Our Stakeholders: the Core of Our Sustainable Development Strategy 2007 Sustainability Report About This Report (3.1, 3.2, 3.3, 3.5, 3.6, 3.7, 3.8, 3.9, 3.13)

Total Page:16

File Type:pdf, Size:1020Kb

Our Stakeholders: the Core of Our Sustainable Development Strategy 2007 Sustainability Report About This Report (3.1, 3.2, 3.3, 3.5, 3.6, 3.7, 3.8, 3.9, 3.13) OUR STAKEHOLDERS: THE CORE OF OUR SUSTAINABLE DEVELOPMENT STRATEGY 2007 SUSTAINABILITY REPORT ABOUT THIS REPORT (3.1, 3.2, 3.3, 3.5, 3.6, 3.7, 3.8, 3.9, 3.13) With the presentation of our seventh Annual Report on Sustainable Development, we reiterate our commit- ment to transparency and accountability to our stakehold- ers in communicating Peñoles’s social, environmental and economic performance during 2007. This report discusses the policies, programs and economic, social and environ- mental results of our activities in 2007, and gives an ac- count of our performance via key indicators. For the fourth consecutive year, our report has been pre- pared on the basis of the Global Reporting Initiative (GRI) guidelines, and for the second time, in accordance with Ver- OUR STAKEHOLDERS: sion G3 and its Protocols and Indicators, including those re- THE CORE OF OUR SUSTAINABLE lated to the Supplement for the Mining and Metallurgical DEVELOPMENT STRATEGY Sector of the International Council for Mining and Minerals (ICMM), version GRI 2002. This report is also based on the principles of the United Nations Global Compact and the Ex- Peñoles celebrated its 120th year in 2007. Sustainable develop- tractive Industry Transparency Initiatives (EITI). ment has been and continues to be a key factor in our busi- ness strategy. From economic, social and environmental equi- The contents were determined on the basis of three crite- librium, to the assimilation of best practices from the modern ria: the expectations of our stakeholders, through an ex- mining industry, we believe that our stakeholders should be tensive feedback process; adhering to best practices based the core of our sustainability strategy. Lastly, there are those on international standards such as Global Reporting Initiative who day after day, generation after generation, have enabled (GRI), International Council on Mining and Metals (ICMM) and the us to become what we are today: a 120 year-old sustain- United Nations Global Compact principles; and monitoring the able company. For these reasons, our enduring goal and com- economic, social and environmental performance of Pe- mitment is to promote the welfare of our shareholders, our ñoles. It should be noted that the information contained in clients, our employees, our suppliers and the communities this report is limited to the core businesses and operations where we operate. of Peñoles in Mexico—Exploration, Mining and Chemicals, and Metals—although in some sections reference is made to other support areas, particularly the corporate offices and associated companies. CONTENTS (3.12) To give more substance and transparency to our informa- MESSAGE FROM THE CEO 2 tion, for the third consecutive year we submitted our report PEÑOLES AND SUSTAINABLE DEVELOPMENT 5 for verification by PricewaterhouseCoopers (PwC), which ENVIRONMENTAL PERFORMANCE FOR conducted a review in accordance with applicable standards. OUR STAKEHOLDERS 21 This report may be found in electronic format on our web- SHAREHOLDERS 51 site at: www.penoles.com.mx. SUPPLIERS 59 CLIENTS 65 Note: All figures are expressed in Mexican pesos unless EMPLOYEES 73 otherwise indicated. COMMUNITY 87 AWARDS AND RECOGNITIONS 105 A REPORT OF THE INDEPENDENT AUDITORS 106 NOTES TO THE FOURTH FINANCIAL STATEMENT 109 GLOSSARY 114 Peñoles conducted a self-assessment of this report and obtained INDICATORS 116 an A+ level according to the criteria defined in the Global Reporting Initiative (GRI-G3). Peñoles is part of Grupo BAL, a privately held diversified group of independent Mexican companies that includes:Grupo Palacio de Hierro (department stores); Grupo Nacional Provincial (insurance); Profuturo GNP (individual retirement funds); Valores Mexicanos – Casa de Bolsa (financial services); Crédito Afianzador (bonding); and agribusinesses. 