Non-Linear Monte Carlo Ray Tracing for Visualizing Warped Spacetime

Total Page:16

File Type:pdf, Size:1020Kb

Non-Linear Monte Carlo Ray Tracing for Visualizing Warped Spacetime Non-linear Monte Carlo Ray Tracing for Visualizing Warped Spacetime Avirup Mandal∗, Kumar Ayush∗ and Parag Chaudhuri Indian Institute of Technology Bombay, Powai, Mumbai, India Keywords: Raytracing, Non-linear Monte Carlo, Warped Spacetime, Relativity. Abstract: General relativity describes the curvature of spacetime. Rays of light follow geodesic paths in curved space- time. Visualizing scenes containing spacetime regions with pronounced curvature requires tracing of these light ray paths. We present a Monte Carlo approach for non-linear raytracing to render scenes in curved space- time. In contrast to earlier work, we can accurately resolve ray-object interactions. This allows us to create plausible visualizations of what happens when a black hole appears in a more known environment, like a room with regular specular and diffuse surfaces. We demonstrate that our solution is correct at cosmological scales by showing how spacetime warps around a stationary Schwarzschild black hole and a non-stationary Kerr black hole. We verify that the solution is consistent with the predictions of general relativity. In the absence of any curvature in spacetime, our renderer behaves like a normal linear ray tracer. Our method has the poten- tial to create rich, physically plausible visualizations of complex phenomena that can be used for a range of purposes, from creating visual effects to making pedagogical aids to understand the behaviour of spacetime as predicted by general relativity. 1 INTRODUCTION momentum is referred to as a Schwarzschild black hole (Schwarzschild, 1916). A Kerr black hole (Kerr, General relativity changed the way in which we un- 1963) on the other hand, possesses angular momen- derstand our universe. The theory presented by Ein- tum and rotates. Another related cosmological phe- stein in 1915 has been verified via multiple experi- nomenon is a wormhole, which is like a hole punched mental observations. However, the concept of curved through curved spacetime connecting two different spacetime that is central to this theory stays elusive to regions of spacetime. An example of this is the Ellis a casual reader. Even students of physics have trouble Wormhole, visualized in the movie Interstellar (Ellis, visualizing what curved spacetime looks like because 1973) (Morris and Thorne, 1988) (Thorne, 2015). it is so far removed from our daily experience. It was The curving of spacetime, however, is a fact pre- only recently that a visualization of curved spacetime dicted by the theory of general relativity and is present was created that is true as per general relativity and it in the vicinity of any object that has mass. We are in- depicted how a black hole would look to an observer terested in visualizing not only black holes, but any much closer to it (James et al., 2015a) (James et al., warped spacetime, both at cosmological and at earth- 2015b). The cosmological phenomenon visualized in like or everyday scales. We present in this paper a ray these works were a rotating black hole and a worm- tracing method that allows us to visualize any arbi- hole. trary scene in any type of spacetime. We can stochas- A black hole can be described as a region in space tically trace rays in the warped spacetime, while tak- where the gravitational field is so strong that no matter ing care of normal light-surface interactions like re- or radiation can escape. The boundary of the region flection and refraction. This allows us to visualize ev- from which no escape is possible is called the event eryday geometry in strongly curved spacetimes. We horizon. According to the general theory of relativity, believe our work is first of its kind in being able to a body of sufficient mass can deform or warp space- create such visualizations. We find the images that time around it and result in a black hole. A static black our renderer produces to be extremely useful in un- hole, which possesses no electric charge or angular derstanding the concept of curved spacetime and vi- sualizing how the universe behaves in the presence of ∗A. Mandal and K. Ayush contributed equally to this gravity. We also believe it is unique in being able to work. 76 Mandal, A., Ayush, K. and Chaudhuri, P. Non-linear Monte Carlo Ray Tracing for Visualizing Warped Spacetime. DOI: 10.5220/0010217600760087 In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 3: IVAPP, pages 76-87 ISBN: 978-989-758-488-6 Copyright c 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved Non-linear Monte Carlo Ray Tracing for Visualizing Warped Spacetime create physics-based visualizations that are of interest specific intensity that reaches the observer by in- to generating special effects in cinema and as such, tegrating the radiative transfer equation along the