Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download 430 Indian Journal of Forensic Medicine & Toxicology, July-September 2021, Vol. 15, No. 3 Morphometric Study of Dry Human Patella with Its Clinical Correlation Pratima Baisakh1, Lopamudra Nayak2, B Shanta Kumari2, Saurjya Ranjan Das3 1Associate Professor, 2Assistant Professor, Dept of Anatomy, 3Associate Professor, Dept of Anatomy, IMS & SUM Hospital, SOA (Deemed to be University), Bhubaneswar, Odisha, India Abstract Background- Patella is the largest sesamoid bone and forms the femuro-patellar component of the knee joint. Dimensions and classification of patellae are important anthropologically as well as clinically. Aims & Objectives- Morphometry of patella has a definite role in implant design and reconstructive surgeries of knee joint. The present study aims to find out different dimensions of patella and its facets on both sides and compared. Material & Methods- The morphometric study comprised of sixty (30 left and 30 right) dry human patella collected from department museum by using sliding digital calliper. The different parameters studied are height, width, thickness of patella, length and width of medial and lateral facets. Classification of patella was done by using the measurements of its articular facets. Observations- The mean height, width, thickness of patella of left side were found to be 37.79mm, 38.26mm, 19.35mm and that of right side were 35.72mm, 34.91mm, 17.64mm respectively. The mean width of medial and lateral articular facet of left side were 19.42mm, 21.21mm and that of right side were 18.33mm,20.97mm respectively. Width of lateral articular facet is significantly larger than that of medial articular facet of same side(p<0.05) and 85% of patella belongs to Wiberg typeB.The mean patellar thickness on left and right side is 19.35mm & 17.64mm respectively,left side being significantly more than(P<0.05) that of right side. Conclusion- These dimensions of patella may be helpful for different patellofemoral operations like knee arthroplasty, ligament repair, proximal tibial osteotomy, implant design for knee replacement and for forensic measurements. Key words- Patella, morphometry, facets, knee joint. Introduction because the position of tibial tuberosity vary in different individuals1-3.Superiorly placed, high-riding patella Patella is the largest sesamoid bone develop is called patella alta. An unusually small patella that in quadriceps femoris tendon. It forms the femuro- present above knee joint iscalled attenuated patella alta. patellar component of the knee joint. It is difficult when it is very low-riding in position it is called patella to specify the normal anatomical position of patella baja which can cause dysfunction during extension of knee joint4.It has a rough anterior surface, which has vertical ridges due to expansion of fibres from quadriceps Corresponding author: tendon. Its posterior surface is having large articular and Pratima Baisakh small nonarticular part. Articular part has two facets on Associate Professor, Department of anatomy IMS &SUM Hospital Siksha ‘O’ Anusandhan (Deemed either side of a median ridge. They articulate with the 5 to be University) Bhubaneswar, India corresponding facet on the patellar surface offemur . Phone - +91 9438844704 Each facet is divided by faint horizontal lines into equal Email- [email protected] thirds.A seventh ‘odd’ facet is presented by a narrow Indian Journal of Forensic Medicine & Toxicology, July-September 2021, Vol. 15, No. 3 431 strip along the medial border of the patella which comes departmental museum.The following parameters were in contact with the medial femoral condyle in extreme studied by using sliding digital calliper. flexion6. Lower non-articular part forms the apex of Patellar Height (PH)- Linear distance between patella &gives attachment to patellar ligament7. It is superior border and apex(Fig.1) involved in different postures like squatting,sitting andkneeling. Hence it is subjected to varied modification Patellar width (PW)- Linear distance between 8 depending on the ethnic and cultural variables .Patella medial and lateral border(Fig.2) gives protection to the knee joint anteriorly and increases the efficiency of quadriceps muscle during its extensor Patellar thickness (PT)- Linear distance between function acting as a fulcrum9.As it receives the insertion anterior surface and median ridge(Fig.3) of quadriceps femoris, its shape and size also affected Width of medial articular facet (WMAF)-Maximum by size and use of this muscle. Patella present as a shield distance between medial border and median ridge in anterior aspect of knee joint. Hence it is subjected to various type of trauma very often. Numerous pathologies Width of lateral articular facet (WLAF)-Maximum occur at patellofemoral unit leading to its degenerating distance between lateral