2007 SUSTAINABILITY REPORT. OUR STAKEHOLDERS: THE CORE OF OUR SUSTAINABLE DEVELOPMENT STRATEGY Our sustainability is 120 years old. Original bond dated October 24, 1887 with a value of 100 pesos 1 MESSAGE FROM THE CEO MESSAGE FROM THE CEO (1.1, 1.2) SUSTAINABLE DEVELOPMENT AS A KEY FACTOR OF OUR BUSINESS STRATEGY IS STRENGTHENED BY MEETING OUR OBLIGATIONS WITH STAKEHOLDERS AND THE CONTINUOUS IMPROVEMENT OF OUR OPERATIONS. In 2007, we strengthened communications with our stakeholders, who in good measure commit us to be who we are today: a company that has proved its sustainability and watches over the interests of its shareholders, clients, employees, suppliers and com- munities where it operates. For us, to add value is to contribute to a healthy and safe environment—through more efficient process- es—and to identify and support the priorities of the communities where we have presence. We believe that Sustainable Development enables us to think and act in terms of present and future generations, to generate value by better responding to their needs, and to contribute to environmental balance through care and respect for the environ- ment. As such, our experience and actions are aimed at finding and assimilating an approach based on the best practices and trends in the global mining and metallurgical sector. Through this report, we reiterate our commitment to sustainable development, as well as to the United Nations Global Compact, in keeping with its policy on Communication on Progress. To refine this approach and act on priority areas, conscious of the percep- tion that our stakeholders have of us and to be able to choose the best path towards sustainability—in this report we want to engage in an exercise of re- 2 2007 SUSTAINABILITY REPORT. OUR STAKEHOLDERS: THE CORE OF OUR SUSTAINABLE DEVELOPMENT STRATEGY flection, self-criticism and feedback on our activities that, in We further worked on programs to eliminate unsafe con- turn, will determine the new actions and work plans that ditions and in training our employees to prevent unsafe will strengthen sustainable development as a key factor in practices. Notwithstanding the efforts made, we mourned our strategy. six fatalities due to unsafe practices, in which four of our employees and two contractors lost their lives; we extend In 2007, we continued to work to provide evidence that our most sincere condolences to their families, colleagues would advocate a change in the erroneous and distorted im- and communities in which they lived. age that exists about the actual effect of mining activities on the environment, and the safety and health of the people We continued to participate actively in a number of na- who work in it. To that end, we maintained the emphasis on tional and international discussion and analytical forums, caring for health, safety and the environment through pro- with the aim of exchanging best practices and learning grams and campaigns, the application of clean production first-hand about environmental trends and regulations. technologies and the responsible handling of minerals and metals, with the objective of balancing economic, social and In terms of the efficient use of resources, we extended our environmental performance. efforts to conserve water and energy in all their forms. We reduced the proportion of first-use water in our pro- We continue to center our environmental efforts on handling, cesses and rationalized the consumption of energy in all reducing and appropriately disposing of wastes; controlling at- its forms; we continuously seek sources of clean energy mospheric emissions; optimizing the use of all our inputs in that do not generate greenhouse gases, and we continue general, and of water in particular; industrial hygiene; accident to voluntarily participate in the Mexico Greenhouse Gases prevention; and emergency preparedness. Program (GEI Mexico). Non-renewable resources companies depend on finding new We extend our deepest appreciation to Alberto Baillères, ore bodies, as well as developing and executing projects that Chairman of the Board of Directors of Industrias Peñoles, leverage them appropriately. For that reason, for both the and to our Board of Directors, Executive Committee and our design of new projects and the evaluation of current opera- employees for their valuable contributions to sustainable de- tions, we conduct monitoring and risk studies that simulate velopment, which is bringing us closer to the expectations adverse conditions—social or environmental—that might of our shareholders, clients, employees, suppliers and com- occur and seek to implant the best technologies