we are beginning to understand their effects. We know that they have a major role on gene regulation and on the stability of the chromatin (DNA and proteins). Moreover, since they
Recommended publications
  • International Union for the Study of Social Insects International Congress 13 - 18 July 2014 Cairns Convention Centre | Queensland, Australia PROGRAM
    International Union for the Study of Social Insects International Congress 13 - 18 July 2014 Cairns Convention Centre | Queensland, Australia PROGRAM www.iussi2014.com 1 Sponsors Contents Thank you to our sponsors Welcome .................................................... 3 and exhibitors General Information ................................... 4 Venue ......................................................... 7 Sponsors and Exhibitors Profiles ................ 8 Social Events ............................................. 11 Plenary Speakers ...................................... 13 Program Monday 14 July 2014 .......................... 23 Tuesday 15 July 2014 .......................... 39 Wednesday 16 July 2014 ..................... 57 Thursday 17 July 2014 ......................... 65 Friday 18 July 2014 .............................. 85 Posters ...................................................... 98 Poster Session 1 - Monday ....................... 99 Poster Session 2 - Tuesday ..................... 106 Poster Session 3 - Thursday .................... 112 Presenting Author Index ........................ 119 Delegate List ........................................... 127 Event Management by: ICMS Australasia Pty Ltd GPO Box 3270 Sydney NSW 2001 AUSTRALIA Ph: +61 2 9254 5000 | Fax: +61 2 9251 3552 Email: [email protected] www.icmsaust.com.au 2 Welcome The Australian Section welcomes you to the Union’s 17th Congress. This is going to be a fabulous conference in a wonderful place. The program reflects the diversity of current social
    [Show full text]
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • General Index
    General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d.
    [Show full text]
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • NORTHERN GREEN STURGEON Acipenser Medirostris (Ayres)
    NORTHERN GREEN STURGEON Acipenser medirostris (Ayres) Status: High Concern. Very little is known about the current size of the single northern green sturgeon population in California. However, habitat degradation and climate change continue to threaten their status. Description: Sturgeons, with their large size, subterminal barbeled mouths, lines of bony plates (scutes), and heterocercal (shark-like) tail, are among the most distinctive of freshwater fishes. Green sturgeon have 8-11 scutes in the dorsal row, 23-30 in the lateral rows, and 7-10 in the bottom rows. The dorsal fin has 33-36 rays, and the anal fin 22-28. They are distinguished from white sturgeon, with which they co-occur, by: (1) having one large scute behind the dorsal and anal fins, (2) having scutes that are sharp and pointed, and (3) having barbels that are closer to the mouth than to the tip of the long, narrow snout (Moyle 2002). Their color is olive-green to pale brown, with an olivaceous stripe on each side and scutes that are paler than the body. Taxonomic Relationships: Green sturgeon were described from San Francisco Bay in 1854 by W. O. Ayres as Acipenser medirostris, the only one of three species he described from the Bay that is still recognized. Green sturgeon are tetraploids and have lower fecundity and larger eggs than most other sturgeon (Gessner et al. 2007). The zoogeographic origin of green sturgeon is uncertain; evidence can be mounted for either an Asian or North American ancestry (Artyukhin et al. 2007). The closest relative is the Asian green sturgeon, Acipenser mikadoi, described from one poorly preserved specimen (Jordan and Snyder 1906).
