Ep 1485109 B1

Total Page:16

File Type:pdf, Size:1020Kb

Ep 1485109 B1 (19) TZZ__Z_T (11) EP 1 485 109 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/113 (2010.01) A61K 31/7088 (2006.01) 02.10.2013 Bulletin 2013/40 A61P 9/00 (2006.01) A61P 9/10 (2006.01) A61P 35/00 (2006.01) C12Q 1/68 (2006.01) (21) Application number: 03702205.0 (86) International application number: (22) Date of filing: 27.02.2003 PCT/AU2003/000237 (87) International publication number: WO 2003/072114 (04.09.2003 Gazette 2003/36) (54) VASCULAR THERAPEUTICS GEFÄSSTHERAPEUTIKA TRAITEMENT VASCULAIRE (84) Designated Contracting States: • BISWAL S. ET AL.: "Inhibition of cell proliferation AT BE BG CH CY CZ DE DK EE ES FI FR GB GR and AP-1 activity by Acrolein in human A549 lung HU IE IT LI LU MC NL PT SE SI SK TR adenocarcinoma cells due to thiol imbalance and covalent modifications" CHEMICAL RESEARCH (30) Priority: 27.02.2002 AU PS078002 IN TOXICOLOGY, vol. 15, no. 2, February 2002 (2002-02), pages 180-186, XP002531768 (43) Date of publication of application: • SUGGS W.D. ET AL.: "Antisense 15.12.2004 Bulletin 2004/51 oligonucleotides to c- fos and c- jun inhibit intimal thickening in a rat vein graft model" SURGERY, (73) Proprietor: NewSouth Innovations Pty Limited vol. 126, 1999, pages 443-449, XP002531769 Sydney NSW 2052 (AU) • YOSHIDA S. ET AL.: "Involvement of Interleukin- 8, Vascular Endothelial Growth Factor, and Basic (72) Inventor: KHACHIGIAN, Levon, Michael Fibroblast Growth Factor in Tumor Necrosis Ryde, New South Wales 2112 (AU) Factor alpha-dependent angiogenesis" MOLECULAR AND CELLULAR BIOLOGY, vol. 17, (74) Representative: Brasnett, Adrian Hugh et al no. 7, 1 July 1997 (1997-07-01), pages 4015-4023, Mewburn Ellis LLP XP002531770 ISSN: 0270-7306 33 Gutter Lane • BUCHWALD A.B. ET AL.: "Decoy London oligodeoxynucleotide against Activator Protein- EC2V 8AS (GB) 1 reduces neointimal proliferation after coronary angioplasty in hypercholesterolemic minipigs" (56) References cited: JOURNAL OF THE AMERICAN COLLEGE OF WO-A-01/32156 WO-A-95/02051 CARDIOLOGY, vol. 39, no. 4, 20 February 2002 WO-A-95/02051 WO-A-98/46272 (2002-02-20), pages 732-738, XP002531771 WO-A-98/46272 US-A- 5 837 244 • MERCOLA D. AND COHEN J.S.: "Antisense approaches to cancer gene therapy" CANCER • PAN B. ET AL.: "Reversal of Cisplatin resistance GENE THERAPY, vol. 2, no. 1, 1 January 1995 in human ovarian cancer cell lines by a c-jun (1995-01-01), pages 47-59, XP002911890 ISSN: antisense oligodoexynucleotide (ISIS 10582): 0929-1903 evidence for the role of transcription factor • KHACHIGIAN L.M. ET AL.: ’c-Jun regulates overexpression in determining resistant vascular smooth muscle cell growth and phenotype" BIOCHEMICAL PHARMACOLOGY, neointima formation after arterial injury’ vol. 63, no. 9, 1 May 2002 (2002-05-01), pages JOURNALOF BIOLOGICAL CHEMISTRY vol. 277, 1699-1707, XP002531767 no. 25, 21 June 2002, pages 22985 - 22991, XP008101011 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 1 485 109 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 1 485 109 B1 • MERCOLA D. ET AL.: ’Antisense approaches to cancer gene therapy’ CANCER GENE THERAPY vol. 2, no. 1, 1995, pages 47 - 59, XP002911890 • PAN B ET AL: "Reversal of Cisplatin resistance in human ovarian cancer cell lines by a c-jun antisense oligodoexynucleotide (ISIS 10582): evidence for the role of transcription factor overexpression in determining resistant phenotype", BIOCHEMICAL PHARMACOLOGY, PERGAMON, OXFORD, GB, vol. 63, no. 9, 1 May 2002 (2002-05-01), pages 1699-1707, XP002531767, ISSN: 0006-2952, DOI: 10.1016/S0006-2952(02)00841-9 2 1 EP 1 485 109 B1 2 Description muscle cell proliferation10. Similarly, YY1 overexpres- sion blocks smooth muscle cell growth without affecting FIELD OF THE INVENTION endothelial cell proliferation11. [0006] c- Jun can repress, as well as activate transcrip- [0001] The present invention relates to methods and 5 tion. c- Jun binds the corepressor TG- interacting factor compositions for reducing or preventing c- Jun mediated (TGIF) to suppress Smad2 transcriptional activity12. c- cellular processes. In particular, the present invention Jun also blocks transforming growth factor beta- medi- relates to methods of reducing or preventing neointima ated transcription by repressing the transcriptional activ- formation, atherosclerosis, restenosis, graft failure or an- ity of Smad313. giogenesis involving the use of DNAzymes. 