to mitigate munities where we are present, reiterating our openness to the effects. dialogue and the sharing of ideas that will contribute to the improved performance of our business. Another challenge facing our industry is the shortage of professionals in the various branches of earth sciences, along with the aging of the current work force. To improve this situation, Peñoles has joined efforts with a number of educational institutions and promotes research and devel- opment projects. In this context, the notable events in 2007 Jaime Lomelín were the inauguration of the Peñoles Module—donated to Chief Executive Officer the Autonomous University of Fresnillo, Zacatecas—support for the restoration of the Earth Sciences Academic Unit at the Autonomous University of Zacatecas, and the new Mu- seum of Metals in Torreón, Coahuila, to promote the impor- tance of metals in the development of civilization. 3 4 2007 SUSTAINABILITY REPORT. OUR STAKEHOLDERS: THE CORE OF OUR SUSTAINABLE DEVELOPMENT STRATEGY PEÑOLES AND SUSTAINABLE DEVELOPMENT THE CORE OF OUR ACTIONS IS FOCUSED ON THE INTEGRATION
Recommended publications
  • Chihuahua Norte
    CHIHUAHUA NORTE ENGLISH VERSION Metropolitan Mission San Ignacio Cathedral. de Loyola, Cusárare. Chihuahua Other highlights include the Gov- Creel O ernment Palace, which also houses RE The state capital, founded in the Hidalgo Museum; the Munici- Designated a “magical town” by the inosa– 1709, has numerous attractions. pal Palace; the Museum of the Mexican Tourism Ministry, it was first P Visit its religious monuments, Mexican Revolution, also known founded in 1907 as a train stop. It is DO ES R A such as: the Metropolitan Cathe- as Villa’s House or Quinta Luz; the regarded as the gateway to the in- C O RE Juárez House Museum of Loyalty M / RI dral; the Church of Santa Rita, digenous Tarahumara zone and to T the city’s patron saint; the Church to the Republic; the Quinta Ga- the famed Copper Canyon. Visit the inosa– of San Francisco, one of the city’s meros University Culture Center, P Tarahumara Culture Folk Art Mu- PHOTO: © CP PHOTO: a neoclassical style building with DO ES oldest, and the Church of El Sa- R seum and the Church of Cristo Rey. A grado Corazón de Jesús. Rococo and Art Nouveau details, C Nearby is the town of Cusárare and M / RI T from there Cusárare Falls and the Urique Madera Mission and Museum of San Igna- cio de Loyola. One of the oldest towns in the Tara- It is home to Peñitas Dam, La Man- PHOTO: © CP PHOTO: humara region. Buy local folk art and ga Ranch as well as the Campo O Cerocahui sample tesqüino (corn beer).
    [Show full text]
  • Chemical Engineering at UCSB 2020 Newsletter a LETTER from the CHAIR Dear Friends, All Is Normally a Wonderful Time of Anticipation in the Department
    Chemical Engineering at UCSB 2020 Newsletter A LETTER FROM THE CHAIR Dear Friends, all is normally a wonderful time of anticipation in the department. Research is in high gear while we have had Fjust enough time to wish one graduating class well in their future careers and begin to look forward to and plan for the arrival of a new generation of undergraduate and graduate students. The view from Engineering II is normally spectacular and May Gray and June Gloom make way for blue skies and white water below the cliffs. For all of us, 2020 has been a year of unprecedented and at times unsettling change, but the anticipatory feeling of Fall is the same. We are starting to see the opportunities amidst the challenges and renew our commitment to rising above the storm for the betterment of our society. I cannot say enough about the remarkable ways in which our faculty, staff, and students have been a bright light this year. As we made an abrupt shift to remote teaching and shut down of experimental research laboratories, creative, innovative solutions emerged from every corner. A core group of faculty taught a series of crash courses in online teaching in early March just before an abrupt shift to remote instruction at the end of winter quarter. We held similar trainings for spring quarter TAs, who later helped us discover that online submission and grading of work is remarkably easier than the usual way. The faculty have now spent this summer realizing that the ability to slow us down and replay us (via recorded lectures) led to greater learning for some students while the loss of personal connection was hard on all of us.