border and median ridge changes. The various disordersthat affect patella are Statistical analysis- All statistical analysis was done osteoarthritis, fractures, chondromalacia patellae, by using statistical package for social science, window patellofemoral instability and idiopathic patellofemoral version 16 (SPSS-16 USA). Student t-test was used to pain syndrome. Knee arthroplasty and total knee find any significant difference exists between the right replacement is now a commonly performed procedure and left side patella. P<0.05 was taken as statistically to treat various knee problems. Outcome of knee significant. arthroplasty or patellofemoral arthroplasty is affected by 10 use of appropriate size and thickness of patella . Hence Result morphometry of patella has definite role in implant design and reconstructive surgeries occurring in the The mean values of different parameters of both sides knee joint. Wiberg classified patella into three groups were expressed in table1 &2. The mean height, width and basing on the position of median ridge, width of medial thickness of left side were 37.79mm(SD 4.11), 38.26mm and lateral articular facet11. Type A where Width of (SD 4.00) & 19.25mm(SD 1.91) (table1) and that of medial and lateral facet are same. Type B where Width right side were 35.72mm (SD 1.97),34.90mm(SD 2.11) of medial facet smaller than lateral facet and Type C and 17.54mm (0.73) respectively(table 2). Comparison where Width of medial facet much less than lateral facet. between different parameters of left and right side were Type B are common type ofpatella and it is the most reported in table 3. There is no significant difference stable variety. Any change in shape and size of patella in found in height and width of left and right-side patella. relation to tibial or femoral condylescan affects the knee Student’s test revealed thickness of left side patella is joint function.The present study carried out on different significantly more than that of right side(p<0.05). The morphometry of dry human patella of eastern Indian width of lateral articular facets were significantly larger origin, that have a great clinical importance for proper than the medial articular facet in both sides(P<0.05) functioning of knee joint and stability of patella. (table 3).According to Wiberg criteria, 85% patella belong to type B, 11.7% that of type A and 3.3% of type Materials & Methods C (table 4). The study was conducted on sixty dry human patella, 30 left & 30 right of unknown age & sex collected from 432 Indian Journal of Forensic Medicine & Toxicology, July-September 2021, Vol. 15, No. 3 Table 1; Measurements of left side patella Measurements Mean (mm) Standard deviation Maximum (mm) Minimum (mm) Patellar Height 37.79 4.11 43.75 33.49 Patellar width 38.26 4.00 45.42 33.91 19.25 Patellar thickness 1.91 22.67 16.50 Width of medial 19.42 2.61 23.20 15.21 articular facet Width of lateral 21.21 2.24 25.68 18.21 articular facet Table 2; Measurements of right side patella Measurements Mean (mm) Standard deviation Maximum (mm) Minimum (mm) Patellar Height 35.72 1.97 39.65 39.65 Patellar width 34.90 2.11 37.67 31.76 18.68 16.76 Patellar thickness 17.54 0.73 Width of medial 18.33 1.29 20.53 16.65 articular facet Width of lateral 20.97 1.27 22.77 19.26 articular facet Table 3;Comparison between Left &Right side patella Measurements Mean (mm) Mean (left) Mean (right) P value Patellar Height 36.75 37.79 35.72 0.22 38.26 Patellar width 36.58 34.90 0.15 Patellar thickness 18.39 19.35 17.64 0.03 Width of medial 18.33 18.87 19.42 0.96 articular facet Width of lateral 21.09 21.21 20.97 1.14 articular facet P value (WMAF/ 0.01 0.02 WLAF) Indian Journal of Forensic Medicine & Toxicology, July-September 2021, Vol. 15, No. 3 433 Table 4; Wiberg’s classification of Patella Type Number of patella % A 7 11.7 B 51 85 C 2 3.3 Figure 1; measurement of patellar Height Figure 2; Measurement of Patellar width 434 Indian Journal of Forensic Medicine & Toxicology, July-September 2021, Vol. 15, No. 3 Figure 3; Measurement of patellar thickness Discussion morphometry. The patellar height is an important factor for different knee surgery, cruciate ligament repair or Patella, the largest sesamoid bone present in anterior proximal tibial osteotomy to prepare knee implants18. aspect of kneeforming patello-femoral component of The thickness of left side patella is significantly higher knee joint. It gives attachment to quadriceps at its base than right side(p<0.05).That may be due to larger size and patellar ligament at the apex. It plays an important of quadriceps tendon in this side but it needs further role in extensor mechanism of knee joint acting as study. The width to thickness ratio is almost 2:1 which alever12. Its size and shape depend on the strain produced is represented in the graph 1.This finding coincides with by use of quadriceps13.
