Deregulation of Transcriptional Enhancers in Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Implications of Zonal Architecture on Differential Gene Expression
www.nature.com/scientificreports OPEN Implications of zonal architecture on diferential gene expression profling and altered pathway expressions in mandibular condylar cartilage Aisha M. Basudan1*, Mohammad Azhar Aziz2 & Yanqi Yang3 Mandibular condylar cartilage (MCC) is a multi-zonal heterogeneous fbrocartilage containing diferent types of cells, but the factors/mechanisms governing the phenotypic transition across the zones have not been fully understood. The reliability of molecular studies heavily rely on the procurement of pure cell populations from the heterogeneous tissue. We used a combined laser-capture microdissection and microarray analysis approach which allowed identifcation of diferential zone-specifc gene expression profling and altered pathways in the MCC of 5-week-old rats. The bioinformatics analysis demonstrated that the MCC cells clearly exhibited distinguishable phenotypes from the articular chondrocytes. Additionally, a set of genes has been determined as potential markers to identify each MCC zone individually; Crab1 gene showed the highest enrichment while Clec3a was the most downregulated gene at the superfcial layer, which consists of fbrous (FZ) and proliferative zones (PZ). Ingenuity Pathway Analysis revealed numerous altered signaling pathways; Leukocyte extravasation signaling pathway was predicted to be activated at all MCC zones, in particular mature and hypertrophic chondrocytes zones (MZ&HZ), when compared with femoral condylar cartilage (FCC). Whereas Superpathway of Cholesterol Biosynthesis showed predicted activation in both FZ and PZ as compared with deep MCC zones and FCC. Determining novel zone-specifc diferences of large group of potential genes, upstream regulators and pathways in healthy MCC would improve our understanding of molecular mechanisms on regional (zonal) basis, and provide new insights for future therapeutic strategies. -
Genome-Wide Profiling of Active Enhancers in Colorectal Cancer
Genome-wide proling of active enhancers in colorectal cancer Min Wu ( [email protected] ) Wuhan University https://orcid.org/0000-0003-1372-4764 Qinglan Li Wuhan University Xiang Lin Wuhan University Ya-Li Yu Zhongnan Hospital, Wuhan University Lin Chen Wuhan University Qi-Xin Hu Wuhan University Meng Chen Zhongnan Hospital, Wuhan University Nan Cao Zhongnan Hospital, Wuhan University Chen Zhao Wuhan University Chen-Yu Wang Wuhan University Cheng-Wei Huang Wuhan University Lian-Yun Li Wuhan University Mei Ye Zhongnan Hospital, Wuhan University https://orcid.org/0000-0002-9393-3680 Article Keywords: Colorectal cancer, H3K27ac, Epigenetics, Enhancer, Transcription factors Posted Date: December 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-119156/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Genome-wide profiling of active enhancers in colorectal cancer Qing-Lan Li1, #, Xiang Lin1, #, Ya-Li Yu2, #, Lin Chen1, #, Qi-Xin Hu1, Meng Chen2, Nan Cao2, Chen Zhao1, Chen-Yu Wang1, Cheng-Wei Huang1, Lian-Yun Li1, Mei Ye2,*, Min Wu1,* 1 Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China 2Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, China #Equal contribution to the study. Contact information *Correspondence should be addressed to Dr. Min Wu, Email: [email protected], Tel: 86-27-68756620, or Dr. -
Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7 -
Recognition of Histone Acetylation by the GAS41 YEATS Domain Promotes H2A.Z Deposition in Non-Small Cell Lung Cancer
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer Chih-Chao Hsu,1,2,8 Jiejun Shi,3,8 Chao Yuan,1,2,7,8 Dan Zhao,4,5,8 Shiming Jiang,1,2 Jie Lyu,3 Xiaolu Wang,1,2 Haitao Li,4,5 Hong Wen,1,2 Wei Li,3 and Xiaobing Shi1,2,6 1Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; 2Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; 3Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA; 4MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; 5Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China; 6Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA Histone acetylation is associated with active transcription in eukaryotic cells. It helps to open up the chromatin by neutralizing the positive charge of histone lysine residues and providing binding platforms for “reader” proteins. The bromodomain (BRD) has long been thought to be the sole protein module that recognizes acetylated histones. Re- cently, we identified the YEATS domain of AF9 (ALL1 fused gene from chromosome 9) as a novel acetyl-lysine- binding module and showed that the ENL (eleven-nineteen leukemia) YEATS domain is an essential acetyl-histone reader in acute myeloid leukemias. -