    [Show full text]
  • US Geological Survey Karst Interest Group Proceedings, Fayetteville
    Prepared In Cooperation with the Department of Geosciences at the University of Arkansas U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26-29, 2011 Scientific Investigations Report 2011-5031 U.S. Department of the Interior U.S. Geological Survey Prepared in Cooperation with the Department of Geosciences at the University of Arkansas U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26–29, 2011 Edited By Eve L. Kuniansky Scientific Investigations Report 2011–5031 U.S. Department of the Interior U.S. Geological Survey i U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia 2011 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Kuniansky,E.L., 2011, U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26-29, 2011, U.S. Geological Survey Scientific Investigations Report 2011-5031, 212p. Online copies of the proceedings area available at: http://water.usgs.gov/ogw/karst/ Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • Review on the Formation and Geochemistry of the Mega Crystals of Naica, México
    EGU2020-20593 https://doi.org/10.5194/egusphere-egu2020-20593 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Review on the formation and geochemistry of the mega crystals of Naica, México. Ana Laura Gutiérrez Gutiérrez, Maria de Jesus Puy y Alquiza, and Pooja Kshirsagar Universidad de Guanajuato, Division de Ingenierias, Departamento de Ingenierías en Minas, Metalurgia y Geología., Guanajuato, México ([email protected])) In the state of Chihuahua, Mexico, a mine located in Naica is one of the most important Pb and Zn deposits in the world. The region manifests several caves with varities of gypsum crystals (Ca4 H2O) known as selenite (the largest in the world so far, specimens up to eleven meters in length and one meter in thickness). The present abstract discusses the formation mechanism of these gigantic crystals. The review is based on the interpretations made by early workers (which includes one doctorate thesis and two Bulletins). The interpretations were made on 19 samples of anhydrites that were collected at a depth of -345 meters. At this depth the early workers also found microscopically alternating dark dolomite and light bands of anhydrite. The dolomite-anhydrite association is generally associated with mineral recrystallization events. With the geological review carried out, two sources of sulfates were identified: one is La Virgen Formation and the second in the stratiform anhydrite of the Aurora Formation. Formation of hydrothermal anhydrite during the last stage of mineralization has been attributed to the formation of selenite mega crystals due to its dissolution.
    [Show full text]
  • Naica Mine M E X I
    Cave of the Crystals grade 5 Revise / Sketch NEW ARIZONA MEXICO magine yourself one thousand feet underground, drilling a new tunnel in an old zinc and lead mine. I TEXAS Suddenly your drill bursts through the MEXICO rock wall. What you see takes your CHIHUAHUA breath away. Huge crystals fill a cave SONORA from end to end, floor to ceiling. They Chihuahua shimmer like moonlight. But before you can explore the cave, you are Naica Mine hit with air as hot as a blast from a furnace. Two mineworkers, Juan and Pedro Sanchez, discovered this amazing “Cave of the Crystals” in 2000 at the Naica Mine in the state of Chihuahua, The Cave of the Crystals is located in Mexico. They didn’t stay long, for the intenseSue heat Carlson 609 971 6828 the desert of northern drove them away. Mexico. The mine owners put an iron door at the mouth of the cave. Scientists came to study the cave, but because of the heat, they could stay inside for only a few minutes at a time. 28 5_RNLESE865836_U6SA27.indd 28 5/10/2012 6:28:25 AM Inside Mexico’s Cave of the Crystals Cave of the Crystals grade 5 Revise / Sketch Scientists found the crystals were made of selenite gypsum, a translucent, light-colored mineral. The cave had just the NEW right combination of minerals, water, and ARIZONA MEXICO temperature to grow the crystals. The cave had once been filled with water, and heat from the earth’s core kept the water at TEXAS MEXICO about 136 degrees Fahrenheit.
