Deferribacter Autotrophicus Sp. Nov., an Iron(III)-Reducing Bacterium from a Deep-Sea Hydrothermal Vent
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomic Insights Into the Carbon and Energy Metabolism of A
Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres Alexander Slobodkin, Galina Slobodkina, Maxime Allioux, Karine Alain, Mohamed Jebbar, Valerian Shadrin, Ilya Kublanov, Stepan Toshchakov, Elizaveta Bonch-Osmolovskaya To cite this version: Alexander Slobodkin, Galina Slobodkina, Maxime Allioux, Karine Alain, Mohamed Jebbar, et al.. Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres. Genes, MDPI, 2019, 10 (11), pp.849. 10.3390/genes10110849. hal-02359529 HAL Id: hal-02359529 https://hal.archives-ouvertes.fr/hal-02359529 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. G C A T T A C G G C A T genes Article Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres -
Calditerrivibrio Nitroreducens Type Strain (Yu37-1)
Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Calditerrivibrio nitroreducens type strain (Yu37-1). Permalink https://escholarship.org/uc/item/3874029z Journal Standards in genomic sciences, 4(1) ISSN 1944-3277 Authors Pitluck, Sam Sikorski, Johannes Zeytun, Ahmet et al. Publication Date 2011-02-20 DOI 10.4056/sigs.1523807 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2011) 4:54-62 DOI:10.4056/sigs.1523807 Complete genome sequence of Calditerrivibrio nitroreducens type strain (Yu37-1T) Sam Pitluck1, Johannes Sikorski2, Ahmet Zeytun1,3, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Nancy Hammon1, Shweta Deshpande1, Jan-Fang Cheng1, Roxane Tapia1,3, Cliff Han1,3, Lynne Goodwin1,3, Konstantinos Liolios1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Loren Hauser1,5, Yun-Juan Chang1,5, Cynthia D. Jeffries1,5, John C. Detter1, Evelyne Brambilla2, Oliver D. Ngatchou Djao6, Manfred Rohde6, Stefan Spring2, Markus Göker2, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk2*, and Miriam Land1,5 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National -
Anodic and Cathodic Microbial Communities in Single Chamber
New Biotechnology Volume 32, Number 1 January 2015 RESEARCH PAPER Anodic and cathodic microbial communities in single chamber microbial fuel cells Research Paper 1 1 1 1 Matteo Daghio , Isabella Gandolfi , Giuseppina Bestetti , Andrea Franzetti , 2 3 Edoardo Guerrini and Pierangela Cristiani 1 Dept. of Earth and Environmental Sciences – University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy 2 Dept. of Chemistry, University of Milano, Via Golgi 19, 20133 Milan, Italy 3 RSE – Ricerca sul Sistema Energetico S.p.A., Environment and Sustainable Development Department, Via Rubattino 54, 20134 Milan, Italy Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm. Introduction insights are still needed to globally describe these mechanisms Microbial fuel cells (MFCs) are innovative systems for energy and the microorganisms involved. production from renewable biomass sources and from biomass The most typical tools used to characterize the microbial derived wastes [1]. -
Bacterial Lifestyle in a Deep-Sea Hydrothermal Vent Chimney Revealed by the Genome Sequence of the Thermophilic Title Bacterium Deferribacter Desulfuricans SSM1
Bacterial Lifestyle in a Deep-sea Hydrothermal Vent Chimney Revealed by the Genome Sequence of the Thermophilic Title Bacterium Deferribacter desulfuricans SSM1 Takaki, Yoshihiro; Shimamura, Shigeru; Nakagawa, Satoshi; Fukuhara, Yasuo; Horikawa, Hiroshi; Ankai, Akiho; Author(s) Harada, Takeshi; Hosoyama, Akira; Oguchi, Akio; Fukui, Shigehiro; Fujita, Nobuyuki; Takami, Hideto; Takai, Ken DNA Research, 17(3), 123-137 Citation https://doi.org/10.1093/dnares/dsq005 Issue Date 2010-06 Doc URL http://hdl.handle.net/2115/46998 Type article File Information DNA17-3_123-137.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP DNA RESEARCH 17, 123–137, (2010) doi:10.1093/dnares/dsq005 Advance Access Publication: 26 February 2010 Bacterial Lifestyle in a Deep-sea Hydrothermal Vent Chimney Revealed by the Genome Sequence of the Thermophilic Bacterium Deferribacter desulfuricans SSM1 YOSHIHIRO Takaki 1,*, SHIGERU Shimamura2,SATOSHI Nakagawa2,3,YASUO Fukuhara4,HIROSHI Horikawa4, AKIHO Ankai 4,TAKESHI Harada 4,AKIRA Hosoyama 4,AKIO Oguchi 4,SHIGEHIRO Fukui 4,NOBUYUKI Fujita 4, HIDETO Takami 1, and KEN Takai 2 Microbial Genome Research Group, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan1; Subsurface Geobiology Advanced Research Team (SUGAR) Team, Extremobiosphere Research Program, Institute of Biogeosciences, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan2; Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan3 and NITE Genome Analysis Center, Department of Biotechnology, National Institute of Technology and Evolution (NITE), 2-10-49 Nishihara, Shibuya-ku, Tokyo 151-0066, Japan4 Downloaded from *To whom correspondence should be addressed. -
Nixon2014.Pdf