it is intended to work as a proof of concept that ray computed geodesic. However, they assume the ob- tracing in curved spacetime can easily be integrated jects to be emissive, as most astrophysical objects into existing production pipelines. As a result, now of interest in such extreme environments are, and do we may have more realistic wormholes opening up in not handle reflection and refraction from those ob- an alley in New York, which acts as a pathway for jects, specular or diffuse. Another work presented by aliens. The major contributions of our work are listed Müller (Müller, 2014) uses the Motion4D library to as below handle spacetime metrics and ray tracing. The GPU • We perform secondary ray tracing and resolve all accelerated renderer presented in GRay (Chan et al., object-ray intersections in curved space-time. 2013) (Kuchelmeister et al., 2012) further parallelizes the work presented in earlier literature, to increase the • We render our scene using complete global illumi- throughput at which rays can be traced. Another GPU nations in warped spacetime which is essential to based renderer (Weiskopf et al., 2004) discusses re- produce visual phenomena like soft shadows and fraction through a continuous medium of varying re- caustics. fractive index as an example on non-linear ray tracing, • We develop a non-linear ray tracing algorithm that but does not tackle refraction within a warped space- works both in cosmological as well as terrestrial time itself. scale. Among other work, is also the Black Hole Flight We talk about relevant current literature in the next Simulator (BHFS) (Hamilton, 2008), that shows how section. We explain light paths in curved spacetime, it looks like to travel towards and through various and derive expressions for the geodesics that repre- kinds of black holes. A ray tracing algorithm for sent the light paths in Section 3. We present partic- visualizing two different spinning celestial objects, a ular solutions for the Schwarzschild and Kerr met- neutron star and a quasi-Kerr black hole are described rics for non-rotating and rotating black holes respec- in (Psaltis and Johannsen, 2012) and (Bauböck et al., tively, and for the Ellis metric for wormholes. Then 2012) respectively. we present our simple ray integrator in Section 4. De- It was only recently that visualizations with an tailed results and discussions of the results are pre- observer placed closer to the black hole were pro- sented in Section 5. duced. The Double Negative Gravitational Renderer (DNGR) was used to produce the imagery for the acclaimed movie Interstellar (Thorne, 2015) (James et al., 2015a) (James et al., 2015b). The renderer 2 RELATED WORK is unique in that it not only solves the equations for a ray-bundle propagation near a spinning black hole, Astrophysical ray tracers have a long history. These but also produces extremely high resolution imagery visualizations have become adept at simulating and required for a cinema production. This is done by visualizing increasingly complex cosmological phe- mapping the celestial sphere around a black hole or nomena. Gas, dust and other stellar debris that has a wormhole to the local sky of the observing camera, come close to a black hole but not quite fallen into while accounting for the change in the cross-section it, forms a flattened band of spinning matter around of the light beam and, color and intensity changes due the event horizon called the accretion disk. Thin ac- to Doppler shifts that occur in the process. cretion disks around black holes were visualized in early work in the area (Luminet, 1979). Subsequent 2.1 Comparison to State of the Art works added color (Fukue and Yokoyama, 1988), handled rotating black holes and thicker accretion We do not claim to present any new astrophysics disks (Viergutz, 1993) and finally images produced insights in our paper, nor do we claim to be bet- by a simulated camera flyby near the disk (Marck, ter than DNGR in all respects. We certainly do not 1996). The special relativistic visualization of 4D produce cinematic production quality images. How- space (Müller et al., 2010) and visualization of circu- ever, we believe that to the best of our knowledge, lar motion around Schwarzschild black hole (Müller we present the only renderer of its kind that can vi- and Boblest, 2011) have been explored before. The sualize highly warped spacetime, both in outer space general relativistic ray tracer GYOTO (Vincent et al., and in everyday human-scale scenes like rooms and 2011) uses the Hamiltonian formalism to integrate buildings. None of the previous works (Müller, the rays backward in time. They also compute the 2014), (Kuchelmeister et al., 2012), (James et al., 77 IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications 2015a), (James et al., 2015b) deal with simulating ing of spacetime. This will happen to all the stars on complete global illumination in curved spacetime.