    [Show full text]
  • Evolution of the Astonishing Naica Giant Crystals in Chihuahua, Mexico
    minerals Review Evolution of the Astonishing Naica Giant Crystals in Chihuahua, Mexico Iván Jalil Antón Carreño-Márquez 1 , Isaí Castillo-Sandoval 2, Bernardo Enrique Pérez-Cázares 3, Luis Edmundo Fuentes-Cobas 2 , Hilda Esperanza Esparza-Ponce 2 , Esperanza Menéndez-Méndez 4, María Elena Fuentes-Montero 3 and María Elena Montero-Cabrera 2,* 1 Department of Engineering, Universidad La Salle Chihuahua, Chihuahua 31625, Mexico; [email protected] 2 Department of Environment and Energy, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico; [email protected] (I.C.-S.); [email protected] (L.E.F.-C.); [email protected] (H.E.E.-P.) 3 Department of Computational Chemistry, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico; [email protected] (B.E.P.-C.); [email protected] (M.E.F.-M.) 4 Department Physicochemical Assays, Instituto Eduardo Torroja de Ciencias de la Construcción, 28033 Madrid, Spain; [email protected] * Correspondence: [email protected] Abstract: Calcium sulfate (CaSO4) is one of the most common evaporites found in the earth’s crust. It can be found as four main variations: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), soluble Citation: Carreño-Márquez, I.J.A.; anhydrite, and insoluble anhydrite (CaSO4), being the key difference the hydration state of the Castillo-Sandoval, I.; Pérez-Cázares, sulfate mineral. Naica giant crystals’ growth starts from a supersaturated solution in a delicate B.E.; Fuentes-Cobas, L.E.; Esparza- thermodynamic balance close to equilibrium, where gypsum can form nanocrystals able to grow Ponce, H.E.; Menéndez-Méndez, E.; up to 11–12 m long.
    [Show full text]
  • Platy Galena from the Viburnum Trend, Southeast Missouri
    Missouri University of Science and Technology Scholars' Mine Geosciences and Geological and Petroleum Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works Engineering 01 Mar 2018 Platy Galena from the Viburnum Trend, Southeast Missouri: Character, Mine Distribution, Paragenetic Position, Trace Element Content, Nature of Twinning, and Conditions of Formation Richard D. Hagni Missouri University of Science and Technology, [email protected] Follow this and additional works at: https://scholarsmine.mst.edu/geosci_geo_peteng_facwork Part of the Geology Commons Recommended Citation R. D. Hagni, "Platy Galena from the Viburnum Trend, Southeast Missouri: Character, Mine Distribution, Paragenetic Position, Trace Element Content, Nature of Twinning, and Conditions of Formation," Minerals, vol. 8, no. 3, MDPI, Mar 2018. The definitive version is available at https://doi.org/10.3390/min8030093 This work is licensed under a Creative Commons Attribution 4.0 License. This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. minerals Article Platy Galena from the Viburnum Trend, Southeast Missouri: Character, Mine Distribution, Paragenetic Position, Trace Element Content, Nature of Twinning, and Conditions of Formation Richard D. Hagni Department of Geological Sciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA; [email protected] Received: 15 December 2017; Accepted: 23 February 2018; Published: 2 March 2018 Abstract: The Viburnum Trend of southeast Missouri is one of the world’s largest producers of lead.
    [Show full text]
  • Are the Naica Giant Crystals Deteriorating Because of Human Action? M
    PROCEEDINGS PAPER Are the Naica giant crystals deteriorating because of human action? M. E. Montero-Cabrera ,1,a) I. J. A. Carreño-Márquez,1 I. Castillo-Sandoval,1 B. Pérez-Cázares,2 L. E. Fuentes-Cobas,1 H. E. Esparza-Ponce,1 E. Menéndez-Méndez,3 M. E. Fuentes-Montero,2 H. Castillo-Michel,4 D. Eichert,5 R. Loredo-Portales,6 J. Canche-Tello,1 M. Y. Luna-Porres,1 G. González-Sánchez,1 D. Burciaga-Valencia,1 C. Caraveo-Castro,1 G. Gómez-Méndez,2 L. Muñoz-Castellanos,2 and I. Reyes-Cortes2 1Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua 31136, Mexico 2Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico 3Instituto Eduardo Torroja de Ciencias de la Construcción, Madrid 28033, Spain 4European Synchrotron Radiation Facility, Grenoble Cedex 9 38043, France 5Elettra Sincrotrone Trieste S.C.p.A., AREA Science Park, Basovizza (Trieste) 34149, Italy 6Universidad Nacional Autónoma de México, Hermosillo 83000, Mexico (Received 11 November 2019; accepted 14 April 2020) The giant gypsum crystals of Naica cave have fascinated scientists since their discovery in 2000. Human activity has changed the microclimate inside the cave, making scientists wonder about the potential environmental impact on the crystals. Over the last 9 years, we have studied approximately 70 samples. This paper reports on the detailed chemical–structural characterization of the impurities present at the surface of these crystals and the experimental simulations of their potential deterioration patterns. Selected samples were studied by petrography, optical and electronic microscopy, and lab- oratory X-ray diffraction. 2D grazing incidence X-ray diffraction, X-ray μ-fluorescence, and X-ray μ-absorption near-edge structure were used to identify the impurities and their associated phases.
