The Digital Revolu on and Sustainable Development

Total Page:16

File Type:pdf, Size:1020Kb

The Digital Revolu on and Sustainable Development The Digital Revolu� on and Sustainable Development: Opportuni� es and Challenges Report prepared by The World in 2050 ini� a� ve International Institute for Applied Systems Analysis Schlossplatz 1, A-2361 Laxenburg, Austria The International Institute for Applied Systems Analysis (IIASA) is an independent, international research institute with National Member Organizations in Africa, the Americas, Asia, and Europe. Through its research programs and initiatives, the institute conducts policy-oriented research into issues that are too large or complex to be solved by a single country or academic discipline. This includes pressing concerns that affect the future of all of humanity, such as climate change, energy security, population aging, and sustainable development. The results of IIASA research and the expertise of its researchers are made available to policymakers in countries around the world to help them produce effective, science-based policies that will enable them to face these challenges. www.twi2050.org This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. For any commercial use please contact [email protected] Figures by the TWI2050 consortium are licensed under CC-BY-NC 4.0. For all other figures see individual source details. RecommendedFirst published in citation: July 2019 TWI2050 - The World in 2050 (2019). The Digital Revolution and Sustainable Development: Opportunities and Challenges. Report prepared by The World in 2050 initiative. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. www.twi2050.org Available at: pure.iiasa.ac.at/15913/ ISBN 10: 3-7045-0155-7 ISBN 13: 978-3-7045-0155-4 DOI: 10.22022/TNT/05-2019.15913 The International Institute for Applied Systems Analysis has no responsibility for the persistence or accuracy of URLs for external or third-party internet web sites referred to in this publication and does not guarantee that any content on such web sites is, or will remain, accurate, or appropriate. The views or opinions expressed herein do not necessarily represent those of International Institute for Applied Systems Analysis, its National Member Organizations, or any other organizations supporting the work. The Digital Revolution and Sustainable Development: Opportunities and Challenges Report prepared by The World in 2050 initiative Authors Nebojsa Nakicenovic, Dirk Messner, Caroline Zimm, Geoff Clarke, Johan Rockström, Ana Paula Aguiar, Benigna Boza-Kiss, Lorenza Campagnolo, Ilan Chabay, David Collste, Luis Comolli, Luis Gomez-Echeverri, Anne Goujon, Arnulf Grubler, Reiner Jung, Miho Kamei, George Kamiya, Elmar Kriegler, Michael Kuhn, Julia Leininger, Charles Martin-Shields, Beatriz Mayor-Rodriguez, Jerry Miller, Apollonia Miola, Keywan Riahi, Maria Schewenius, Jörn Schmidt, Kristina Skierka, Odirilwe Selomane, Uno Svedin, Paul Yillia Contributors Tateo Arimoto, Bill Colglazier, Arthur Contejean, Ines Dombrowsky, Tanvi Jaluka, Hermann Lotze-Campen, Kris Murray, Michel Noussan, Mihail C. Roco, Lucilla Spini, Mark Stoeckle, Sander van der Leuw, Detlef van Vuuren, Eric Zusman Foreword The Digital Revolution, including technologies such as virtual and augmented reality, additive manufacturing or 3D-printing, (general purpose) artificial intelligence, or the Internet of Things, has entered the public discourse in many countries. Looking back, it is almost impossible to believe that digitalization is barely featured in the 2030 Agenda or the Paris Agreement. It is increasingly clear that digital changes, we refer to them as the Digital Revolution, are becoming a key driving force in societal transformation. The transformation towards sustainability for all must be harmonized with the threats, opportunities and dynamics of the Digital Revolution, the goals of the 2030 Agenda and the Paris Agreement. At the same time, the digital transformation will radically alter all dimensions of global societies and economies and will therefore change the interpretation of the sustainability paradigm itself. Digitalization is not only an ‘instrument’ to resolve sustainability challenges, it is also fundamental as a driver of disruptive change. This report that focuses on the Digital Revolution is the second one by The World in 2050 (TWI2050) that was established by the International