Recommended publications
  • 2008. Pruning Some Branches from 'Branching Spacetimes'
    CHAPTER 10 Pruning Some Branches from “Branching Spacetimes” John Earman* Abstract Discussions of branching time and branching spacetime have become com- mon in the philosophical literature. If properly understood, these concep- tions can be harmless. But they are sometimes used in the service of debat- able and even downright pernicious doctrines. The purpose of this chapter is to identify the pernicious branching and prune it back. 1. INTRODUCTION Talk of “branching time” and “branching spacetime” is wide spread in the philo- sophical literature. Such expressions, if properly understood, can be innocuous. But they are sometimes used in the service of debatable and even downright per- nicious doctrines. The purpose of this paper is to identify the pernicious branching and prune it back. Section 2 distinguishes three types of spacetime branching: individual branch- ing, ensemble branching, and Belnap branching. Individual branching, as the name indicates, involves a branching structure in individual spacetime models. It is argued that such branching is neither necessary nor sufficient for indeterminism, which is explicated in terms of the branching in the ensemble of spacetime mod- els satisfying the laws of physics. Belnap branching refers to the sort of branching used by the Belnap school of branching spacetimes. An attempt is made to sit- uate this sort of branching with respect to ensemble branching and individual branching. Section 3 is a sustained critique of various ways of trying to imple- ment individual branching for relativistic spacetimes. Conclusions are given in Section 4. * Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, USA The Ontology of Spacetime II © Elsevier BV ISSN 1871-1774, DOI: 10.1016/S1871-1774(08)00010-7 All rights reserved 187 188 Pruning Some Branches from “Branching Spacetimes” 2.
    [Show full text]
  • 3 Spacetime 4 Unitarity Patent Application Publication Mar
    US 2012.0075682A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0075682 A1 Amoros0 (43) Pub. Date: Mar. 29, 2012 (54) SPACETIME ENERGY RESONATOR: A Publication Classification TRANSISTOR OF COMPLEX DRAC (51) Int. Cl. POLARIZED VACUUM TOPOLOGY GO3H 5/00 (2006.01) B82Y IO/OO (2011.01) (76) Inventor: Richard Louis Amoroso, Oakland, (52) U.S. Cl. ............................................. 359/1977/933 CA (US) (57) ABSTRACT Method and apparatus is described for a general purpose (21) Appl. No.: 12/928,592 transistor of the higher dimensional (HD) spacetime back cloth consistent with symmetry parameters of a new cosmo logical paradigm with a unique M-Theoretic background (22) Filed: Dec. 15, 2010 making correspondence to a complex scale-invariant covari ant Dirac polarized aether where energy pathways follow Related U.S. Application Data spacetime geodesics; and Switching is achieved by manipu lating resonant modes of a Calabi-Yau mirror symmetry hier (60) Provisional application No. 61/284,384, filed on Dec. archy inherent in continuous-State brane topology of the 17, 2009, provisional application No. 61/284,896, structural-phenomenology of least cosmological units tiling filed on Dec. 28, 2009, provisional application No. the raster of spacetime as it emerges from the infinite potential 61/336,522, filed on Jan. 22, 2010. of the unified field. CONCEPTUALIZED NOETIC INTERFEROMETRY Sagnac effect quadrupole modulated RF pulse R2 1 electrons 2 nucleons 3 spacetime 4 unitarity Patent Application Publication Mar. 29, 2012 Sheet 1 of 17 US 2012/0075682 A1 Ring Laser Array Spacetime(S-T)Vacuum Symmetry Hierarchy FIGURE 1 Patent Application Publication Mar.