    [Show full text]
  • Show Schedules 2012 Ver Finale
    119. 1 pan rock plant native to the Southern Hemisphere 120. 1 pan dwarf shurb THE SCOTTISH ROCK GARDEN CLUB 121. 1 pan rock plant raised from seed by the exhibitor. Date of sowing to be stated. Botanical notes permitted, AGS note 23(e) SECTION III Open to Amateur Members of AGS and SRGC who have not won an AGS Bronze Merit Medal or more than ten First Prizes at Shows run by either Society prior to 1st January 2011. Pan size not to exceed 19 cm outside diameter 130. 3 pans rock plants, distinct 131. 1 pan rock plant in flower 132. 1 pan Gentiana 133. 1 pan Cyclamen 134. 1 pan bulbous plant 135. 1 pan rock plant native to the Southern Hemisphere 136. 1 pan rock plant native to the Northern Hemisphere 137. 1 pan rock plant for foliage effect 138. 1 pan dwarf shrub or conifer 139. 1 pan rock plant. For exhibitors who have never won a first prize at an AGS or SRGC National show SHOW SCHEDULES 2012 DUNBLANE EARLY BULB DISPLAY 18th February* BLACKPOOL SHOW 17th March* STIRLING SHOW 24th March† New Location - Show this Year is in KINCARDINE NORTHUMBERLAND 40th ANNIVERSARY SHOW, HEXHAM 31st March EDINBURGH & THE LOTHIANS SHOW 14th April* PERTH SHOW 21st April HIGHLAND SHOW, NAIRN 28th April GLASGOW SHOW 5th May* ABERDEEN SHOW 19th May* GARDENING SCOTLAND (Joint Rock Only) 2nd June* LATE BULB DISPLAY, RBGE 8th September DISCUSSION WEEKEND, DUMFRIES 29th - 30th September NEWCASTLE SHOW 13th October* AGM 10th November† *Joint Rock Garden Plant Committee meetings 48 †Photographic/Art Competition SHOWS 2012 SHOW RULES 1.
    [Show full text]
  • Species Summary
    Podarcis gaigeae Region: 3 Taxonomic Authority: (Werner, 1930) Synonyms: Common Names: Lacerta taurica gaigeae Werner, 1930 Skyros Wall Lizard English Order: Sauria Family: Lacertidae Notes on taxonomy: This taxon was raised to species rank by Gruber (1986), with two subspecies, gaigeae and weiglandi (Grube and Schultze-Westrum 1971). Although this status was not recognised by Gasc et al. (1997), it is supported by additional genetic results (Harris and Arnold 1999). General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: This species is endemic to Greece where it occurs in the Skyros It is found in bushy vegetation or bare areas on some of the smaller archipelago and on Piperi Island in the northern Sporades Islands of islands. It is an egg-laying species. On some small islands cases of the Aegean Sea. It is a lowland species. gigantism in this species have been recorded. Conservation Measures: Threats: Its range is effectively protected on Piperi island, as there is a Although the species has a restricted range there appear to be no Mediterranean Monk Seal (Monachus monachus) population present, major threats at present. It is possible that the potential introduction of and access to the island is restricted. predators could threaten populations on some of the smaller islands. Species population information: It is a common species. Native - Native - Presence Presence Extinct Reintroduced Introduced Vagrant Country Distribution Confirmed Possible GreeceCountry: Native - Native - Presence Presence Extinct Reintroduced Introduced FAO Marine Habitats Confirmed Possible Major Lakes Major Rivers Upper Level Habitat Preferences Score Lower Level Habitat Preferences Score 3.8 Shrubland - Mediterranean-type Shrubby Vegetation 1 6 Rocky areas (eg.
    [Show full text]
  • Geologic Map of the Victoria Quadrangle (H02), Mercury
    H01 - Borealis Geologic Map of the Victoria Quadrangle (H02), Mercury 60° Geologic Units Borea 65° Smooth plains material 1 1 2 3 4 1,5 sp H05 - Hokusai H04 - Raditladi H03 - Shakespeare H02 - Victoria Smooth and sparsely cratered planar surfaces confined to pools found within crater materials. Galluzzi V. , Guzzetta L. , Ferranti L. , Di Achille G. , Rothery D. A. , Palumbo P. 30° Apollonia Liguria Caduceata Aurora Smooth plains material–northern spn Smooth and sparsely cratered planar surfaces confined to the high-northern latitudes. 1 INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy; 22.5° Intermediate plains material 2 H10 - Derain H09 - Eminescu H08 - Tolstoj H07 - Beethoven H06 - Kuiper imp DiSTAR, Università degli Studi di Napoli "Federico II", Naples, Italy; 0° Pieria Solitudo Criophori Phoethontas Solitudo Lycaonis Tricrena Smooth undulating to planar surfaces, more densely cratered than the smooth plains. 3 INAF, Osservatorio Astronomico di Teramo, Teramo, Italy; -22.5° Intercrater plains material 4 72° 144° 216° 288° icp 2 Department of Physical Sciences, The Open University, Milton Keynes, UK; ° Rough or gently rolling, densely cratered surfaces, encompassing also distal crater materials. 70 60 H14 - Debussy H13 - Neruda H12 - Michelangelo H11 - Discovery ° 5 3 270° 300° 330° 0° 30° spn Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli "Parthenope", Naples, Italy. Cyllene Solitudo Persephones Solitudo Promethei Solitudo Hermae -30° Trismegisti -65° 90° 270° Crater Materials icp H15 - Bach Australia Crater material–well preserved cfs -60° c3 180° Fresh craters with a sharp rim, textured ejecta blanket and pristine or sparsely cratered floor. 2 1:3,000,000 ° c2 80° 350 Crater material–degraded c2 spn M c3 Degraded craters with a subdued rim and a moderately cratered smooth to hummocky floor.