    [Show full text]
  • Recent Advances in Karst Research: from Theory to fieldwork and Applications
    Recent advances in karst research: from theory to fieldwork and applications MARIO PARISE1,2*, FRANCI GABROVSEK3, GEORG KAUFMANN4 & NATASA RAVBAR3 1Department of Earth and Environmental Sciences, University Aldo Moro, Bari, Italy 2National Research Council, IRPI, Bari, Italy 3Karst Research Institute ZRC SAZU, Titov trg 2, Postojna, Slovenia 4Institute of Geological Sciences, Geophysics Section, Freie Universität Berlin, Germany *Correspondence: [email protected] Abstract: Karst landscapes and karst aquifers, which are composed of a variety of soluble rocks such as salt, gypsum, anhydrite, limestone, dolomite and quartzite, are fascinating areas of study. As karst rocks are abundant on the Earth’s surface, the fast evolution of karst landscapes and the rapid flow of water through karst aquifers present challenges from a number of different perspec- tives. This collection of 25 papers deals with different aspects of these challenges, including karst geology, geomorphology and speleogenesis, karst hydrogeology, karst modelling, and karst hazards and management. Together these papers provide a state-of-the-art review of the current challenges and solutions in describing karst from a scientific perspective. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Karst describes the slow work of dissolution exerted effective water resource management is especially by water, enriched with carbon dioxide, on soluble crucial, such as England, northern and southern rocks such as carbonates, evaporites and halite France, parts of Germany, central Italy, eastern (White 1988; Ford & Williams 2007; Palmer Spain and large parts of the Mediterranean. On 2007). Morphological effects at the surface are repre- other continents, such as in the Middle East and Cen- sented by a variety of typical landforms, the most tral Asia, karst terrains occupy c.
    [Show full text]
  • Platy Galena from the Viburnum Trend, Southeast Missouri: Character, Mine Distribution, Paragenetic Position, Trace Element Cont
    minerals Article Platy Galena from the Viburnum Trend, Southeast Missouri: Character, Mine Distribution, Paragenetic Position, Trace Element Content, Nature of Twinning, and Conditions of Formation Richard D. Hagni Department of Geological Sciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA; [email protected] Received: 15 December 2017; Accepted: 23 February 2018; Published: 2 March 2018 Abstract: The Viburnum Trend of southeast Missouri is one of the world’s largest producers of lead. The lead occurs as galena, predominantly in two crystallographic forms, octahedrons and cubes. Many studies have shown that octahedral galena is paragentically early, the more abundant of the two crystal forms, and is commonly modified in the cube. Those studies also have shown that the cubic form is paragenetically later, less abundant than the octahedrons, and may exhibit minor octahedral modifications. Viburnum Trend galena crystals that exhibit a platy form have received almost no study. The reason for their lack of study is the rarity of their occurrence. This communication discusses their character, mine distribution, paragenetic position, trace element contents, nature of twinning, and speculated conditions of formation. It also compares their character to similar platy galena occurrences in Germany, Bulgaria, Russia, Mexico, and notes their occurrence at the Pine Point District in the Northwest Territories of Canada and at the Black Cloud mine in Colorado. Flat, platy galena crystals have been recognized to occur in very small amounts in the Magmont, Buick, Fletcher, Brushy Creek, and Sweetwater mines in the Viburnum Trend. In contrast, platy galena has never been observed to occur at the Casteel, West Fork, #27, #28, and #29 mines in the Trend.