    [Show full text]
  • Chapter 9: the 'Emergence' of Spacetime in String Theory
    Chapter 9: The `emergence' of spacetime in string theory Nick Huggett and Christian W¨uthrich∗ May 21, 2020 Contents 1 Deriving general relativity 2 2 Whence spacetime? 9 3 Whence where? 12 3.1 The worldsheet interpretation . 13 3.2 T-duality and scattering . 14 3.3 Scattering and local topology . 18 4 Whence the metric? 20 4.1 `Background independence' . 21 4.2 Is there a Minkowski background? . 24 4.3 Why split the full metric? . 27 4.4 T-duality . 29 5 Quantum field theoretic considerations 29 5.1 The graviton concept . 30 5.2 Graviton coherent states . 32 5.3 GR from QFT . 34 ∗This is a chapter of the planned monograph Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity, co-authored by Nick Huggett and Christian W¨uthrich and under contract with Oxford University Press. More information at www.beyondspacetime.net. The primary author of this chapter is Nick Huggett ([email protected]). This work was sup- ported financially by the ACLS and the John Templeton Foundation (the views expressed are those of the authors not necessarily those of the sponsors). We want to thank Tushar Menon and James Read for exceptionally careful comments on a draft this chapter. We are also grateful to Niels Linnemann for some helpful feedback. 1 6 Conclusions 35 This chapter builds on the results of the previous two to investigate the extent to which spacetime might be said to `emerge' in perturbative string the- ory. Our starting point is the string theoretic derivation of general relativity explained in depth in the previous chapter, and reviewed in x1 below (so that the philosophical conclusions of this chapter can be understood by those who are less concerned with formal detail, and so skip the previous one).
    [Show full text]
  • Mathematics of General Relativity - Wikipedia, the Free Encyclopedia Page 1 of 11
    Mathematics of general relativity - Wikipedia, the free encyclopedia Page 1 of 11 Mathematics of general relativity From Wikipedia, the free encyclopedia The mathematics of general relativity refers to various mathematical structures and General relativity techniques that are used in studying and formulating Albert Einstein's theory of general Introduction relativity. The main tools used in this geometrical theory of gravitation are tensor fields Mathematical formulation defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity. Resources Fundamental concepts Note: General relativity articles using tensors will use the abstract index Special relativity notation . Equivalence principle World line · Riemannian Contents geometry Phenomena 1 Why tensors? 2 Spacetime as a manifold Kepler problem · Lenses · 2.1 Local versus global structure Waves 3 Tensors in GR Frame-dragging · Geodetic 3.1 Symmetric and antisymmetric tensors effect 3.2 The metric tensor Event horizon · Singularity 3.3 Invariants Black hole 3.4 Tensor classifications Equations 4 Tensor fields in GR 5 Tensorial derivatives Linearized Gravity 5.1 Affine connections Post-Newtonian formalism 5.2 The covariant derivative Einstein field equations 5.3 The Lie derivative Friedmann equations 6 The Riemann curvature tensor ADM formalism 7 The energy-momentum tensor BSSN formalism 7.1 Energy conservation Advanced theories 8 The Einstein field equations 9 The geodesic equations Kaluza–Klein
    [Show full text]
  • Topology and Singularities in Cosmological Spacetimes Obeying the Null Energy Condition
    Topology and Singularities in Cosmological Spacetimes Obeying the Null Energy Condition Gregory J. Galloway & Eric Ling Communications in Mathematical Physics ISSN 0010-3616 Volume 360 Number 2 Commun. Math. Phys. (2018) 360:611-617 DOI 10.1007/s00220-017-3020-9 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Commun. Math. Phys. 360, 611–617 (2018) Communications in Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-017-3020-9 Mathematical Physics Topology and Singularities in Cosmological Spacetimes Obeying the Null Energy Condition Gregory J. Galloway1,EricLing1 Department of Mathematics, University of Miami, Coral Gables, FL, USA. E-mail: [email protected] Received: 4 June 2017 / Accepted: 17 September 2017 Published online: 9 November 2017 – © Springer-Verlag GmbH Germany 2017 We dedicate this paper to the memory of Ted Frankel Abstract: We consider globally hyperbolic spacetimes with compact Cauchy surfaces in a setting compatible with the presence of a positive cosmological constant.