Institute for Applied Systems Analysis (IIASA) and other partners to provide scientific foundations for the 2030 Agenda. This report is based on the voluntary and collaborative effort of 45 authors and contributors from about 20 institutions, and some 100 independent experts from academia, business, government, intergovernmental and non-governmental organizations from all the regions of the world, who met four times at IIASA to develop science-based strategies and pathways toward achieving the Sustainable Development Goals (SDGs). Presentations of the TWI2050 approach and work have been made at many international meetings such as the United Nations Science, Technology and Innovation Forums and the United Nations High-level Political Forums. Transformations to Achieve the Sustainable Development Goals In 2018, the first report by TWI2050 on identified Six Exemplary Transformations needed to achieve the SDGs and long-term sustainability to 2050 and beyond: i) Human Capacity & Demography; ii) Consumption & Production; iii) Decarbonization & Energy, iv) Food, Biosphere & Water; v) Smart Cities and vi) Digital Revolution. The focus of this report is the Sixth Transformation, The Digital Revolution. Although it is arguably the single greatest enabler of sustainable development, it has, in the past, helped create many negative externalities like transgression of planetary boundaries. Progress on the SDGs will be facilitated if we can build and implement detailed science, technology and innovation (STI) roadmaps at all levels that range from local to global. STI is a forceful driver of change connected to all 17 SDGs. The Digital Revolution provides entirely new and enhanced capacities and thus serves as a major force in shaping both the systemic context of transformative change and future solutions; at the same time it potentially carries strong societal disruptive power if not handled with caution, care, and innovativeness. This report assesses all the positive potential benefits digitalization brings to sustainable development for all. It also highlights the potential negative impacts and challenges going forward, particularly for those impacted by the ‘digital divide’ that excludes primarily people left behind during the Industrial Revolution like the billion that go hungry every night and the billion who do not have access to electricity. The report outlines the necessary preconditions for a successful digital transformation, including prosperity, social inclusion, environmental sustainability and good governance. Importantly it outlines some of the dramatic social implications associated with an increasingly digital future. It also covers a topic that so far has not been sufficiently dealt with in the cross-over discussions between sustainability and the Digital Revolution, that is, the considerations about related governance aspects. Completion of this report has involved voluntary and sustained contributions from many colleagues around the world. Special thanks and gratitude go to all contributing institutions that provided personal and institutional support throughout. We are especially grateful for the contribution and support of the IIASA team that has provided substantial in-kind support and vision needed to conduct an initiative of this magnitude. Special thanks go to my IIASA colleagues Caroline Zimm and Pat Wagner for coordinating and managing TWI2050, to all authors and contributors without whose knowledge and dedication this report would not have been possible. iii The publication of this report in July 2019 and its launch during the United Nations High-level Political Forum is timely. TWI2050 outlines nine key considerations on the linkages between the digital and sustainability revolutions – both positive and negative – and the critical issues that need to be addressed to maximize the opportunities and minimize the risks of digitalization to a sustainable future. It is my belief that this report will provide policy and decision makers around the world with invaluable new knowledge to inform action and commitment towards achieving the SDGs in a new era. I hope it will be a roadmap toward a sustainable future in the Digital Anthropocene and will divert from the alternatives that transcend the planetary boundaries and leave billionsNebojsa behind. Nakicenovic TWI2050 Executive Director iv Table of Contents Key Considerations: Digitalization