10 [0007] c- Jun can inhibit, as well as stimulate prolifer- ation. Using antisense oligonucleotides to c- Jun, Kana- BACKGROUND OF THE INVENTION tani and colleagues demonstrated that inhibition of hu- man monocytoid leukemia cell growth by TGF- beta and [0002] The initiating event in the pathogenesis of dexamethasone is mediated by enhanced c- Jun atherosclerosis and restenosis following angioplasty is 15 expression5. injury to cells in the artery wall 1. Injury or stress stimulates [0008] c- Jun, however, has not been directly linked to signalling and transcriptional pathways in vascular the complex process of angiogenesis, which underlies smooth muscle cells, stimulating their migration and pro- many common human diseases including solid tumor liferation and the eventual formation of a neointima. growth and corneal disease. Angiogenesis is a complex Smooth muscle cell proliferation is a key feature of ne- 20 multi- step process involving proteolytic degradation of ointima formation, atherosclerosis, restenosis and graft the basement membrane and surrounding extracellular failure. matrix, microvascular endothelial cell proliferation, mi- [0003] c- Jun, a prototypical member of the basic re- gration, tube formation and structural re- organisation 14. gion- leucine zipper protein family, is transiently induced following arterial injury in animal models 2,3. c- Jun forms 25 DNAzymes both homodimers and heterodimers with other bZIP pro- teins to form the AP- 1 transcription factor. While inves- [0009] In human gene therapy, antisense nucleic acid tigations over the last decade have linked AP- 1 with pro- technology has been one of the major tools of choice to liferation, tumorigenesis and apoptosis, AP- 1 has also inactivate genes whose expression causes disease and been implicated in tumor suppression and 30 cellis thus undesirable. The anti- sense approach employs a differentiation4. Thus, gene- targeting strategies that nucleic acid molecule that is complementary to, and down- regulate c- Jun expression do not necessarily in- thereby hybridizes with, an mRNA molecule encoding an hibit cell proliferation. undesirable gene. Such hybridization leads to the inhibi- [0004] Kanatani et al, (1996)5 have shown that anti- tion of gene expression by mechanisms including nucle- sense oligonucleotides targeting c- Jun dose-dependent- 35 olytic degradation or steric blockade of the translational ly reduce the growth-inhibitory effect of dexamethasone machinery. and TGF.β Recent reports indicate thatJun c- [0010] Anti- sense technology suffers from certain NH2Jerminal kinase / stress activated protein kinase drawbacks. Anti- sense hybridization results in the for- (JNK), an upstream activator of c-Jun and numerous oth- mation of a DNA/ target mRNA heteroduplex. This het- er transcription factors, is expressed by SMCs in human 40 eroduplex serves as a substrate for RNAse H- mediated and rabbit atherosclerotic plaques6,7 and that dominant degradation of the target mRNA component. Here, the negative JNK inhibits neointima formation after balloon DNA anti- sense molecule serves in a passive manner, injury8. c-Jun, however, has not been localised in human in that it merely facilitates the required cleavage by en- atherosclerotic lesions, nor has it been shown to play a dogenous RNAse H enzyme. This dependence on functional role in arterial repair after injury. 