    [Show full text]
  • Astrophysical Wormholes
    universe Article Astrophysical Wormholes Cosimo Bambi 1,* and Dejan Stojkovic 2 1 Center for Field Theory and Particle Physics and Department of Physics, Fudan University, Shanghai 200438, China 2 Department of Physics, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260-1500, USA; [email protected] * Correspondence: [email protected] Abstract: Wormholes are hypothetical topologically-non-trivial structures of spacetime. From the theoretical point of view, the possibility of their existence is challenging but cannot be ruled out. This article is a compact and non-exhaustive review of past and current efforts to search for astro- physical wormholes in the Universe. Keywords: wormholes; black holes; spacetime topology; gravity 1. Introduction Wormholes are hypothetical spacetime structures with non-trivial topologies capable of connecting either two distant regions of the same universe or two different universes, as illustrated in Figure1. The entrances of a wormhole are called the “mouths” of the wormhole and the spacetime region connecting the mouths is called the “throat” of the wormhole. The simplest wormhole configuration has two mouths connected by a throat, but more complex structures are also possible [1]. Strictly speaking, wormholes are not a prediction of general relativity or of other theories of gravity. They are spacetime structures Citation: Bambi, C.; Stojkovic, D. that can potentially exist in curved spacetimes, so they exist in a very wide class of gravity Astrophysical Wormholes. Universe models. The formation mechanisms and stability of these spacetime structures depend on 2021, 7, 136. https://doi.org/ 10.3390/universe7050136 the specific gravity theory and often present problems, so the existence of wormholes in the Universe is challenging.
    [Show full text]
  • Traversable Geometric Dark Energy Wormholes Constrained by Astrophysical Observations
    Eur. Phys. J. C (2016) 76:484 DOI 10.1140/epjc/s10052-016-4321-4 Regular Article - Theoretical Physics Traversable geometric dark energy wormholes constrained by astrophysical observations Deng Wang1,a, Xin-he Meng2,3,b 1 Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, China 2 Department of Physics, Nankai University, Tianjin 300071, China 3 State Key Lab of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing 100080, China Received: 2 February 2016 / Accepted: 18 August 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract In this paper, we introduce the astrophysical 1 Introduction observations into the wormhole research. We investigate the evolution behavior of the dark energy equation of state Modern astronomical observations with increasing evidence, parameter ω by constraining the dark energy model, so that such as high redshift Type Ia supernovae (SNe Ia), matter we can determine in which stage of the universe wormholes power spectra, observational Hubble parameter data (OHD), can exist by using the condition ω<−1. As a concrete cosmic microwave background radiation (CMBR), etc, have instance, we study the Ricci dark energy (RDE) traversable strongly suggested that the universe is undergoing an acceler- wormholes constrained by astrophysical observations. Par- ated phase at present [1–5]. To explain the accelerated mech- ticularly, we find from Fig. 5 of this work, when the effective anism, cosmologists have proposed a new negative pressure equation of state parameter ωX < −1(orz < 0.109), i.e., the fluid named dark energy. The simplest candidate of dark null energy condition (NEC) is violated clearly, the worm- energy is the so-called cosmological constant, i.e., the - holes will exist (open).