and Sustainability in the Anthropocene 1. Six Fundamental Transformations for a Sustainable Future for All 7 2. Report Outline 17 3. The Digital Revolution 19 4. Preconditions for a Sustainable Digital Revolution 19 23 4.1 Prosperity 24 4.2 Social Inclusion – Overcoming the Digital Divide 25 4.3 Environmentally Oriented Sustainability 28 5. Digitalization4.4 Inclusive Good and Governance Sustainable and Development Peace 29 33 5.1 A Systems View 33 5.2 Human Capacity & Demography 33 5.2.1 Health 33 5.2.2 Education 38 5.2.3 Gender Equality and Empowerment 42 5.3 Consumption & Production 44 5.3.1 Additive Manufacturing 46 5.3.2 Financial Services 48 5.3.3 The Future of Work 51 5.4 Decarbonization & Energy 53 5.4.1 Energy Systems 53 5.4.2 Climate 57 5.5 Food, Biosphere & Water 59 5.5.1 Agriculture and Food
Recommended publications
  • Data in the Digital Age
    March 2019 Data in the Digital Age The growing interactions between data, algorithms and big data analytics, connected things and people are opening huge new opportunities. But they are also giving rise to issues around “data governance” at the national and international levels. These include questions around the management of data availability, accessibility, usability, integrity and security, as well as concerns about ownership, impacts on trade and competition, implications for personal privacy, and more. Policy makers across government are grappling with these issues. The use of digital technologies and data underpins digital transformation across all sectors of economies and societies, meaning that any policy decisions on data can have wide effects. Instilling trust in the use of data is a pre-condition for fully realising the gains of digital transformation. This in turn calls for policy makers to better understand and account for the heterogeneity of data, to take a strategic approach to its governance and ensure all policy objectives are considered, and to upgrade their own capabilities to harness data for better policy making. Key policy directions Recognise that there are different types of data, and measure the economic and social value of data and data flows. Many different types of data are collected and used, and their purpose and value can differ widely. Without recognising these different kinds of data, governments will not be able to effectively address issues such as personal data protection or competition. Better measurement of data and data flows and their role in production and value chains will also help support policy making. Develop national data strategies.
    [Show full text]
  • The Digital Divide Among College Students: Lessons Learned from the COVID-19 Emergency Transition
    The Digital Divide Among College Students: Lessons Learned From the COVID-19 Emergency Transition POLICY REPORT JANUARY 2021 105 Fifth Avenue South, Suite 450 Minneapolis, MN 55401 612-677-2777 or 855-767-MHEC MHEC.ORG | [email protected] ACKNOWLEDGMENTS At Indiana University, this research was made possible by Schmidt Futures, a philanthropic initiative co-founded by Eric and Wendy Schmidt, and by the Office of the Vice President for Research at Indiana University. At Ohio State, this research was supported by the Office of Student Academic Success, the Office of Student Life, and the Drake Institute for Teaching and Learning. AUTHORS EDITOR Shanna S. Jaggars Andrew Heckler Aaron Horn The Ohio State University The Ohio State University Associate Vice President of Research, MHEC Joshua D. Quick Benjamin A. Motz [email protected] (*) Indiana University Indiana University Marcos D. Rivera Elizabeth A. Hance The Ohio State University The Ohio State University Caroline Karwisch The Ohio State University Recommended Citation Jaggars, S. S., Motz, B. A., Rivera, M. D., Heckler, A., Quick, J.D., Hance, E. A., & Karwischa, C. (2021). The Digital Divide Among College Students: Lessons Learned From the COVID-19 Emergency Transition. Midwestern Higher Education Compact. © COPYRIGHT 2021 MIDWESTERN HIGHER EDUCATION COMPACT. EXECUTIVE SUMMARY This report examines the meaning and impact of the digital reliable devices, college students with inadequate divide — the gap between those who can and cannot access technology struggled more with the transition to remote the Internet — on college students during the COVID-19 learning. For example, they reported a sharper increase emergency shift to remote learning.