45 RNAse H confers limitations on the design of anti- sense [0005] It is clear, however, that the finding that c- Jun, molecules regarding their chemistry and ability to form or any other given gene, is inducibly expressed in the stable heteroduplexes with their target mRNA’s. Anti- artery wall following balloon angioplasty does not neces- sense DNA molecules also suffer from problems asso- sarily translate to it playing a positive regulatory role in ciated with non- specific activity and, at higher concen- transcription, proliferation or neointima formation. For ex- 50 trations, even toxicity. ample, it has been shown that three transcriptional re- [0011] As an alternative to anti-sense molecules, cat- pressors (NAB2, GCF2, and YY1) are activated in vas- alytic nucleic acid molecules have shown promise as cular smooth muscle cells by mechanical injury in vitro, therapeutic agents for suppressing gene expression, and as well as in the rat artery wall. NAB2 directly binds the are widely discussed in the literature15-21. Thus, unlike zinc finger transcription factor Egr-1 and represses Egr- 55 a conventional anti-sense molecule, a catalytic nucleic 1-mediated transcription9. GCF2 is a potent repressor of acid molecule functions by actually cleaving its target the expression of PDGF-A, a well-established mitogen mRNA molecule instead of merely binding to it. Catalytic for vascular smooth muscle cells, and inhibits smooth nucleic acid molecules can only cleave a target nucleic 3 3 EP 1 485 109 B1 4 acid sequence if that target sequence meets certain min- tivity of c-Jun for use in a method of preventing or reduc- imum requirements. The target sequence must be com- ing ocular angiogenesis, or for use in treating or inhibiting plementary to the hybridizing regions of the catalytic nu- melanoma growth, in a subject, wherein the nucleic acid cleic acid, and the target must contain a specific se- is selected from the group consisting of: (a) a DNAzyme quence at the site of cleavage.
Recommended publications
  • IAIS Abstracts Melbourne 2005
    Book of Abstracts List of Committees Organising Committee Steering Committee Chairs Ian Adcock, UK John Hamilton, Australia Ian Ahnfelt-Ronne, Denmark Eric Morand, Australia Gareth Bowen, UK Michel Chignard, France Gary Anderson, Australia John Hamilton, Australia Gareth Bowen, UK Gordon Letts, USA Andrew Cook, Australia Lisa Marshall, USA Michael Hickey, Australia Tineke Meijers, Canada Gordon Letts, USA Tatsutoshi Nakahata, Japan Alan Lewis, USA Wim van den Berg, The Netherlands Lisa Marshall, USA Kouji Matsushima, Japan Amy Roshak, USA Glen Scholz, Australia Ross Vlahos, Australia Young Investigator Award Committee Program Committee Chair: Chair: Glen Scholz, Australia Michael Hickey, Australia Laurent Audoly, Canada Andrew Cook, Australia Susan Brain, UK John Hamilton, Australia John Schrader, Canada Lisa Marshall, USA Vincent Lagente, France Eric Morand, Australia Kouji Matsushima, Japan Glen Scholz, Australia Ross Vlahos, Australia For enquiries after the Congress please contact the Congress Secretariat: ICMS Pty Ltd Attention: 7th World Congress on Infl ammation 2005 84 Queensbridge Street Southbank Vic 3006 Australia P: +61 3 9682 0244 F: +61 3 9682 0288 E: infl [email protected] W: www.infl ammation2005.com Contents Sunday 21 August 2005 Abstract No. Page Title Morning 1001 — Plenary 1: Peter Doherty 1002 -1004 — Symposium 1: Chronic Obstructive Pulmonary Disease 1005 - 1008 S 85 Symposium 2: Arthritis Afternoon 1010 - 1013 S 85 Focus Group 1: Understanding Infl ammation through Genetics, Genomics and Proteomics 1014 - 1018 S 86 Focus Group 2: Asthma 1019 - 1022 S 88 Focus Group 3: The Immunoregulatory Response 1023 -1027 S 89 Focus Group 4; Structure-Based Drug Design 1028 - 1032 S 90 Focus Group 5: Chronic Obstructive Pulmonary Disease 1033 - 1037 S 90 Focus Group 6: Rheumatic Diseases Monday 22 August 2005 Abstract No.