    [Show full text]
  • EXOTIC SPACETIME TOPOLOGY As an Alternative to Dark Matter and Energy Greg Kuri1, James Overduin1 and Richard Conn Henry2 1Towson University, Towson, Maryland
    EXOTIC SPACETIME TOPOLOGY As an Alternative to Dark Matter and Energy Greg Kuri1, James Overduin1 and Richard Conn Henry2 1Towson University, Towson, Maryland Exotic Spacetime Topology Case Study: Gravitational Lensing from Topology studies Exotic Smooth Structure the properties of space In three-dimensional Euclidean space, mathematicians and geometry that are have been able to break down complicated manifolds into preserved under contin- simpler, Euclidean pieces (called “handles”) using something uous deformations (eg. called “handlebody decomposition.” Physicist Christopher stretching or crumpling). Duston has used an analogous mechanism (based on work by Two such deformations Taubes [4]) to obtain metrics on an exotic four-manifold [7]. are homeomorphisms and When this four manifold is decomposed into blocks using diffeomorphisms. Home- “Casson handling,” we can give each block its own metric. omorphisms are inverti- (푛) Given a metric 푔 on each block 푊푛, the metric on the ble transformations that whole manifold can be determined using Fourier-Laplace do not involve cutting or Fig. 2: An artist’s interpretation of exotic (“Z-transform”) techniques, 푔 = σ∞ 푧−푛푔(푛), and takes gluing. Diffeomorphisms 푧 −∞ four-dimensional space [2]. The center is the form of what is known as an “end-periodic manifold” are differentiable homeo- the Euclidean representation of four- (Fig. 3). This mechanism gives us a way to describe curved morphisms, where we Fig. 4: G. Kuri in Towson University’s planetarium, suggesting a con- space, while the tendrils represent its space (and therefore gravity) in the alternate mathematical can perform calculus. exotic nature as it approaches infinity. nection between spacetime topology and cosmic background radiation.
    [Show full text]
  • Exotic Smoothness and Astrophysics∗
    Vol. 40 (2009) ACTA PHYSICA POLONICA B No 11 EXOTIC SMOOTHNESS AND ASTROPHYSICS∗ Jan Sładkowski Institute of Physics, University of Silesia Uniwersytecka 4, 40-007 Katowice, Poland (Received October 19, 2009) The problem of possible astrophysical consequences of the existence of exotic differential structures on manifolds is discussed. It is argued that corrections to the curvature of the form of a source like terms should be expected in the Einstein equations if they are written in the “wrong” differ- ential structure. Examples of topologically trivial spaces on which exotic differential structures act as a source of gravitational force even in the ab- sence of matter are given. Propagation of light in the presence of such phenomena is also discussed. A brief review of exotic smoothness is added for completeness. PACS numbers: 98.80.Jk, 95.30.Sf 1. Introduction In 1854 B. Riemann, the father of contemporary differential geometry, suggested that the geometry of space may be more than just a mathematical tool defining a stage for physical phenomena, and may in fact have profound physical meaning in its own right [1]. But is it reasonable to contemplate to what extent the choice of mathematical model for spacetime has important physical significance? With the advent of general relativity physicists be- gan to think of the spacetime as a differential manifold. Since then various assumptions about the spacetime topology and geometry have been put for- ward. But why should the choice of differential structure of the spacetime manifold matter? Most of topological spaces used for modelling spacetime have natural differential structures and the question of their non-uniqueness seemed to be extravagant.