Recommended publications
  • Supracondylar Femoral Extension Osteotomy and Patellar Tendon Advancement in the Management of Persistent Crouch Gait in Cerebral Palsy
    Original Article Supracondylar femoral extension osteotomy and patellar tendon advancement in the management of persistent crouch gait in cerebral palsy Sakti Prasad Das, Sudhakar Pradhan, Shankar Ganesh1, Pabitra Kumar Sahu, Ram Narayan Mohanty, Sanjay Kumar Das ABSTRACT Background: Severe crouch gait in adolescent cerebral palsy is a difficult problem to manage. The patients develop loading of patellofemoral joint, leading to pain, gait deviation, excessive energy expenditure and progressive loss of function. Patella alta and avulsion of patella are the other complications. Different treatment options have been described in the literature to deal with this difficult problem. We evaluated outcome of supracondylar femoral extension osteotomy (SCFEO) and patellar tendon advancement (PTA) in the treatment of crouch gait in patients with cerebral palsy. Materials and Methods: Fourteen adolescents with crouch gait were operated by SCFEO and PTA. All subjects were evaluated pre and postoperatively. Clinical, radiographic, observational gait analysis and functional measures were included to assess the changes in knee function. Results: Cases were followed up to 3 years. The patients walked with increased knee extension and improvement in quadriceps muscle strength. Knee pain was decreased and improvements in functional mobility and radiologic improvement were found. Conclusion: SCFEO and PTA for adolescent crouch gait is effective in improving knee extensor strength, reducing knee pain and improving function. Key words: Crouch gait, patellar
    [Show full text]
  • Patellofemoral Pain Syndrome and Chondromalacia: the Effect of Ozone on Pain, Function and Quality of Life. a Non-Randomized Control-Trial
    Central JSM Physical Medicine and Rehabilitation Bringing Excellence in Open Access Research Article *Corresponding author Marcos Edgar Fernández-Cuadros, Calle del Ánsar, 44, piso Segundo, CP 28047, Madrid, Spain, Tel: Patellofemoral Pain Syndrome 34-620314558; Email: [email protected]; Submitted: 23 November 2016 and Chondromalacia: The Effect Accepted: 05 December 2016 Published: 06 December 2016 of Ozone on Pain, Function Copyright © 2016 Fernández-Cuadros et al. and Quality of Life. A Non- OPEN ACCESS Keywords Randomized Control-Trial • Patellofemoral pain syndrome • Chondromalacia Marcos Edgar Fernández-Cuadros1,2*, Olga Susana Pérez-Moro1, • Pain and María Jesús Albaladejo-Florin1 • Ozone therapy • Quality of life 1Servicio de Rehabilitación, Hospital Universitario Santa Cristina, Spain 2de Rehabilitación, Fundación, Hospital General Santísima Trinidad, Spain Abstract Objectives: 1) To demonstrate the effectiveness of a treatment protocol with Ozone therapy on pain, function and quality of life in patients with Patellofemoral Pain Syndrome (PFPS) and Chondromalacia; and 2) to apply Ozone as a conservative treatment option with a demonstrable level of scientific evidence. Material and Methods: Prospective quasi-experimental before-after study (non-randomized control-trial) on 41 patients with PFPS and Chondromalacia grade 2 or more, who attended to Santa Cristina’s University Hospital, from January 2012 to November 2016 The protocol consisted of an intra articular infiltration of a medical mixture of Oxygen-Ozone (95% -5%) 20ml, at a 20ug / ml concentration, and a total number of 4 sessions (1 per week). Pain and quality of life were measured by Visual Analogical Scale (VAS) and Western Ontario and Mc Master Universities Index for Osteoarthritis (WOMAC) at the beginning / end of treatment.