    [Show full text]
  • 2012 Wildearth Guardians and Friends of Animals Petition to List
    PETITION TO LIST Fifteen Species of Sturgeon UNDER THE U.S. ENDANGERED SPECIES ACT Submitted to the U.S. Secretary of Commerce, Acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service March 8, 2012 Petitioners WildEarth Guardians Friends of Animals 1536 Wynkoop Street, Suite 301 777 Post Road, Suite 205 Denver, Colorado 80202 Darien, Connecticut 06820 303.573.4898 203.656.1522 INTRODUCTION WildEarth Guardians and Friends of Animals hereby petitions the Secretary of Commerce, acting through the National Marine Fisheries Service (NMFS)1 and the National Oceanic and Atmospheric Administration (NOAA) (hereinafter referred as the Secretary), to list fifteen critically endangered sturgeon species as “threatened” or “endangered” under the Endangered Species Act (ESA) (16 U.S.C. § 1531 et seq.). The fifteen petitioned sturgeon species, grouped by geographic region, are: I. Western Europe (1) Acipenser naccarii (Adriatic Sturgeon) (2) Acipenser sturio (Atlantic Sturgeon/Baltic Sturgeon/Common Sturgeon) II. Caspian Sea/Black Sea/Sea of Azov (3) Acipenser gueldenstaedtii (Russian Sturgeon) (4) Acipenser nudiventris (Ship Sturgeon/Bastard Sturgeon/Fringebarbel Sturgeon/Spiny Sturgeon/Thorn Sturgeon) (5) Acipenser persicus (Persian Sturgeon) (6) Acipenser stellatus (Stellate Sturgeon/Star Sturgeon) III. Aral Sea and Tributaries (endemics) (7) Pseudoscaphirhynchus fedtschenkoi (Syr-darya Shovelnose Sturgeon/Syr Darya Sturgeon) (8) Pseudoscaphirhynchus hermanni (Dwarf Sturgeon/Little Amu-Darya Shovelnose/Little Shovelnose Sturgeon/Small Amu-dar Shovelnose Sturgeon) (9) Pseudoscaphirhynchus kaufmanni (False Shovelnose Sturgeon/Amu Darya Shovelnose Sturgeon/Amu Darya Sturgeon/Big Amu Darya Shovelnose/Large Amu-dar Shovelnose Sturgeon/Shovelfish) IV. Amur River Basin/Sea of Japan/Sea of Okhotsk (10) Acipenser mikadoi (Sakhalin Sturgeon) (11) Acipenser schrenckii (Amur Sturgeon) (12) Huso dauricus (Kaluga) V.