    [Show full text]
  • Proper Time Foliations of Lorentz Manifolds
    Proper Time Foliations of Lorentz Manifolds D. H. Delphenich† Physics Department University of the Ozarks Clarksville, AR Abstract. Some standard definitions and results concerning foliations of dimension one and codimension one are introduced. A proper time foliation of Minkowski space in defined and contrasted with the foliation defined by the time coordinate. The extent to which a Lorentz structure on a manifold defines foliations, and the issues concerning the extension of the proper time foliation of Minkowski space to a Lorentz manifold are discussed, such as proper time sections of a geodesic flow. 0. Introduction. Certainly much has been said about the geometrical consequences of Einstein’s general theory of relativity [1-4]. This is because specifying a metric (or pseudo-metric) on a manifold implies the existence of a unique zero-torsion metric connection − the Levi-Civita connection − from which all of the rest of spacetime geometry − curvature, geodesics, conjugate points, etc. − follows by construction. Less of a physically definitive nature has been said about how, or whether, spacetime topology differs from a Euclidean one (1). Certainly, the definition of a manifold weakens that assumption to being only locally true in general; however, the real issue is whether the process of raising time to the status of a dimension on a par with the other dimensions in the eyes of geometry is also true in the eyes of topology. A well-known result of general relativity [5] says that the mere existence of a maximal Cauchy hypersurface (2) Σ, as would be essential to expressing the metric of spacetime as a solution to an equation of time evolution, such as in the Hamiltonian formulation [6], implies that the topology of spacetime is simply the product Σ .
    [Show full text]
  • Spacetime: Arena Or Reality?
    Spacetime: Arena or Reality? H. I. Arcos1 and J. G. Pereira2 1 Universidad Tecnol´ogicade Pereira, A.A. 97, La Julita, Pereira, Colombia [email protected] 2 Instituto de F´ısicaTe´orica,Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, S~aoPaulo SP, Brazil [email protected] 1 Introduction The concept of fundamental particle has been quite elusive along the his- tory of physics. The term fundamental is commonly used as a synonymous of structureless particles. However, this assumption is clearly contradictory. For example, it is impossible to explain spin without assuming a structure for the particle. In fact, a point particle is by definition spherically symmetric, a sym- metry violated by the presence of spin. This problem is usually circumvented by saying that spin is a purely quantum property, which cannot be explained by classical physics. This means to keep it as a mysterious property of nature. If one assumes that a fundamental particle is a point-like object, several arguments against this idea show up immediately. First, as discussed above, a point-like object seems to be inconsistent with the existence of spin. Second, if we try to reconcile general relativity with point-particles, which are singular points in a pseudo-Riemannian spacetime, unwanted features, like for example ultraviolet divergences, will appear. A natural alternative would be to assume that a fundamental particle is a string-like object, a point of view adopted by string theory [1]. Similarly, one can introduce membranes as fundamen- tal objects, or even extended objects with certain geometries. These models, however, are also plagued by problems.
    [Show full text]
  • Four-Vector, Dirac Spinor Representation and Lorentz Transformations
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2012, 3 (2):749-756 ISSN: 0976-8610 CODEN (USA): AASRFC Four-vector, Dirac spinor representation and Lorentz Transformations 1 2 3 S. B. Khasare , J. N. Ramteke , Shashank S. Khasare 1Department of Physics, Science College, Congress Nagar, Nagpur, India 2Department of Physics, Shri Maturadas Mohota College of Science, Nagpur, India 3Department of Computer Science, College of Engineering, Pune, India ______________________________________________________________________________ ABSTRACT Author found a simple geometrical representation of the general covariant form of Maxwell's equations and few related relations. We mention here briefly another equivalent way to formulate the geometrization of the four fields, totally need Dirac spin matrices which are used as vectors, do not required tensors knowledge but leading to simplifications of the four vectors, three vector physical quantities. Key Words: Four-vector, Dirac spinor, Lorentz Transformations, SL (2,C). PACS: 03.30.+p (Special relativity);03.50.De (Classical electromagnetism, Maxwell equations); 04.20.Gz (Spacetime topology, causal structure, spinor structure) ______________________________________________________________________________ INTRODUCTION Symmetries are of fundamental importances in the description of physical phenomena. The discovery of a non- Euclidean geometry posed an extremely complicated problem to physics, particularly explaining real space was Euclidean as have been believed earlier and if it was not, to what type of non-Euclidean space it belonged. Thus, it is necessary to see the validity of the axioms experimentally or extension of Euclidean space to new space, so that the construction of spin-geometries could be justified by the possibility of applying their conclusions to actually existing object and the observation.
    [Show full text]