    [Show full text]
  • Deoxyribozymes As Catalytic Nanotherapeutic Agents Levon M
    Published OnlineFirst February 13, 2019; DOI: 10.1158/0008-5472.CAN-18-2474 Cancer Review Research Deoxyribozymes as Catalytic Nanotherapeutic Agents Levon M. Khachigian Abstract RNA-cleaving deoxyribozymes (DNAzymes) are synthet- and nanosponges, and the emerging role of adaptive ic single-stranded DNA-based catalytic molecules that can immunity underlying DNAzyme inhibition of cancer be engineered to bind to and cleave target mRNA at growth. DNAzymes represent a promising new class of predetermined sites. These have been used as therapeutic nucleic acid–based therapeutics in cancer. This article dis- agents in a range of preclinical cancer models and have cusses mechanistic and therapeutic insights brought about entered clinical trials in Europe, China, and Australia. This by DNAzyme use as nanotools and reagents in a range of review surveys regulatory insights into mechanisms of basic science, experimental therapeutic and clinical appli- disease brought about by use of catalytic DNA in vitro and cations. Current limitations and future perspectives are also in vivo, including recent uses as nanosensors, nanoflowers, discussed. DNAzyme Catalysts: Mechanistic and transfected with commercial delivery agents or electroporated Design Considerations into cells. DNAzyme use in experimental animal models can be hampered by delivery issues, especially in regard to systemic DNAzymes are synthetic single-stranded enzymatic DNA mole- administration (10). This has motivated local delivery meth- cules that bind to their target mRNA via Watson–Crick base odologies in animals, such as intracardiac, intratumoral, and pairing and cleave a specific interbase junction in the mRNA by intraarticular injection, or tissue immersion. Novel biodegrad- a deesterification reaction (1–3). This involves metal-assisted able template-based DNAzymes have recently been developed 0 deprotonation of 2 -hydroxyl in the RNA, producing RNA frag- that facilitate cancer cell recognition and internalization (11).
    [Show full text]
  • Effect of EBV LMP1 Targeted Dnazymes on Cell Proliferation And
    Cancer Gene Therapy (2005) 12, 647–654 r 2005 Nature Publishing Group All rights reserved 0929-1903/05 $30.00 www.nature.com/cgt Effect of EBV LMP1 targeted DNAzymes on cell proliferation and apoptosis Zhong-Xin Lu,1 Mao Ye,1 Guang-Rong Yan,1 Qun Li,1 Min Tang,1 Leo M Lee,2 Lun-Quan Sun,3 and Ya Cao1 1Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China; 2Laboratory of Molecular Technology SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA; and 3St Vincent’s Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia. The latent membrane protein (LMP1) encoded by Epstein–Barr virus (EBV) has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. RNA-cleaving DNA enzymes are catalytic nucleic acids that bind and cleave a target RNA in a highly sequence-specific manner. In this study, we explore the potential of using DNAzymes as a therapeutic approach to EBV- associated carcinomas by targeting the LMP1 gene. In all, 13 different phosphorothioate-modified ‘‘10–23’’ deoxyribozymes (DNAzymes) were designed and synthesized against the LMP1 mRNA and transfected into B95-8 cells, which constitutively express the LMP1. Fluorescence microscopy was used to examine the cellular uptake and distribution in B95-8 cells. As demonstrated in Western blots, three out of 13 deoxyribozymes significantly downregulated the expression of LMP1 in B95-8 cells. These DNAzymes were shown to markedly inhibit B95-8 cell growth compared with a disabled DNAzyme and untreated controls, as determined by an alamarBlue Assay.