    [Show full text]
  • The New Digital Economy and Development
    UNCTAD UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT THE «NEW» DIGITAL ECONOMY AND DEVELOPMENT UNCTAD Technical Notes on ICT for Development N˚8 UNITED NATIONS UNCTAD, DIVISION ON TECHNOLOGY AND LOGISTICS SCIENCE , TECHNOLOGY AND ICT BRANCH ICT POLICY SECTION TECHNICAL NOTE NO8 UNEDITED TN/UNCTAD/ICT4D/08 OCTOBER 2017 The ‘New’ Digital Economy and Development 1 Abstract : This technical note frames the ‘New’ Digital Economy (NDE) as including, most prominently: 1) advanced manufacturing, robotics and factory automation, 2) new sources of data from mobile and ubiquitous Internet connectivity, 3) cloud computing, 4) big data analytics, and 5) artificial intelligence. The main driver of the NDE is the continued exponential improvement in the cost-performance of information and communications technology (ICT), mainly microelectronics, following Moore’s Law. This is not new. The digitization of design, advanced manufacturing, robotics, communications, and distributed computer networking (e.g. the Internet) have been altering innovation processes, the content of tasks, and the possibilities for the relocation of work for decades. However, three features of the NDE are relatively novel. First, new sources of data, from smart phones to factory sensors, are sending vast quantities of data into the “cloud,” where they can be analysed to generate new insights, products, and services. Second, new business models based on technology and product platforms — platform innovation, platform ownership, and platform complimenting — are significantly altering the organization of industries and the terms of competition in a range of leading-edge industries and product categories. Third, the performance of ICT hardware and software has advanced to the point where artificial intelligence and machine learning applications are proliferating.
    [Show full text]
  • The Fourth Industrial Revolution: How the EU Can Lead It
    EUV0010.1177/1781685818762890European ViewSchäfer 762890research-article2018 Article European View 2018, Vol. 17(1) 5 –12 The fourth industrial © The Author(s) 2018 https://doi.org/10.1177/1781685818762890DOI: 10.1177/1781685818762890 revolution: How the EU journals.sagepub.com/home/euv can lead it Matthias Schäfer Abstract The fourth industrial revolution is different from the previous three. This is because machines and artificial intelligence play a significant role in enhancing productivity and wealth creation, which directly changes and challenges the role of human beings. The fourth industrial revolution will also intensify globalisation. Therefore, technology will become much more significant, because regions and societies that cope positively with the technological impact of the fourth industrial revolution will have a better economic and social future. This article argues that the EU can play an important role in developing an environment appropriate for the fourth industrial revolution, an environment that is vibrant and open to new technologies. Member states would profit from an EU-wide coordinated framework for this area. The EU has to establish new common policies for the market-oriented diffusion and widespread use of new technologies. Keywords Fourth industrial revolution, Technology policy, Industrial policy, Leadership Introduction Historically there have been four industrial revolutions (see Schwab 2016). The first began in the early nineteenth century, when the power of steam and water dramatically increased the productivity of human (physical) labour. The second revolution started almost a hundred years later with electricity as its key driver. Mass industrial production Corresponding author: M. Schäfer, Department Politics and Consulting, Head of the Team for Economic Policy, Konrad-Adenauer- Stiftung, Berlin, Germany.
    [Show full text]
  • Engineering Growth: Innovative Capacity and Development in the Americas∗
    Engineering Growth: Innovative Capacity and Development in the Americas∗ William F. Maloneyy Felipe Valencia Caicedoz July 1, 2016 Abstract This paper offers the first systematic historical evidence on the role of a central actor in modern growth theory- the engineer. We collect cross-country and state level data on the population share of engineers for the Americas, and county level data on engineering and patenting for the US during the Second Industrial Revolution. These are robustly correlated with income today after controlling for literacy, other types of higher order human capital (e.g. lawyers, physicians), demand side factors, and instrumenting engineering using the Land Grant Colleges program. We support these results with historical case studies from the US and Latin America. A one standard deviation increase in engineers in 1880 accounts for a 16% increase in US county income today, and patenting capacity contributes another 10%. Our estimates also help explain why countries with similar levels of income in 1900, but tenfold differences in engineers diverged in their growth trajectories over the next century. Keywords: Innovative Capacity, Human Capital, Engineers, Technology Diffusion, Patents, Growth, Development, History. JEL: O11,O30,N10,I23 ∗Corresponding author Email: [email protected]. We thank Ufuk Akcigit, David de la Croix, Leo Feler, Claudio Ferraz, Christian Fons-Rosen, Oded Galor, Steve Haber, Lakshmi Iyer, David Mayer- Foulkes, Stelios Michalopoulos, Guy Michaels, Petra Moser, Giacomo Ponzetto, Luis Serven, Andrei Shleifer, Moritz Shularick, Enrico Spolaore, Uwe Sunde, Bulent Unel, Nico Voigtl¨ander,Hans-Joachim Voth, Fabian Waldinger, David Weil and Gavin Wright for helpful discussions. We are grateful to William Kerr for making available the county level patent data.