SUPPLEMENTARY MATERIAL Bone Morphogenetic Protein 4 Promotes
www.intjdevbiol.com doi: 10.1387/ijdb.160040mk SUPPLEMENTARY MATERIAL corresponding to: Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells SUMIYO MIMURA, MIKA SUGA, KAORI OKADA, MASAKI KINEHARA, HIROKI NIKAWA and MIHO K. FURUE* *Address correspondence to: Miho Kusuda Furue. Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan. Tel: 81-72-641-9819. Fax: 81-72-641-9812. E-mail: [email protected] Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.160040mk TABLE S1 PRIMER LIST FOR QRT-PCR Gene forward reverse AP2α AATTTCTCAACCGACAACATT ATCTGTTTTGTAGCCAGGAGC CDX2 CTGGAGCTGGAGAAGGAGTTTC ATTTTAACCTGCCTCTCAGAGAGC DLX1 AGTTTGCAGTTGCAGGCTTT CCCTGCTTCATCAGCTTCTT FOXD3 CAGCGGTTCGGCGGGAGG TGAGTGAGAGGTTGTGGCGGATG GAPDH CAAAGTTGTCATGGATGACC CCATGGAGAAGGCTGGGG MSX1 GGATCAGACTTCGGAGAGTGAACT GCCTTCCCTTTAACCCTCACA NANOG TGAACCTCAGCTACAAACAG TGGTGGTAGGAAGAGTAAAG OCT4 GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAA PAX3 TTGCAATGGCCTCTCAC AGGGGAGAGCGCGTAATC PAX6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT p75 TCATCCCTGTCTATTGCTCCA TGTTCTGCTTGCAGCTGTTC SOX9 AATGGAGCAGCGAAATCAAC CAGAGAGATTTAGCACACTGATC SOX10 GACCAGTACCCGCACCTG CGCTTGTCACTTTCGTTCAG Suppl. Fig. S1. Comparison of the gene expression profiles of the ES cells and the cells induced by NC and NC-B condition. Scatter plots compares the normalized expression of every gene on the array (refer to Table S3). The central line -
Transcriptional Regulatory Networks in Neocortical Development
Review From trans to cis: transcriptional regulatory networks in neocortical development 1 1 1,2 Mikihito Shibata , Forrest O. Gulden , and Nenad Sestan 1 Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA 2 Department of Psychiatry and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA Transcriptional mechanisms mediated by the binding of tions among TFs and CREs form the central core of tran- transcription factors (TFs) to cis-acting regulatory ele- scriptional regulatory networks (TRNs) (Box 1) [1]. ments (CREs) in DNA play crucial roles in directing gene Interactions between TFs and CREs are complex, dynam- expression. While TFs have been extensively studied, ic,andmodulatedbyvariousepigeneticprocesses[12].While less effort has gone towards the identification and func- individual CREs may be regulated by the competitive or tional characterization of CREs and associated epigenet- cooperative binding of many TFs, multiple CREs may also ic modulation. However, owing to methodological and confer transcriptional control over the expression of any analytical advances, more comprehensive studies of single gene [12]. Furthermore, TFs and CREs regulate regulatory elements and mechanisms are now possible. transcription together with their cognate transcriptional We summarize recent progress in integrative analyses of cofactors, chromatin regulators, epigenetic modifications, these regulatory components in the development of the RNA-binding proteins, and non-coding RNAs [2,13]. This cerebral neocortex, the part of the brain involved in combinatorial and multi-level transcriptional regulation cognition and complex behavior. These studies are greatly increases the complexity of gene expression regula- uncovering not only the underlying transcriptional reg- tion, facilitating the unique spatio-temporal patterns nec- ulatory networks, but also how these networks are essary for tissue development and function [3]. -
H3K27 Acetylation and Gene Expression Analysis Reveals Differences in Placental Chromatin Activity in Fetal Growth Restriction N