    [Show full text]
  • Targeting the Transcription Factor C-Jun in Cervical Cancer Cells
    Targeting the Transcription Factor c-Jun in Cervical Cancer Cells Grace Pei Chien Yee Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Australia A thesis submitted to the University of New South Wales for the degree of Doctor of Philosophy (PhD) September 2013 ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. i ABSTRACT Despite the development of vaccines for human papillomaviruses (HPV) in cervical cancer and other efforts to improve therapy, deaths still average 275,000 annually worldwide, with most women succumbing to recurrent or metastatic disease. The c-Jun oncogene is a subunit of the activating protein-1 (AP-1) transcription factor and is strongly expressed in cervical cancer, regulating the expression of HPV16 and 18 genes. AP-1 plays a major role in cell growth, migration and apoptosis in many cell types.
    [Show full text]
  • Review Article the Molecular Pathogenesis of Osteosarcoma: a Review
    Hindawi Publishing Corporation Sarcoma Volume 2011, Article ID 959248, 12 pages doi:10.1155/2011/959248 Review Article The Molecular Pathogenesis of Osteosarcoma: A Review Matthew L. Broadhead,1 Jonathan C. M. Clark,1 Damian E. Myers,1 Crispin R. Dass,2 and Peter F. M. Choong1, 3 1 Department of Orthopaedics, Department of Surgery, University of Melbourne, St. Vincent’s Hospital, SVHM, L3, Daly Wing, 35 Victoria Parade, Fitzroy VIC 3065, Australia 2 School of Biomedical and Health Sciences, Victoria University, St. Albans, VIC 3021, Australia 3 Sarcoma Service, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia Correspondence should be addressed to Peter F. M. Choong, [email protected] Received 15 September 2010; Accepted 21 February 2011 Academic Editor: H. Kovar Copyright © 2011 Matthew L. Broadhead et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Osteosarcoma is the most common primary malignancy of bone. It arises in bone during periods of rapid growth and primarily affects adolescents and young adults. The 5-year survival rate for osteosarcoma is 60%–70%, with no significant improvements in prognosis since the advent of multiagent chemotherapy. Diagnosis, staging, and surgical management of osteosarcoma remain focused on our anatomical understanding of the disease. As our knowledge of the molecular pathogenesis of osteosarcoma expands, potential therapeutic targets are being identified. A comprehensive understanding of these mechanisms is essential if we are to improve the prognosis of patients with osteosarcoma through tumour-targeted therapies.
    [Show full text]
  • Role of Transcription Factor C-Jun in Acute Inflammation and Intimal Thickening in Bypassed Vein Grafts: Insights Using Dnazymes
    Role of transcription factor c-Jun in acute inflammation and intimal thickening in bypassed vein grafts: insights using DNAzymes Alla Waldman, MD Centre for Vascular Research Department of Pathology, The University of New South Wales Submitted for the degree of Doctor of Philosophy (PhD) Thesis Outline 2 TABLE OF CONTENTS ACKNOWLEDGMENT 3 ABSTRACT 4 PUBLICATIONS, PRESENTATIONS, AWARDS 12 ABBREVIATIONS 13 THESIS OUTLINE Chapters 1-3: INTRODUCTION 16 Chapters 4-6: RESULTS AND METHODS 90 Chapter 7: CONCLUSIONS AND FUTURE DIRECTIONS 163 REFERENCES 170 Thesis Outline 3 Acknowledgement I would like to thank my supervisor Professor Levon Khachigian for his patience, guidance, encouragement and continuous support during my PhD. I was very privileged to be part of his research group and to work with many very talented and successful scientists. I am very grateful to Professor Michael Perry, my co-supervisor for his teaching and support. His help in setting up microcirculation studies was invaluable and is greatly appreciated! I would like to thank my colleagues in Levon's lab, in particular Roger Fahmy for his extraordinary teaching, help and support; Dr Ravinay Bhindi for his valuable advice on my animal projects and willingness to help and Dr Valerie Midgley for her help in teaching, her friendship and good humour we shared so many times during the last 3 years. I would like to thank my amazing family, my parents Alex and Raissa Valdman and my brother Michael for always being there for me, for giving me the best opportunities in life to become who I am today. To my husband Joseph and my son Boris, I would have never made it without their unconditional support of my career, your love and friendship.