    [Show full text]
  • Criminal Justice and the Technological Revolution Download The
    Criminal justice and the technological revolution COVID-19 has prompted a profound shift in the use of technology across justice systems internationally. The challenge today is how to build on and accelerate recent progress. Criminal justice and the technological revolution The journey towards a fully digitally-enabled criminal justice system is underway and the potential benefits are vast. The work yet to do is daunting, but the increased access to justice it could deliver is exciting. In this article, we set out some ways that digital and The impact of these changes still needs to be virtual justice can support service transformation evaluated, but this remains a profound shift. And in for victims, witnesses, people with convictions, and many cases, COVID-19 responses either accelerated or criminal justice professionals. We focus on the need to complemented longer-term initiatives to digitise large create a new digital ecosystem around current services parts of the criminal justice system. Our work shows and to target technology investments on the biggest that our focus geographies all have major programmes problems highlighted in our international research of technology-enabled change underway to digitise effort: and manage criminal case information through online platforms and to increase use of remote and virtual • Harnessing digital twin capabilities to reduce court working technologies. Many involve long-term billion- backlogs dollar investments and are among the most significant change programmes operating across governments. • Making virtual prisons a reality Digital and virtual justice at a crossroads • Supporting rehabilitation through virtual desistance The challenge today is how to build on and accelerate platforms recent progress.
    [Show full text]
  • Six-Gear Roadmap Towards the Smart Factory
    applied sciences Review Six-Gear Roadmap towards the Smart Factory Amr T. Sufian 1,*, Badr M. Abdullah 1 , Muhammad Ateeq 1 , Roderick Wah 2 and David Clements 2 1 Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK; [email protected] (B.M.A.); [email protected] (M.A.) 2 Beverston Engineering Ltd., Prescot L34 9AB, UK; [email protected] (R.W.); [email protected] (D.C.) * Correspondence: a.t.sufi[email protected] Featured Application: This work is beneficial to bridge the gap between advanced technologies and their applications in the manufacturing industry, especially for SMEs. Abstract: The fourth industrial revolution is the transformation of industrial manufacturing into smart manufacturing. The advancement of digital technologies that make the trend Industry 4.0 are considered as the transforming force that will enable this transformation. However, Industry 4.0 digital technologies need to be connected, integrated and used effectively to create value and to provide insightful information for data driven manufacturing. Smart manufacturing is a journey and requires a roadmap to guide manufacturing organizations for its adoption. The objective of this paper is to review different methodologies and strategies for smart manufacturing implementation to propose a simple and a holistic roadmap that will support the transition into smart factories and achieve resilience, flexibility and sustainability. A comprehensive review of academic and industrial literature was preformed based on multiple stage approach and chosen criteria to establish existing knowledge in the field and to evaluate latest trends and ideas of Industry 4.0 and smart manufacturing technologies, techniques and applications in the manufacturing industry.
