bioRxiv preprint doi: https://doi.org/10.1101/248757; this version posted January 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Loss of Trem2 in microglia leads to widespread disruption of cell co-expression networks in mouse brain Guillermo Carbajosa*,1, Karim Malki2, Nathan Lawless2, Hong Wang3, John W. Ryder3, Eva Wozniak4, Kristie Wood4, Charles A. Mein4, Richard J.B. Dobson1,5,6, David A. Collier2, Michael J. O’Neill2, Angela K. Hodges7, Stephen J. Newhouse1,5,6 1. Department of Biostatistics and Health Informatics, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, United Kingdom 2. Eli Lilly and Company, Erl Wood Manor, Windlesham, United Kingdom 3. Eli Lilly and Company, Indianapolis, IN, United States of America 4. Barts and the London Genome Centre, John Vane Science Centre, Barts and the London School of Medicine and Dentistry, London, United Kingdom 5. NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, United Kingdom 6. Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, United Kingdom 7. Maurice Wohl Clinical Neuroscience Institute James Black Centre Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom * Corresponding author:
[email protected], SGDP Centre, IoPPN, Box PO 80,De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom Abstract Rare heterozygous coding variants in the Triggering Receptor Expressed in Myeloid cells 2 (TREM2) gene, conferring increased risk of 1 bioRxiv preprint doi: https://doi.org/10.1101/248757; this version posted January 17, 2018.