Paauw et al. Clinical Epigenetics (2018) 10:85 https://doi.org/10.1186/s13148-018-0508-x RESEARCH Open Access H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction N. D. Paauw1,6*, A. T. Lely1, J. A. Joles2, A. Franx1, P. G. Nikkels3, M. Mokry4 and B. B. van Rijn1,5,6* Abstract Background: Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP- seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Results: Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. -
Investigation of KRAS Dependency Bypass and Functional Characterization of All Possible KRAS Missense Variants
Investigation of KRAS Dependency Bypass and Functional Characterization of All Possible KRAS Missense Variants The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050098 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Investigation of KRAS Dependency Bypass and Functional Characterization of All Possible KRAS Missense Variants A dissertation presented by Seav Huong Ly to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biological and Biomedical Sciences Harvard University Cambridge, Massachusetts April 2018 © 2018 Seav Huong Ly All rights reserved. Dissertation Advisor: William C. Hahn Seav Huong Ly Investigation of KRAS Dependency Bypass and Functional Characterization of All Possible KRAS Missense Variants Abstract The importance of oncogenic KRAS in human cancers have prompted intense efforts to target KRAS and its effectors. To anticipate the development of resistance to these strategies, we previously performed a genome-scale expression screen to identify genes that bypass KRAS oncogenic dependency. Here we test thirty-seven genes that scored over five standard deviations and find that overexpression of LIM homeobox 9 (LHX9), a transcription factor involved in embryonic development, robustly rescues the suppression of KRAS in vitro and xenograft models. Furthermore, LHX9 substantially decreases cell sensitivity to KRASG12C and MEK1/2 inhibitors in KRAS-dependent cells. -
Up-Regulation of Homeodomain Genes, DLX1 and DLX2, by FLT3 Signaling
SUPPLEMENTARY APPENDIX Up-regulation of homeodomain genes, DLX1 and DLX2, by FLT3 signaling Julia Starkova,1,3 Sharvari Gadgil,2 Yi Hua Qiu,4 Nianxiang Zhang,4 Ivana Hermanova,3 Steven M. Kornblau,4 and Harry A. Drabkin1,3 1Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA; 2Division of Medical Oncology, University of Colorado Health Sciences Center, Aurora, CO, USA; 3Department of Paediatric Haematology/Oncology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic, and 4Department of Stem Cell Transplantation and Cellular Therapy, Section of Molecular Hematology and Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA Citation: Starkova J, Gadgil S, Hua Qiu Y, Zhang N, Hermanova I, Kornblau SM, and Drabkin HA. Up-regulation of homeodomain genes, DLX1 and DLX2, by FLT3 signaling. Haematologica 2011;96(6):820-828. doi:10.3324/haematol.2010.031179 Online Supplementary Figure S1. Specificity and non-toxicity of PKC412 in MV4;11 cells (A) Results from flow cytometry analysis are shown as a percentage of cells in subG1, G1-G0, S and G2-M phases of the cell cycle after 0, 2, 5 and 24 h treatment of MV4;11 cells with PKC412. (B) Graph shows fold-change of DLX1 gene expression in MV4;11 cells after imatinib treatment. A B Online Supplementary Figure S2. AP1-binding site in the DLX1 promoter. Online Supplementary Figure S3. Diagram of the described interaction between FLT3 and DLX1. Online Supplementary Table S1. Primes sequences. Online Supplementary Table S2. DDCt values of normalized HOX gene expression in MV4; II cells after PKC412 treatment. -
Transcriptional and Post-Transcriptional Regulation of ATP-Binding Cassette Transporter Expression
Transcriptional and Post-transcriptional Regulation of ATP-binding Cassette Transporter Expression by Aparna Chhibber DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Pharmaceutical Sciences and Pbarmacogenomies in the Copyright 2014 by Aparna Chhibber ii Acknowledgements First and foremost, I would like to thank my advisor, Dr. Deanna Kroetz. More than just a research advisor, Deanna has clearly made it a priority to guide her students to become better scientists, and I am grateful for the countless hours she has spent editing papers, developing presentations, discussing research, and so much more. I would not have made it this far without her support and guidance. My thesis committee