    [Show full text]
  • Fourth Industrial Revolution, Challenge Accepted a Guide to Understanding Why Japan Is Set to Re-Own International Leadership in the ‘Era of Acceleration’
    J APAN Fourth Industrial Revolution, challenge accepted A guide to understanding why Japan is set to re-own international leadership in the ‘era of acceleration’ As the dominant force in global manufacturing in the 1970s and early 1980s, particularly in the consumer electronics industry, Japan became an economic juggernaut and a poster boy for technological innovation. However, what followed has since become commonly known Like any revolution, there will is already a pioneer – is expected to as the “Lost Decades”: a period of be winners and losers, so Japan, it grow at an annual rate of 12% to “Japan’s forte is in economic decline characterized by seems, couldn’t have timed its manu- reach $79.5bn by 2022. creating high-quality a loss of ground to manufacturing facturing comeback much better. On Yoshiharu Inaba, Chairman and authentic products” rivals in the Asian region and further the back of Prime Minister Shinzo CEO of FANUC – Japan’s leading exasperated by the global fnancial Abe’s eponymous ‘Abenomics’ strate- robotics company – believes the Kazuhiro Kashio, crisis in 2008. gy and Japanese industry’s great glo- signifcance of such growth will be President, CASIO The pendulum though has swung balization push, the country shipped historically monumental. once again, and this period in the run $645.2 billion worth of goods inter- “With the invention of steam en- up to 2020 – the year Japan will host nationally last year, up by 11.1% since gines, Britain’s industrial revolution ucts were synonymous with quality the Olympics – is being marked as 2009 when the economic recession boosted the effciency of manufac- and reliability, and the world knew the country’s great comeback to kicked in, and up 3.2% from 2015.
    [Show full text]
  • The Ethnographic Research of the Digital Divide
    DIGITAL DIVIDE IN ISTRIA A dissertation presented to the faculty of the College of Communication of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Igor Matic August 2006 The dissertation entitled DIGITAL DIVIDE IN ISTRIA by IGOR MATIC has been approved for the School of Telecommunications and the College of Communication by Karen E. Riggs Professor, School of Telecommunications Gregory J. Shepherd Dean, College of Communication ABSTRACT MATIC, IGOR, Ph. D., August 2006, Mass Communication DIGITAL DIVIDE IN ISTRIA (209 pp.) Director of Dissertation: Karen E. Riggs This dissertation covers the Digital Divide phenomena in the Istrian region. Istria is a Northern Adriatic peninsula that is administratively divided between three European countries: Croatia (which covers approximately 90% of the peninsula), Slovenia (app. 7%), and Italy (app. 3%). In this dissertation my goal was to articulate the most influential theoretical frameworks that are used to explain the Digital Divide today and I try to give an explanation of the issue through ethnographic procedures. The goals of this research include the examination of the current Digital Divide debate, extension of the theory toward the local understanding and perception of this global phenomenon. Additionally, I wanted to identify different interpretations of the Digital Divide in three countries within one region and compare the differences and similarities in new technology usage and perceptions. Also, I was interested to see how age - which is described as one of the major Digital Divide factors - influences the relationships between older and younger generations, specifically relationships between parents and children, instructors, students and co-workers.
    [Show full text]
  • Application-Centric Transformation for the Digital Age APRIL 2017
    BLACK & WHITE PAPER Application-Centric Transformation for the Digital Age APRIL 2017 PREPARED FOR ©COPYRIGHT 2017 451 RESEARCH. ALL RIGHTS RESERVED. About this paper A Black & White paper is a study based on primary research survey data which assesses the market dynamics of a key enterprise technology segment through the lens of the ‘on the ground’ experience and opinions of real practitioners — what they are doing, and why they are doing it. About 451 Research 451 Research is a preeminent information technology research and advisory company. With a core focus on technology innovation and market disruption, we provide essential insight for leaders of the digital economy. More than 100 analysts and consultants deliver that insight via syndicated research, advisory services and live events to over 1,000 client organizations in North America, Europe and around the world. Founded in 2000 and headquartered in New York, 451 Research is a division of The 451 Group. © 2017 451 Research, LLC and/or its Affiliates. All Rights Reserved. Reproduction and distribution of this publi- cation, in whole or in part, in any form without prior written permission is forbidden. The terms of use regarding distribution, both internally and externally, shall be governed by the terms laid out in your Service Agreement with 451 Research and/or its Affiliates. The information contained herein has been obtained from sources be- lieved to be reliable. 451 Research disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although 451 Research may discuss legal issues related to the information technology business, 451 Research does not provide legal advice or services and their research should not be construed or used as such.