    [Show full text]
  • SODIUM HYALURONATE Policy Number: PHARMACY 059.37 T2 Effective Date: April 1, 2018
    UnitedHealthcare® Oxford Clinical Policy SODIUM HYALURONATE Policy Number: PHARMACY 059.37 T2 Effective Date: April 1, 2018 Table of Contents Page Related Policies INSTRUCTIONS FOR USE .......................................... 1 Autologous Chondrocyte Transplantation in the CONDITIONS OF COVERAGE ...................................... 1 Knee BENEFIT CONSIDERATIONS ...................................... 2 Unicondylar Spacer Devices for Treatment of Pain COVERAGE RATIONALE ............................................. 2 or Disability APPLICABLE CODES ................................................. 4 DESCRIPTION OF SERVICES ...................................... 5 CLINICAL EVIDENCE ................................................. 5 U.S. FOOD AND DRUG ADMINISTRATION ................... 10 REFERENCES .......................................................... 12 POLICY HISTORY/REVISION INFORMATION ................ 14 INSTRUCTIONS FOR USE This Clinical Policy provides assistance in interpreting Oxford benefit plans. Unless otherwise stated, Oxford policies do not apply to Medicare Advantage members. Oxford reserves the right, in its sole discretion, to modify its policies as necessary. This Clinical Policy is provided for informational purposes. It does not constitute medical advice. The term Oxford includes Oxford Health Plans, LLC and all of its subsidiaries as appropriate for these policies. When deciding coverage, the member specific benefit plan document must be referenced. The terms of the member specific benefit plan document [e.g.,
    [Show full text]
  • Physical Examination of the Knee: Meniscus, Cartilage, and Patellofemoral Conditions
    Review Article Physical Examination of the Knee: Meniscus, Cartilage, and Patellofemoral Conditions Abstract Robert D. Bronstein, MD The knee is one of the most commonly injured joints in the body. Its Joseph C. Schaffer, MD superficial anatomy enables diagnosis of the injury through a thorough history and physical examination. Examination techniques for the knee described decades ago are still useful, as are more recently developed tests. Proper use of these techniques requires understanding of the anatomy and biomechanical principles of the knee as well as the pathophysiology of the injuries, including tears to the menisci and extensor mechanism, patellofemoral conditions, and osteochondritis dissecans. Nevertheless, the clinical validity and accuracy of the diagnostic tests vary. Advanced imaging studies may be useful adjuncts. ecause of its location and func- We have previously described the Btion, the knee is one of the most ligamentous examination.1 frequently injured joints in the body. Diagnosis of an injury General Examination requires a thorough knowledge of the anatomy and biomechanics of When a patient reports a knee injury, the joint. Many of the tests cur- the clinician should first obtain a rently used to help diagnose the good history. The location of the pain injured structures of the knee and any mechanical symptoms were developed before the avail- should be elicited, along with the ability of advanced imaging. How- mechanism of injury. From these From the Division of Sports Medicine, ever, several of these examinations descriptions, the structures that may Department of Orthopaedics, are as accurate or, in some cases, University of Rochester School of have been stressed or compressed can Medicine and Dentistry, Rochester, more accurate than state-of-the-art be determined and a differential NY.
    [Show full text]
  • Pathophysiology of Anterior Knee Pain
    1 Patellofemoral Online Education Pathophysiology of Anterior Knee Pain Vicente Sanchis-Alfonso, MD, PhD The original publication is available at www.springerlink.com INTRODUCTION Anterior knee pain, diagnosed as Patellofemoral Pain Syndrome (PFPS), is one of the most common musculoskeletal disorders [61]. It is of high socioeconomic relevance as it occurs most frequently in young and active patients. The rate is around 15-33% in active adult population and 21-45% of adolescents [36]. However, in spite of its high incidence and abundance of clinical and basic science research, its pathogenesis is still an enigma (“The Black Hole of Orthopaedics”). The numerous treatment regimes that exist for PFPS highlight the lack of knowledge regarding the etiology of pain. The present review synthesizes our research on pathophysiology [53-62] of anterior knee pain in the young patient. BACKGROUND: CHONDROMALACIA PATELLAE, PATELLOFEMORAL MALALIGMENT, TISSUE HOMEOSTASIS THEORY Until the end of the 1960’s anterior knee pain was attributed to chondromalacia patellae, a concept from the beginnings of the 20th century that, from a clinical point of view, is of no value, and ought to be abandoned, given that it has no diagnostic, therapeutic or prognostic implications. In fact, many authors have failed to find a connection between anterior knee pain and chondromalacia [52, 61]. Currently, however, there is growing evidence that a subgroup of patients with chondral lesions may have a component of their 2 pain related to that lesion due to the overload of the subchondral bone interface which is richly innervated. In the 1970’s anterior knee pain was related to the presence of patellofemoral malaligment (PFM) [14, 24, 26, 40].