    [Show full text]
  • Minerogenetic Mechanisms Occurring in the Cave Environment: an Overview Bogdan P
    University of South Florida Masthead Logo Scholar Commons School of Geosciences Faculty and Staff School of Geosciences Publications 5-2011 Minerogenetic Mechanisms Occurring in the Cave Environment: An Overview Bogdan P. Onac University of South Florida, [email protected] Paolo Forti Italian Institute of Speleology Follow this and additional works at: https://scholarcommons.usf.edu/geo_facpub Scholar Commons Citation Onac, Bogdan P. and Forti, Paolo, "Minerogenetic Mechanisms Occurring in the Cave Environment: An Overview" (2011). School of Geosciences Faculty and Staff Publications. 1031. https://scholarcommons.usf.edu/geo_facpub/1031 This Article is brought to you for free and open access by the School of Geosciences at Scholar Commons. It has been accepted for inclusion in School of Geosciences Faculty and Staff ubP lications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. International Journal of Speleology 40 (2) 79-98 Tampa, FL (USA) July 2011 Available online at www.ijs.speleo.it & scholarcommons.usf.edu/ijs/ International Journal of Speleology Official Journal of Union Internationale de Spéléologie Minerogenetic mechanisms occurring in the cave environment: an overview Bogdan P. Onac1,2 and Paolo Forti3 Abstract: Onac B.P. and Forti P. 2011. Minerogenetic mechanisms occurring in the cave environment: an overview. International Journal of Speleology, 40 (2), 79-98. Tampa, FL (USA). ISSN 0392-6672. DOI: 10.5038/1827-806X.40.2.1 Perhaps man’s first motivation to explore caves, beyond using them as shelter, was the search for substances that were not avail- able elsewhere: most of them were minerals. However, for a long time it was believed that the cave environment was not very in- teresting from the mineralogical point of view.
    [Show full text]
  • Do the Naica Giant Crystals Deteriorate Due to Human Action?
    Do the Naica Giant Crystals Deteriorate due to Human Action? M. E. Montero-Cabrera1,*, I. Castillo-Sandoval1, I.J.A. Carreño-Márquez1, L. E. Fuentes-Cobas1, B. Pérez-Cázares2, H.E. Esparza-Ponce1, E. Menéndez-Méndez3, M.E. Fuentes-Montero2, H. Castillo-Michel4, D. Eichert5, R. Loredo- Portales6, J. Canche-Tello1, U. Salazar-Kuri7, M.Y. Luna-Porres1, G. González-Sánchez1, G. Herrera-Pérez1, J.M. Nápoles2, D. Burciaga-Valencia1, C. Caraveo1, G. Gómez2, L. Muñoz2, I. Reyes-Cortes2, M. Reyes-Cortés2 1Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua 31136, Mexico 2Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico 3Instituto Eduardo Torroja de Ciencias de la Construcción, Madrid 28033, Spain 4European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France 5Elettra Sincrotrone Trieste S.C.p.A., AREA Science Park, Basovizza (Trieste) Italy 6Universidad Nacional Autónoma de México, Hermosillo, Mexico 7Benemérita Universidad Autónoma de Puebla, Puebla, México *e-mail: [email protected] The giant crystals of the Naica mine have fascinated scientists from around the world specially since the year 2000, when the "Cueva de los Cristales" was discovered. It houses crystals of selenite (CaCO4 · 2H2O) of more than 11 m in length. Human presence has changed the microclimate conditions inside this cave, raising the question of whether anthropogenic action resulted in the deterioration of its gypsum single crystals and in the deposition of impurities on their surfaces. The present work provides a detailed characterization of representative samples of this cave and suggests an answer to the origin of the impurities on the surface of these nature-made large crystals.
    [Show full text]