    [Show full text]
  • Deoxyribozymes As Catalytic Nanotherapeutic Agents Levon M
    Published OnlineFirst February 13, 2019; DOI: 10.1158/0008-5472.CAN-18-2474 Cancer Review Research Deoxyribozymes as Catalytic Nanotherapeutic Agents Levon M. Khachigian Abstract RNA-cleaving deoxyribozymes (DNAzymes) are synthet- and nanosponges, and the emerging role of adaptive ic single-stranded DNA-based catalytic molecules that can immunity underlying DNAzyme inhibition of cancer be engineered to bind to and cleave target mRNA at growth. DNAzymes represent a promising new class of predetermined sites. These have been used as therapeutic nucleic acid–based therapeutics in cancer. This article dis- agents in a range of preclinical cancer models and have cusses mechanistic and therapeutic insights brought about entered clinical trials in Europe, China, and Australia. This by DNAzyme use as nanotools and reagents in a range of review surveys regulatory insights into mechanisms of basic science, experimental therapeutic and clinical appli- disease brought about by use of catalytic DNA in vitro and cations. Current limitations and future perspectives are also in vivo, including recent uses as nanosensors, nanoflowers, discussed. DNAzyme Catalysts: Mechanistic and transfected with commercial delivery agents or electroporated Design Considerations into cells. DNAzyme use in experimental animal models can be hampered by delivery issues, especially in regard to systemic DNAzymes are synthetic single-stranded enzymatic DNA mole- administration (10). This has motivated local delivery meth- cules that bind to their target mRNA via Watson–Crick base odologies in animals, such as intracardiac, intratumoral, and pairing and cleave a specific interbase junction in the mRNA by intraarticular injection, or tissue immersion. Novel biodegrad- a deesterification reaction (1–3). This involves metal-assisted able template-based DNAzymes have recently been developed 0 deprotonation of 2 -hydroxyl in the RNA, producing RNA frag- that facilitate cancer cell recognition and internalization (11).
    [Show full text]
  • Medicinal Chemistry
    Special Report Special Focus Issue: Frontiers in Nucleic Acid-Based Drug R&D Future For reprint orders, please contact [email protected] Medicinal 7 Chemistry Special Report 2015/08/28 DNAzyme-based therapeutics for cancer treatment Future Med. Chem. Gene-silencing strategies based on catalytic nucleic acids have been rapidly developed Shujun Fu1 & Lun-Quan Sun*,1 in the past decades. Ribozymes, antisense oligonucleotides and RNA interference 1Center for Molecular Medicine, Xiangya have been actively pursued for years due to their potential application in gene Hospital, Central South University Changsha, China 410008 inactivation. Pioneered by Joyce et al., a new class of catalytic nucleic acid composed *Author for correspondence: of deoxyribonucleotides has emerged via an in vitro selection system. The therapeutic [email protected] potential of these RNA-cleaving DNAzymes have been shown both in vitro and in vivo. Although they rival the activity and stability of synthetic ribozymes, they are limited by inefficient delivery to the intracellular targets. Recent successes in clinical testing of the DNAzymes in cancer patients have revitalized the potential clinical utility of DNAzymes. 00 Due to the simple four-nucleotide chemistry system was based on hydrolytic cleavage of and standard Watson–Crick pairing, nucleic a phosphodiester and nested PCR [1–3] . First, acids are appealing targets for exogenous they established a pool of 1014 ssDNA mol- regulation of gene expression. Utilizing ecules. Each one contained a 5′ biotin moi- hybridization to achieve artificial gene sup- ety, followed by a 50 random deoxyribonu- pression is mostly related to the involvement cleotides domain which was flanked by fixed of single-stranded oligodeoxynucleotides and sequence.