    [Show full text]
  • Thieme: Teaching Atlas of Musculoskeletal Imaging
    Teaching Atlas of Musculoskeletal Imaging Teaching Atlas of Musculoskeletal Imaging Peter L. Munk, M.D., C.M., F.R.C.P.C. Professor Departments of Radiology and Orthopaedics University of British Columbia Head Section of Musculoskeletal Radiology Vancouver General Hospital and Health Science Center Vancouver, British Columbia, Canada Anthony G. Ryan, M.B., B.C.H., B.A.O., F.R.C.S.I., M.Sc. (Engineering and Physical Sciences in Medicine), D.I.C., F.R.C.R., F.F.R.R.C.S.I. Consultant Musculoskeletal and Interventional Radiologist Waterford Regional Teaching Hospital Ardkeen, Waterford City, Republic of Ireland Radiologic Tutor and Clinical Instructor in Radiology The Royal College of Surgeons in Ireland Dublin, Republic of Ireland Thieme New York • Stuttgart [email protected] 66485438-66485457 Thieme Medical Publishers, Inc. 333 Seventh Ave. New York, NY 10001 Editor: Birgitta Brandenburg Assistant Editor: Ivy Ip Vice President, Production and Electronic Publishing: Anne T. Vinnicombe Production Editor: Print Matters, Inc. Vice President, International Marketing: Cornelia Schulze Sales Director: Ross Lumpkin Chief Financial Officer: Peter van Woerden President: Brian D. Scanlan Compositor: Compset, Inc. Printer: The Maple-Vail Book Manufacturing Group Library of Congress Cataloging-in-Publication Data Munk, Peter L. Teaching atlas of musculoskeletal imaging / Peter L. Munk, Anthony G. Ryan. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-1-58890-372-3 (alk. paper) ISBN-10: 1-58890-372-9 (alk. paper) ISBN-13: 978-3-13-141981-1 (alk. paper) ISBN-10: 3-13-141981-4 (alk. paper) 1. Musculoskeletal system—Diseases—Imaging—Atlases. 2. Musculoskeletal system—Diseases—Case studies.
    [Show full text]
  • Ambulatory Surgery Job
    Ambulatory Surgery ICD-10-CM 2014: Reference Mapping Card ICD-9-CM ICD-10-CM ICD-9-CM ICD-10-CM 354.0 Carpal tunnel syndrome G56.00 Carpal tunnel 715.94 Osteoarthrosis hand M18.9 Osteoarthritis of first syndrome carpometacarpal joint 366.14 Post subcap senile H25.041 Posterior subcapsular 717.7 Chondromalacia patellae M22.41 Chondromalacia patellae cataract polar age-related right knee cataract, right eye M22.41 Chondromalacia patellae Posterior subcapsular left knee H25.042 polar age-related cataract, left eye 721.0 Cervical spondylosis M47.812 Spondylosis without Posterior subcapsular myelopathy or H25.043 polar age-related radiculopathy, cervical cataract, bilateral region eyes 721.3 Lumbosacral spondylosis M47.817 Spondylosis without Posterior subcapsular myelopathy or radiculopathy, Posterior subcapsular polar age-related cataract is only applicable lumbosacral region to adult patients age 15 - 124 years. 722.52 Lumbar/lumbosacral disc M51.36 Other intervertebral disc 366.15 Cortical senile cataract H25.011 Cortical age-related degeneration degeneration, lumbar cataract, right region eye M51.37 Other intervertebral disc H25.012 Cortical age-related degeneration, cataract, left lumbosacral region eye 723.4 Brachial M54.12 Radiculopathy, cervical H25.013 Cortical age-related neuritis/radiculitis region cataract, bilateral M54.13 Radiculopathy, eyes cervicothoracic region 724.02 Spinal stenosis – lumbar, M48.06 Spinal stenosis, lumbar Cortical age-related cataract is only applicable to adult without neurogenic region patients age 15
    [Show full text]
  • Functional Outcome Following Modified Elmslie–Trillat Procedure ⁎ D
    The Knee 13 (2006) 464–468 www.elsevier.com/locate/knee Functional outcome following modified Elmslie–Trillat procedure ⁎ D. Karataglis , M.A. Green, D.J.A. Learmonth Royal Orthopaedic Hospital, Bristol Road South, Birmingham B31 2AP, UK Received 30 October 2005; received in revised form 20 August 2006; accepted 21 August 2006 Abstract The aim of this study was to evaluate the mid- and long-term outcome of the modified Elmslie–Trillat procedure, as well as to detect factors affecting it. Thirty-eight patients (44 procedures) with a mean age of 31 years were included in this study. The reason for operation was patellar instability in 10 cases, anterior knee pain with malalignment of the extensor mechanism in 15 cases and a combination of both in 19 cases. Patients were followed for an average of 40 months (range=18–130 months). The functional outcome was very satisfactory or satisfactory for 73% of patients. According to Cox's criteria it was excellent in 13 cases (30%), good in 18 (41%), fair in 7 (16%) and poor in the remaining 6 (13%). Patients scored an average of 3.5 (range=2–8) in their Tegner Activity Scale, while their score in Activities of Daily Living Scale of the Knee Outcome Survey ranged from 43 to 98 (average=76). Result analysis revealed a better functional outcome when the operation was performed for patellar instability, as well as in the absence of grade 3 or 4 chondral changes in the patellofemoral joint at the time of operation. Elmslie–Trillat procedure satisfactorily restores patellofemoral stability and offers a very good functional outcome, especially in the absence of significant chondral changes in the patellofemoral joint at the time of operation.
    [Show full text]
  • Approach to the Active Patient with Chronic Anterior Knee Pain
    No part of The Physician and Sportsmedicine may be reproduced or transmitted in any form without written permission from the publisher. All permission requests to reproduce or adapt published material must be directed to the journal office in Berwyn, PA, no other persons or offices are authorized to act on our behalf. CLINICAL FOCUS: ORTHOPEDICS AND SPORTS INJURIES Approach to the Active Patient with Chronic Anterior Knee Pain DOI: 10.3810/psm.2012.02.1950 Alfred Atanda Jr, MD1 Abstract: The diagnosis and management of chronic anterior knee pain in the active individual Devin Ruiz, BSc2 can be frustrating for both the patient and physician. Pain may be a result of a single traumatic event Christopher C. Dodson, or, more commonly, repetitive overuse. “Anterior knee pain,” “patellofemoral pain syndrome,” and MD2 “chondromalacia” are terms that are often used interchangeably to describe multiple conditions that Robert W. Frederick, MD2 occur in the same anatomic region but that can have significantly different etiologies. Potential pain sources include connective or soft tissue irritation, intra-articular cartilage damage, mechanical 1Department of Orthopaedic irritation, nerve-mediated abnormalities, systemic conditions, or psychosocial issues. Patients with Surgery, Nemours/Alfred I. duPont Hospital for Children, Wilmington, anterior knee pain often report pain during weightbearing activities that involve significant knee DE; 2Thomas Jefferson University flexion, such as squatting, running, jumping, and walking up stairs. A detailed history and thorough Hospital, Jefferson Medical College, Philadelphia, PA physical examination can improve the differential diagnosis. Plain radiographs (anteroposterior, anteroposterior flexion, lateral, and axial views) can be ordered in severe or recalcitrant cases.