has provided valuable advice through the years. Dr. Nadav Ahituv in particular has been a source of support from my first year in the graduate program as my academic advisor, qualifying exam committee chair, and finally thesis committee member. Dr. Kathy Giacomini graciously stepped in as a member of my thesis committee in my 3rd year, and Dr. Steven Brenner provided valuable input as thesis committee member in my 2nd year. My labmates over the past five years have been incredible colleagues and friends. Dr. Svetlana Markova first welcomed me into the lab and taught me numerous laboratory techniques, and has always been willing to act as a sounding board. Michael Martin has been my partner-in-crime in the lab from the beginning, and has made my days in lab fly by. Dr. Yingmei Lui has made the lab run smoothly, and has always been willing to jump in to help me at a moment’s notice. -
(12) Patent Application Publication (10) Pub. No.: US 2017/0145518 A1 Hessels Et Al
US 20170145518A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0145518 A1 Hessels et al. (43) Pub. Date: May 25, 2017 (54) METHOD FOR PREDICTING AND (52) U.S. Cl. TREATING CLINICALLY SIGNIFICANT CPC ..... CI2O 1/6886 (2013.01); C12O 2600/158 PROSTATE CANCER (2013.01) Applicant: MDxHealth Research B.V., Nijmegen (57) ABSTRACT (71) The present invention relates to methods, devices, combi (NL) nations, kits, and systems for predicting and treating clini cally significant prostate cancer in a urine sample of an (72) Inventors: Daphne Hessels, Nijmegen (NL); individual Suspected of Suffering from prostate cancer based Franciscus Petrus Smit, Nijmegen on expression analysis of normalised prostate tumour mark (NL); Jack A. Schalken, Nijmegen ers. The present methods, devices, combinations, kits, and (NL) systems are especially suitable for predicting and treating prostate cancer with a Gleason score of seven or more in (73) Assignee: MDxHealth Research B.V., Nijmegen individuals with a serum prostate-specific antigen (SPSA) (NL) level lower than 15 ng/ml. Specifically, the present invention relates to methods, devices, combinations, kits, and systems for predicting and treating clinically significant prostate (21) Appl. No.: 15/357,342 cancer in a urine sample of an individual Suspected of Suffering from prostate cancer, the method comprises the (22) Filed: Nov. 21, 2016 steps of: a) determining mRNA expression levels of one or more of the genes DLX1, HOXC6, TDRD1 and KLK3 in a Related U.S. Application Data urine sample of said individual; b) normalizing the mRNA expression levels of one ore more of DLX1, HOXC6, and (60) Provisional application No. -
Dynamics of Transcription-Dependent H3k36me3 Marking by the SETD2:IWS1:SPT6 Ternary Complex
bioRxiv preprint doi: https://doi.org/10.1101/636084; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dynamics of transcription-dependent H3K36me3 marking by the SETD2:IWS1:SPT6 ternary complex Katerina Cermakova1, Eric A. Smith1, Vaclav Veverka2, H. Courtney Hodges1,3,4,* 1 Department of Molecular & Cellular Biology, Center for Precision Environmental Health, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA 2 Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic 3 Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA 4 Department of Bioengineering, Rice University, Houston, TX, 77005, USA * Lead contact; Correspondence to: [email protected] Abstract The genome-wide distribution of H3K36me3 is maintained SETD2 contributes to gene expression by marking gene through various mechanisms. In human cells, H3K36 is bodies with H3K36me3, which is thought to assist in the mono- and di-methylated by eight distinct histone concentration of transcription machinery at the small portion methyltransferases; however, the predominant writer of the of the coding genome. Despite extensive genome-wide data trimethyl mark on H3K36 is SETD21,11,12. Interestingly, revealing the precise localization of H3K36me3 over gene SETD2 is a major tumor suppressor in clear cell renal cell bodies, the physical basis for the accumulation, carcinoma13, breast cancer14, bladder cancer15, and acute maintenance, and sharp borders of H3K36me3 over these lymphoblastic leukemias16–18. In these settings, mutations sites remains rudimentary.