    [Show full text]
  • Small-Molecule Nucleic-Acid-Based Gene-Silencing Strategies
    Chapter 8 Small-molecule Nucleic-acid-based Gene-silencing Strategies Zhijie Xu and Lifang Yang Additional information is available at the end of the chapter http://dx.doi.org/10.5772/62137 Abstract Gene-targeting strategies based on nucleic acid have opened a new era with the develop‐ ment of potent and effective gene intervention strategies, such as DNAzymes, ribozymes, small interfering RNAs (siRNAs), antisense oligonucleotides (ASOs), aptamers, decoys, etc. These technologies have been examined in the setting of clinical trials, and several have recently made the successful transition from basic research to clinical trials. This chapter discusses progress made in these technologies, mainly focusing on Dzs and siR‐ NAs, because these are poised to play an integral role in antigene therapies in the future. Keywords: Gene-targeting strategies, DNAzymes, siRNAs, basic research, clinical trials 1. Introduction Over the past decade, it is known that the advent of oligonucleotide-based gene inactivation agents have provided potential for these to serve as analytical tools and potential treatments in a range of diseases, including cancer, infections, inflammation, etc. During this time, many genes have been targeted by specifically engineered agents from different classes of small- molecule nucleic-acid-based drugs in experimental models of disease to probe, dissect, and characterize further the complex processes that underpin molecular signaling. Subsequently, a number of molecules have been examined in the setting of clinical trials, and several have recently made the successful transition from the bench to the clinic, heralding an exciting era of gene-specific treatments. This is particularly important because clear inadequacies in present therapies account for significant morbidity, mortality, and cost.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,686,128 B2 Khachigian (45) Date of Patent: Apr
    USOO8686 128B2 (12) United States Patent (10) Patent No.: US 8,686,128 B2 Khachigian (45) Date of Patent: Apr. 1, 2014 (54) AGENT FORTARGETING C-JUN MRNA Adamis, A.P. et al. (1999). "Angiogenesis and Ophthalmic Disease.” Angiogenesis 3(1):9-14. Ahmad, M. etal. (Feb. 20, 1998). “Role of Activating Protein-1 in the (76) Inventor: Levon Michael Khachigian, Ryde (AU) Regulation of the Vascular Cell Adhesion Molecule-1 Gene Expres sion by Tumor Necrosis Factor-O.” The Journal of Biological Chem (*) Notice: Subject to any disclaimer, the term of this istry 278(8):4616-4621. patent is extended or adjusted under 35 Alfranca, A. etal. (Jan. 2002). “c-Jun and Hypoxia-Inducible Factor U.S.C. 154(b) by 0 days. 1 Funcitonally Cooperate in Hypoxia-Induced Gene Transcription.” Molecular and Cellular Biology 22(1):12-22. (21) Appl. No.: 13/548,142 Bhindi, R. et al. (Oct. 2007). “DNA Enzymes, Short Interfering RNA, and the Emerging Wave of Small-Molecule Nucleic Acid-Based Gene-Silencing Strategies.” The American Journal of Pathology (22) Filed: Jul. 12, 2012 17(4): 1079-1088. Biswals, S. et al. (Feb. 2002). “Inhibition of Cell Proliferation and (65) Prior Publication Data AP-1 Activity by Acrolein in Human A549 Lung Adenocarcinoma US 2013/0237696A1 Sep. 12, 2013 Cells Due to Thiol Imbalance and Covalent Modifications.” Chemi cal Research in Toxicology 15(2): 180-186. Blei. F. et al. (Jun. 1993). “Mechanism of Action of Angiostatic Steroids: Suppression of Plasminogen Activator Activity via Stimu Related U.S. Application Data lation of Plasminogen Activator Inhibitor Synthesis,” J.
    [Show full text]