    [Show full text]
  • Orthopedic Neurology] Page | 1
    [Orthopedic Neurology] Page | 1 Neuro-Anatomy Neuron: Is the specialized cell of the nervous system that capable of electrical exciation (action potential) along their axons 2 | Page [Orthopedic Neurology] Peripheral nerve has a mixture of neurons: 1]. Motor 2]. Sensory 3]. Reflex 4]. Sympathetic 5]. Parasympathetic Types of fibers: A (α, , γ, δ), B, C Motor Sensory Ms reflex sympathetic Parasymp Neuron AHC Dorsal root ganglia AHC IHC relay at organ Root Anterior Dorsal root Ant Ant Ant Tract 1- Direct pyramidal 1- Spinothalamic (Pain, temp, Stretch reflex crude) arc from ms 2- Indirect pyramid 2- Lemniscal (DC) spindle (proprioception, fine touch) Fibre α Motor (12-20 μm) α Propriocep (12-20 μm) γ fibers B preganglionic B fibres Touch, vib (5-12 μm) C Postganglionic δ fast pain, temp (2-5μm) C Slow pain, crude (0.2-2µm) A fibers are most affected by pressure C fibers are most affected by anesthesia and are the principle fibers in the dorsal root Neurons are surrounded by endoneurium GroupToFor m fascicles surrounded by perineurium GroupToFor m nerve surrounded by epineurium Muscle: Motor unit is the unit responsible for motion and formed of the group of ms fibers and neuromuscular junction and feeding neuron Ms fibers types: 1- Smooth ms fibers 2- Cardiac ms fibers 3- Skeletal ms fibers: . Type I: slow twitching, slow fatiguability, posture . TypeII: fast twitiching, fast fatigue MS CONTRACTION: is the active state of a ms, in which there is response to the neuron action potential either by isometric or iso tonic contraction
    [Show full text]
  • Orthopedic Products Orthopedic
    ORTHOPEDIC PRODUCTS ORTHOPEDIC ORTHOPEDIC PRODUCTS ORLIMAN S. L. U. Follow us: C/ Ausias March, 3 EDITION 46185 La Pobla de Vallbona · Valencia (Spain) 05/2019 · TRAUMATOLOGY · RHEUMATOLOGY · REHABILITATION · Tel.: +34 96 272 57 04 - Fax: +34 96 275 87 00 E-mail: [email protected] · www.orliman.com EDITION: 05/2019 · SPORT MEDICINE · ORTHOPEDICS · ▍ INTRODUCTION A COMPANY WITH HISTORY - MISSION With over 70 years of experience in the field of orthopedics, Orliman undertakes the development and series production of orthopedic products, spearheading future recovery of mobility and rehabilitation, preventive healthcare and functional improvement. This work is carried out through the development of comprehensive solutions in conjunction with users, doctors, physiotherapists, suppliers, orthopedic establishments and designers. ▍ VISION Orliman’s vision is to be an innovative company that leads the non-invasive orthopedics market in Spain, France and international markets, that continually seeks new ways of satisfying the needs of orthopedic establishments, the medical community and users, providing technology and functionality to its products. This is how successful projects such as Orliman Sport and Orliman Pediatric were developed. ▍ PRODUCTS RANGE Our range includes: ▸ Orthosis for lower limbs ▸ Orthosis for the trunk ▸ Orthosis for upper limbs ▸ Thermo-compressor orthosis ▸ Insoles and heelpcups ▸ Podiatry ▸ Prosthesis 3000 references ▍ WE ARE INCREASING OUR SPACE on stock We are multiplying our premises with a new headquarters of over 10,000 m2 which contains all of the technological and professional means that a leading company requires. ▍ WORKFORCE The workforce at Orliman is made up of professionals within each speciality who receive continuous training to ensure they are suitably informed about products and technological and medical advances, who strive to better themselves on a daily basis in order to attend to the needs of our customers.
    [Show full text]
  • Anterior Knee Pain
    Page 1 of 4 Anterior Knee Pain Anterior knee pain is common with a variety of causes.[1] It is important to make a careful assessment of the underlying cause in order to ensure appropriate management and advice, Common causes [2] Patellofemoral pain syndrome (PFPS) PFPS is defined as pain behind or around the patella, caused by stress in the patellofemoral joint. PFPS is common. Symptoms are usually provoked by climbing stairs, squatting, and sitting with flexed knees for long periods of time.[3] PFPS seems to be multifactorial, resulting from a complex interaction between intrinsic anatomy and external training factors.[4] Pain and dysfunction often result from either abnormal forces or prolonged repetitive compressive or shearing forces between the patella and the femur. Patellofemoral pain syndrome (PFPS) is a common cause of knee pain in adolescents and young adults, especially among those who are physically active and regularly participate in sports. Although PFPS most often presents in adolescents and young adults, it can occur at any age. Over half of all cases are bilateral (but one side is often more affected than the other). The potential causes of PFPS remain controversial but include overuse, overloading and misuse of the patellofemoral joint. Underlying causes of PFPS include: Overuse of the knee - eg, in sporting activities. Minor problems in the alignment of the knee. Foot problems - eg, flat feet. Repeated minor injuries to the knee. Joint hypermobility affecting the knee. Reduced muscle strength in the leg. Physiotherapy and foot orthoses are often used in the management of PFPS.[5] Other common causes of anterior knee pain in adolescents These include: Osgood-Schlatter disease See the separate article on Osgood-Schlatter Disease.
    [Show full text]