    [Show full text]
  • Spring Quarter 2019 – Undergraduate Course Offerings
    Spring Quarter 2019 – Undergraduate Course Offerings Courses with an asterisk (*) are open for Pre-registration. ANTHROPOLOGY ANTHRO 221-0 - Social and Health Inequalities 20 (32686) Thomas McDade - TuTh 2:00PM - 3:20PM *Income inequality in the U.S is expanding, while social inequalities in health remain large, and represent longstanding challenges to public health. This course will investigate trends in social and health inequality in the U.S., and their intersection, with attention to the broader global context as well. It will examine how social stratification by race/ethnicity, gender, marital status, national origin, sexual orientation, education, and/or other dimensions influence the health status of individuals, families, and populations; and, conversely, how health itself is thought to be a fundamental determinant of key social outcomes such as educational achievement and economic status. The course will draw on research from anthropology, sociology, psychology, economics, political science, social epidemiology, biomedicine, and evolutionary biology. ANTHRO 314-0 - Human Growth & Development 20 (32683) Erin Beth Waxenbaum Dennison - MoWe 9:30AM - 10:50AM *In this course, we will examine human growth and development. By its very nature, this topic is a bio cultural process that requires an integrated analysis of social construction and biological phenomena. To this end, we will incorporate insight from evolutionary ecology, developmental biology and psychology, human biology and cultural anthropology. Development is not a simple matter of biological unfolding from birth through adolescence; rather, it is a process that is designed to be in sync with the surrounding environment within which the organism develops. Additionally we will apply these bio cultural and socio-ecological insights to emerging health challenges associated with these developmental stages.
    [Show full text]
  • EDITORIAL BOARD THOUGHTS the Fourth Industrial Revolution Does It Pose an Existential Threat to Libraries? Brady Lund
    EDITORIAL BOARD THOUGHTS The Fourth Industrial Revolution Does It Pose an Existential Threat to Libraries? Brady Lund No. No, it does not. Not any more than any other technological innovation (information systems, personal computers, the Internet, e-readers, Google, Google Scholar) did. However, what is very likely is that the technologies that emerge from this era will slowly (but surely) lead to profound changes in how libraries operate. Those libraries that fail to understand or embrace these technologies may, in fact, be left behind. So, we must, as always, stay abreast of trends in emerging technologies and what the literature (i.e., articles in this journal) propose as ideas for adopting (and adapting) them to better serve our patrons. With this column, my aim is to briefly discuss what the fourth industrial revolution is and its relevance within our profession. THE “FOURTH” INDUSTRIAL REVOLUTION? The term “fourth industrial revolution” describes the evolution of information technology towards greater automation and interconnectedness. It includes or incorporates technological advancements such as artificial intelligence, blockchain, advanced robotics, the Internet of Things, autonomous vehicles, virtual reality, 3D printing, nanotechnology, and quantum computing.1 Imaginations can run amok with idyllic visions of Walt Disney’s EPCOT—a utopian world of interconnectedness and efficiency—or dystopian nightmares captured in the mind of Stephen King, George Orwell, or Pixar’s WALL-E. If we have learned anything from the past though—and after the last 12 months I cannot be entirely sure of that—it is that reality is likely to settle somewhere in the middle. Some things will improve dramatically in our lives but there will also be negative impacts—funding changes, learning curves, and maybe a bit of soul-searching within the profession (not that that last one is necessarily a bad thing).
    [Show full text]