    [Show full text]
  • Species and Subject Index*
    Species and subject index* 12SrDNA(mitochondrialgene) 141-144 life history 324-328, 331-332, 348-353 Acipenser gueldenstaedtii (Russian sturgeon) I6S rDNA(mitochondrial gene) 141-144 in MerrimackRiver 324-325 208, 220 I8SrDNA(nucleargene) 141-142, 146 migration323-325,328-330,349, in the Caspian Sea 209, 214 Acipenser 351-353 in the Danube River 185,193, 208 biogeography 41, 43, 128, 158, 169, palatquadrate shape 47 fishery 193,210,214 174 inthe PeeDeeRiver 323, 330 reproduction 214–215 in the Caspian Sea 215-216 phylogeny 45 status 203, 206 feedingadaptations 119 population size321-323, 330 taxonomy 158 fossil forms 174 in the Potomac River 322 in the Volga River 209, 214–215 locomotion adaptation 121 predation on 331 Acipenser kikuchii (=A. sinensis), taxonomy molecular phylogeny 147-148 quadratojugal bone 47 159 molecular variation in 159 reproduction 324-327, 352-353 Acipenser medirostris (green sturgeon) morphological characters 78, 81, 83, in the Saint John River 322, 324-325, fishery 412 86-7.89-91.93.95-6,99, 101, 104, 331 spawning rivers169 106-7,114-6 inthe Santee-Cooper River323-324 systematics 41 osteological methods 77 in the Savannah River 322-324, 330 taxonomy158 -159 phylogeny 43, 64, 116, 128, 145, spawning 324-326, 328-331, 350, 352 in the Tumnin River 158 147-149, 171, 180 status 319,322,356 Acipensermikadoi (Sakhalin sturgeon) 406 polyploidy in 136 stocking 323 in the Amur River 231–232 range31 inthe SusquehannaRiver 322 spawningrivers 169 rostralexpansion 120 taxonomy 159 systematics41 speciation 128, 148 Acipenser dabryanus (Dabry’s sturgeon) taxonomy 158 systematics 26, 39, 41-44, 147 artificial reproduction 262 Acipenser multiscutatus (=A.
    [Show full text]
  • Does Relaxed Predation Drive Phenotypic Divergence Among Insular Populations?
    doi: 10.1111/jeb.12421 Does relaxed predation drive phenotypic divergence among insular populations? A. RUNEMARK*, M. BRYDEGAARD† &E.I.SVENSSON* *Evolutionary Ecology Unit, Department of Biology, Lund University, Lund, Sweden †Atomic Physics Division, Department of Physics, Lund University, Lund, Sweden Keywords: Abstract antipredator defence; The evolution of striking phenotypes on islands is a well-known phenome- body size; non, and there has been a long-standing debate on the patterns of body size coloration; evolution on islands. The ecological causes driving divergence in insular crypsis; populations are, however, poorly understood. Reduced predator fauna is lizards; expected to lower escape propensity, increase body size and relax selection Podarcis; for crypsis in small-bodied, insular prey species. Here, we investigated population divergence; whether escape behaviour, body size and dorsal coloration have diverged as variance. predicted under predation release in spatially replicated islet and mainland populations of the lizard species Podarcis gaigeae. We show that islet lizards escape approaching observers at shorter distances and are larger than main- land lizards. Additionally, we found evidence for larger between-population variation in body size among the islet populations than mainland popu- lations. Moreover, islet populations are significantly more divergent in dorsal coloration and match their respective habitats poorer than mainland lizards. These results strongly suggest that predation release on islets has driven population divergence in phenotypic and behavioural traits and that selective release has affected both trait means and variances. Relaxed preda- tion pressure is therefore likely to be one of the major ecological factors driving body size divergence on these islands. adjacent mainland localities.
    [Show full text]
  • Testing the Impact of Food Availability and Intraspecific Aggression On
    1 Received Date : 19-Jan-2015 2 Accepted Date : 06-Aug-2015 3 Article type : Standard Paper 4 Editor : Jennifer Grindstaff 5 Section : Community Ecology 6 7 Feed or fight: Testing the impact of food availability and intraspecific 8 aggression on the functional ecology of an island lizard 9 10 Colin M. Donihue* a, Kinsey M. Brockb, Johannes Foufopoulosb, and 11 Anthony Herrelc,d 12 a Yale University, School of Forestry and Environmental Studies, New Haven, USA 13 b School of Natural Resources and Environment, University of Michigan, Ann Arbor, 14 USA 15 c UMR7179, CNRS/MNHN, 75005 Paris, France 16 d Ghent University, Evolutionary Morphology of Vertebrates, K.L. Ledeganckstraat 35, 17 B-9000 Gent, Belgium 18 *Corresponding author: [email protected] 19 20 Summary 21 1. Body size often varies among insular populations relative to continental 22 conspecifics – the “island rule” – and functional, context-dependent 23 morphological differences tend to track this body size variation on islands. 24 2. Two hypotheses are often proposed as potential drivers of insular population 25 differences in morphology: one relating to diet, and the other involving intra- 26 specific competition and aggression. We directly tested whether differences in 27 morphology and maximum bite capacity were explained by inter-island changes Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1365-2435.12550 This article is protected by copyright.
    [Show full text]