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Microbial iron reduction on Earth and Mars Sophie Louise Nixon Doctor of Philosophy – The University of Edinburgh – 2014 Contents Declaration .............................................................................................................. i Acknowledgements ............................................................................................... ii Abstract ..................................................................................................................iv Lay Summary .........................................................................................................vi Chapter 1: Introduction ........................................................................................ -
Deferribacter Autotrophicus Sp. Nov., an Iron(III)-Reducing Bacterium from a Deep-Sea Hydrothermal Vent
International Journal of Systematic and Evolutionary Archimer Microbiology Archive Institutionnelle de l’Ifremer June 2009; Volume 59 : Pages 1508-1512 http://www.ifremer.fr/docelec/ http://dx.doi.org/10.1099/ijs.0.006767-0 © 2009 International Union of Microbiological Societies Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from ailable on the publisher Web site a deep-sea hydrothermal vent G. B. Slobodkina1, *, T. V. Kolganova2, N. A. Chernyh1, J. Querellou3, E. A. Bonch- Osmolovskaya1 and A. I. Slobodkin1 1 Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia 2 Bioengineering Center, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/1, 117312 Moscow, Russia 3 UMR 6197, Microbiology of Extreme Environments, Ifremer, Centre de Brest, 29280 Plouzane, France blisher-authenticated version is av *: Corresponding author : G. B. Slobodkina, email address : [email protected] Abstract: A thermophilic, anaerobic, chemolithoautotrophic bacterium (designated strain SL50T) was isolated from a hydrothermal sample collected at the Mid-Atlantic Ridge from the deepest of the known World ocean hydrothermal fields, Ashadze field (1 ° 58' 21'' N 4 ° 51' 47'' W) at a depth of 4100 m. Cells of strain SL50T were motile, straight to bent rods with one polar flagellum, 0.5–0.6 µm in width and 3.0– 3.5 µm in length. The temperature range for growth was 25–75 °C, with an optimum at 60 °C. The pH range for growth was 5.0–7.5, with an optimum at pH 6.5. Growth of strain SL50T was observed at NaCl concentrations ranging from 1.0 to 6.0 % (w/v) with an optimum at 2.5 % (w/v). -
Literature Review
NOVEL ANAEROBIC THERMOPHILIC BACTERIA; INTRASPECIES HETEROGENEITY AND BIOGEOGRAPHY OF THERMOANAEROBACTER ISOLATES FROM THE KAMCHATKA PENINSULA, RUSSIAN FAR EAST by ISAAC DAVID WAGNER (Under the Direction of Juergen Wiegel) ABSTRACT Thermophilic anaerobic prokaryotes are of interest from basic and applied scientific perspectives. Novel anaerobic thermophilic taxa are herein described are Caldanaerovirga acetigignens gen. nov., sp. nov.; and Thermoanaerobacter uzonensis sp. nov. Novel taxa descriptions co-authored were: Thermosediminibacter oceani gen. nov., sp. nov and Thermosediminibacter litoriperuensis sp. nov; Caldicoprobacter oshimai gen. nov., sp. nov. More than 220 anaerobic thermophilic isolates were obtained from samples collected from 11 geothermal springs within the Uzon Caldera, Geyser Valley, and Mutnovsky Volcano regions of the Kamchatka Peninsula, Russian Far East. Most strains were phylogenetically related to Thermoanaerobacter uzonensis JW/IW010T, while some were phylogenetically related to Thermoanaerobacter siderophilus SR4T. Eight protein coding genes, gyrB, lepA, leuS, pyrG, recA, recG, rplB, and rpoB, were amplified and sequenced from these isolates to describe and elucidate the intraspecies heterogeneity, α- and β-diversity patterns, and the spatial and physicochemical correlations to the observed genetic variation. All protein coding genes within the T. uzonensis isolates were found to be polymorphic, although the type (i.e., synonymous/ nonsynonymous substitutions) and quantity of the variation differed between gene sequence sets. The most applicable species concept for T. uzonensis must consider metapopulation/ subpopulation dynamics and acknowledge that physiological characteristics (e.g., sporulation) likely influences the flux of genetic information between subpopulations. Spatial variation in the distribution of T. uzonensis isolates was observed. Evaluation of T. uzonensis α-diversity revealed a range of genetic variation within a single geothermal spring. -
Anaerobic Thermophiles
Life 2014, 4, 77-104; doi:10.3390/life4010077 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Review Anaerobic Thermophiles Francesco Canganella 1,* and Juergen Wiegel 2 1 Department for Innovation in Biological, Agrofood, and Forest Systems, University of Tuscia, via C. de Lellis, Viterbo 01100, Italy 2 Department of Microbiology, University of Athens (GA), Athens 10679, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-0761-357282. Received: 3 June 2013; in revised form: 10 January 2014 / Accepted: 26 January 2014 / Published: 26 February 2014 Abstract: The term ―extremophile‖ was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of ―extreme‖ environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally ―hot environments‖ on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions.